

Structure of proton-rich nuclei via mirror

 β -decay and charge exchange reactions

Sonja Orrigo

Outline

Structure of proton-rich nuclei in/beyond the *fp*-shell

Introduction

- Beta decay experiments
- Complementary process: Charge Exchange (CE) reactions

Experimental results

- Focus on the results from β-decay experiments done at GANIL (France)
- Comparison with the mirror (³He,t) CE experiments done at RCNP Osaka (Japan)
- The exotic decay of ⁵⁶Zn: first observation of a new decay mode
- First observation of the 2⁺ isomer in ⁵²Co

Summary

β-decay spectroscopy

- Most of the nuclei we know today are beta-unstable: emission of β^+ or β^-
- The study of their β decay gives us rich spectroscopic information

β-decay spectroscopy

• Most of the nuclei we know today are beta-unstable: emission of β^+ or β^-

Sonja Orrigo

β-decay spectroscopy

 β-decay spectroscopy with implanted RIBs is a powerful tool to study the structure of proton-rich nuclei in the *fp*-shell and above
 Information of great interest for both nuclear structure and astrophysics

- ✓ Information on ground states and isomeric states, masses and spins
- \checkmark Accurate half-life (T_{1/2}) values, sometimes of β-decaying isomers
- \checkmark By identifying individual particle groups and γ rays
 - \Rightarrow β -delayed particle-decay branching ratios, β -feedings
 - ⇒ reconstruct the partial **decay scheme**
- ✓ Information on the Isobaric Analog State (IAS)
- \checkmark Information on nuclei lying on the rp-process path
- ✓ Absolute values of the Fermi B(F) and

Gamow Teller B(GT) transition strenghts

β-decay transition strengths

Charge Exchange (CE) reactions

I Complementary (**p**,**n**)-type CE reactions, which are the mirror strong interaction process, also provide information on the β-decay transition strengths

 The CE cross section measured at 0° is proportional to the β-decay strengths (relative values)

$$\frac{d\sigma_{GT}^{CE}}{d\Omega}(0^{\circ})\Big|_{j} \cong \hat{\sigma}_{GT}(0^{\circ})B_{j}(GT)$$

$$\frac{d\sigma_F^{CE}}{d\Omega}(0^{\circ}) \cong \hat{\sigma}_F(0^{\circ}) B(F)$$

T.N. Taddeucci et al., NPA 469 (1987) 125-172

 $T_z = +1$ $T_z = 0$

Advantage: highly excited states can be accessed

Complementarity of β-decay and CE reactions

β decay: Weak interaction

Charge Exchange: Strong interaction

Mirror Fermi and Gamow Teller transitions are expected to have the same strength

Are they really identical?Find the difference!

What can we learn from the comparison?

Investigate isospin symmetry in mirror nuclei

 Improve our knowledge of GT transitions close to the proton drip-line and along the rp-process pathway

The T = 1 isospin multiplet

B β decay and CE experiments are complementary

• Under the assumption of isospin symmetry, starting from mirror nuclei, the two processes should populate the same states in the daughter nucleus with the same probability

Y. Fujita, B. Rubio, W. Gelletly, PPNP 66 (2011) 549-60 F. Molina et al., PRC 91 (2015) 014301

The T = 2 isospin multiplet

- The final nucleus is not identical
- Excitation energy might be slightly different
- We compare transitions involving different initial and final states

CE experiments at RCNP Osaka
 (³He,t) @ 140 AMeV and ϑ = 0°, with high energy resolution (20-30 keV)
 ⁵⁶Fe: H. Fujita et al., PRC 88, 054329 (2013)
 ⁵²Cr: Y. Fujita et al., PPNP 66, 549 (2011)
 ⁴⁸Ti: E. Ganioğlu et al., PRC 93, 064326 (2016)

β-decay experiments at GANIL

S.E.A. Orrigo, B. Rubio et al., ⁵⁶Zn: PRL 112, 222501 (2014) ⁵²Ni, ⁴⁸Fe: PRC 93, 044336 (2016) ⁵²Co: PRC 94, 044315 (2016) We performed a series of experiments aiming at the comparison between **β decay in proton-rich nuclei** and Charge Exchange (CE) reactions on the stable mirror target

Kr 70

Br 69

Kr 69

Kr 83,80

Br 79,904

36

35

Se 65

CI 51

β-decay experiments @GANIL

- Primary beam: ⁵⁸Ni @ 75 AMeV fragmented on a ^{nat}Ni target
- Fragments selected by the LISE 3 separator
- Detection of implanted fragment and subsequent charged-particle (β and protons)

decays: double-sided silicon strip detectors (DSSSD)

Detection of β-delayed γ rays: 4 EXOGAM Ge clovers

New results on $T_7 = -2$ nuclei

Beyond the $f_{7/2}$ -shell the production is more difficult:

~ 2 imp/min for ⁵⁶Zn

Isotope	$N_{ m imp}$	$T_{1/2}$ (ms)	B_p (%)
⁴⁸ Fe	49 763(268)	51(3)	14.4(7)
⁵² Ni	532 054(729)	42.8(3)	31.1(5)
⁵⁶ 7n	8861(94)	32.9(8)	88.5(26)

The exotic decay of ⁵⁶Zn

In the time difference between implants and β -decay events give us the Half-life $T_{1/2}$

Each decay is correlated with all the implants happening in the same pixel of the DSSSD

S.E.A. Orrigo et al., PRL 112, 222501 (2014)

S.E.A. Orrigo et al., PRL 112, 222501 (2014)

Sonja Orrigo

Structure of proton-rich nuclei

CNNP, Catania 15

Ge clovers

The partial decay scheme of ⁵⁶Zn

S.E.A. Orrigo et al., PRL 112, 222501 (2014)

1st observation of β -delayed γ -proton decay

In the *fp*-shell in three branches \rightarrow very exotic !!

S.E.A. Orrigo et al., PRL 112, 222501 (2014)

⁵⁶Zn: another surprise

S.E.A. Orrigo et al., PRL 112, 222501 (2014)

Comparison with mirror Charge Exchange

⁵⁶Zn: Isospin mixing

Competition of β -delayed p and β -delayed γ decays

2 independent SM calculations: p-decay hindered by 10³; isospin mixing reproduced
 B. Rubio et al., Nucl. Phys. Review 33, 225 (2016)
 N. Smirnova et al., Phys. Rev. C 93, 044305 (2016)

β decay of ⁴⁸Fe

Q_{FC} = 11202(19) keV

р

 $B_p = 14.4(7) \%$

TABLE III. Summary of the results for the β^+ decay of ⁴⁸Fe. Center-of-mass proton energies E_p , γ -ray energies E_{γ} , and their intensities (normalized to 100 decays) I_p and I_{γ} , respectively. Excitation energies E_X , β feedings I_{β} , Fermi B(F), and Gamow-Teller B(GT) transition strengths to the ⁴⁸Mn levels. The values for the 2634-keV γ ray are taken from Ref. [8].

^aFrom Ref. [8].

S.E.A. Orrigo et al., PRC 93, 044336 (2016)

T_{1/2} = 115 ms

Summary

I β decay of the $T_z = -2$, ⁴⁸Fe, ⁵²Ni and ⁵⁶Zn proton rich-nuclei

- New decay schemes have been determined
- The corresponding B(F), B(GT) values have been determined

B⁺ decay ⇔ (³He,t) Important help in the understanding

- Without the CE data many interesting structural aspects would have remained unclear
- Mirror symmetry works well in general, but some differences remain

Exotic decay of ⁵⁶Zn

- IAS fragmentation due to strong isospin mixing of 33(10)%
- Nuclear structure is responsible for the competition of p and γ decays
- First observation of β-delayed γ-proton decay

I First observation of the 2⁺ isomer in ⁵²Co: $T_{1/2} = 102(6)$ ms

Improved the accuracy on the 6⁺ g.s. T_{1/2} = 112(3) ms

β⁺

The Collaboration

PRL 112, 222501 (2014)

PHYSICAL REVIEW LETTERS

week ending 6 JUNE 2014

Observation of the β -Delayed γ -Proton Decay of ⁵⁶Zn and its Impact on the Gamow-Teller Strength Evaluation

S. E. A. Orrigo,^{1,*} B. Rubio,¹ Y. Fujita,^{2,3} B. Blank,⁴ W. Gelletly,⁵ J. Agramunt,¹ A. Algora,^{1,6} P. Ascher,⁴ B. Bilgier,⁷ L. Cáceres,⁸ R. B. Cakirli,⁷ H. Fujita,³ E. Ganioğlu,⁷ M. Gerbaux,⁴ J. Giovinazzo,⁴ S. Grévy,⁴ O. Kamalou,⁸ H. C. Kozer,⁷ L. Kucuk,⁷ T. Kurtukian-Nieto,⁴ F. Molina,^{1,9} L. Popescu,¹⁰ A. M. Rogers,¹¹ G. Susoy,⁷ C. Stodel,⁸ T. Suzuki,³ A. Tamii,³ and J. C. Thomas⁸ ¹Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain ²Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ³Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan ⁴Centre d'Etudes Nucléaires de Bordeaux Gradignan, CNRS/IN2P3—Université Bordeaux 1, 33175 Gradignan Cedex, France ⁵Department of Physics, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom ⁶Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen H-4026, Hungary ⁷Department of Physics, Istanbul University, Istanbul 34134, Turkey ⁸Grand Accélérateur National d'Ions Lourds, BP 55027, F-14076 Caen, France ⁹Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile ¹⁰SCK·CEN, Boeretang 200, 2400 Mol, Belgium ¹¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 13 February 2014; published 3 June 2014)

Thank you for your attention!