Measurement of $^7\text{Be}(n,\alpha)$ and $^7\text{Be}(n,p)$ cross sections for the Cosmological Li problem in EAR2@n_TOF

Addendum to CERN-INTC-2014-049/INTC-P-417

M. Barbagallo1, A. Musumarra2, A. Mengoni3, L. Cosentino2, P. Finocchiaro2, N. Colonna1, D. Schumann4, R. Dressler4, S. Heinitz4, S. Lo Meo3, C. Massimi5, F. Mingrone5, L. Damone1, J. Andrzejewski6, A. Pappalardo2, J. Praena7, P. Zugec8, P.M. Milazzo9, T. Stora10, E. Chiaveri10, M. Calviani10, C. Lederer11, the n_TOF collaboration10

Spokepersons: M. Barbagallo, A. Musumarra

Technical coordinator: O. Aberle

CERN INTC 50th meeting, July 1st 2015
• Physics Case

• $^7\text{Be}(n,\alpha)$ measurement
 • Test measurement for experimental setup
 • Sample preparation
 • Protons request

• $^7\text{Be}(n,p)$ measurement
 • Experimental setup
 • Protons request
The Cosmological Lithium Problem

BBN successfully predicts the abundances of primordial elements such as 4He, D and 3He.

A serious discrepancy (factor 2-4) between the predicted abundance of 7Li and the value inferred by measurements (Spite et al, many others.)

Cosmological Lithium Problem (CLiP)

M. Barbagallo, CERN INTC 50th meeting, July 1st 2015
The Cosmological Lithium Problem

BBN successfully predicts the abundances of primordial elements such as ^4He, D and ^3He.

A serious discrepancy (factor 2-4) between the predicted abundance of ^7Li and the value inferred by measurements (Spite et al, many others.)

Cosmological Lithium Problem (CLUDP)

Nuclear Physics solution to the problem?

M. Barbagallo, CERN INTC 50th meeting, July 1st 2015
Status of evaluations and experimental data: $^7\text{Be}(n,p)$

Only one direct measurement (Koehler et al., 1988, 0.025 eV - 13.5 keV), covering partially the range of BBN interest (few keV–few hundreds of keV).

Direct measurements

Indirect measurements

BBN calculations rely on extrapolation to higher energies of Koehler data or on indirect measurement.

M. Barbagallo, CERN INTC 50th meeting, July 1st 2015
Only one direct measurement (P. Bassi et al., 1963, @ 0.025 eV) giving an upper limit for the cross section at thermal (<0.1 mb)
Sandwich of silicon detectors **directly inserted in the beam.**

Detection of both alpha particles (E~ 9 MeV)

Coincidence technique: **Strong rejection of background**
Setup of the test measurement

Sandwich of Silicons (140 μm, 3x3 cm²)
LiF converter (105 μg/cm²) on mylar
Lower part of the beam dump
1-possible to detect coincidences

Run 200999 T7BE_01 Event 1 Signal 1
2- With the preamplifiers tested so far (and the particles detected in the test) the upper energy limit is 10 keV.

New, fast preamplifiers will be tested before the measurement.
3- Leakage current is increasing with protons, as expected.

Expected value at the end of the $^7\text{Be}(n,\alpha)$ measurement: $2 \, \mu\text{A}$
3- Leakage current is increasing with protons, as expected, but no significant worsening of the detector response was observed.
• 50 GBq (~4 μg) of 7Be from water cooling of SINQ spallation target (batch already extracted)

• Isotopic composition: \(1:1 \, ^7\text{Be}-^{10}\text{Be} \quad 1:5 \, ^7\text{Be}-^9\text{Be} \)

• Chemical compound: nitrate, chloride or oxide

• Backing: Al, C, PI or PE foil (Electrodeposition or Evaporation)
Protons request

- 50 GBq of 7Be on 2.5 cm diameter circular area
- Efficiency 95%
- EAR2
- 5.0×10^{18} protons

Protons requested: 5×10^{18}

M. Barbagallo, CERN INTC 50th meeting, July 1st 2015
The (n,p) measurement in EAR2 @n_TOF

 Silicon telescope outside of the beam

Two silicon strips detectors (16 strips, 5x5 cm², 20 and 300 μm thick) tilted of 45°

Detection of protons (E ~ 1 MeV or 1.4 MeV)
105 μg/cm² thick LiF converter

2.05 MeV α-particles are stopped in ΔE detector

2.73 MeV tritons lose ~1 MeV

SiMon2 detector removed with its flange and replaced with the Silicon Telescope Setup.
105 μg/cm2 thick LiF converter

2.05 MeV α-particles are stopped in ΔE detector

2.73 MeV tritons lose \sim1 MeV

Hosted in SiMon2 chamber

SiMon2 detector removed with its flange and replaced with the Silicon Telescope Setup.
The (n,p) measurement in EAR2 @n_TOF

- Low noise detector, good noise to signal ratio
- Coincidences in few selected strips
The (n,p) measurement in EAR2 @n_TOF

- Low noise detector, good noise to signal ratio
- Coincidences in few selected strips
E-ΔE matrix shows clearly the region of tritons
Coincidence technique NOT POSSIBLE

Purification of sample needed: ISOLDE

- 100 ng of ^7Be (material from water cooling of SINQ spallation source at PSI)
- Implantation on C backing
Protons request

- 100 ng of 7Be on 2.5 cm diameter circular area
- Efficiency 10%
- EAR2
- 1.5×10^{18} protons

7Be(n,p) reaction

M. Barbagallo, CERN INTC 50th meeting, July 1st 2015
Conclusions

• Uncertainties in nuclear data strongly affect the Big Bang Nucleosynthesis calculations for the abundance of 7Li and could probably explain (at least partially) the Cosmological Lithium Problem.

• We plan to measure at n_TOF EAR2 for the first time the 7Be(n,α) cross section and the 7Be(n,p) cross section in the range of interest for BBN, with the aim of reducing uncertainties in nuclear data used in calculations, thus setting stronger constraints to BBN theory and on CLiP.

• The needed 7Be is available at PSI:
 - For the (n,p) measurement, isotopic purity will be done at ISOL (100 ng)
 - For the (n,α) measurement, no need for isotope separation (~4 μg)

• Protons request:
 1.5x10^{18} protons for the 7Be(n,p) measurement
 5.0x10^{18} protons for the 7Be(n,α) measurement