Revisiting the nuclear β decay input in the reactor anomaly

Leendert Hayen CNNP, October 16th 2017

IKS, KU Leuven, Belgium

Introduction

State of the art

Planned improvements

Summary

Introduction

Where is the anomaly?

Antineutrino's from β^- decay of reactor fission fragments

```
Where is the anomaly? Antineutrino's from \beta^- decay of reactor fission fragments
```

What goes wrong? Measured $\# \bar{\nu}_e <$ predicted from β decay

```
Where is the anomaly? Antineutrino's from \beta^- decay of reactor fission fragments
```

What goes wrong? Measured $\# \bar{\nu}_e <$ predicted from β decay

How should we interpret this? Prediction error (mean, σ) or sterile neutrino's, something else

```
Where is the anomaly? Antineutrino's from \beta^- decay of reactor fission fragments
```

What goes wrong? Measured $\# \bar{\nu}_e <$ predicted from β decay

How should we interpret this? Prediction error (mean, σ) or sterile neutrino's, something else

When new physics lurks, look out for quirks!

Antineutrino origin

Fission fragments from ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu have many β^- branches, but can only measure cumulative spectrum.

Conversion of all β branches is **tremendous** challenge A. A. Sonzogni *et al.*, PRC **91** (2015) 011301(R)

Deficiency and particle physics proposal

Current deficiency in neutrino count rate at 94% (2-3 σ)

Very exciting, but...it is real?

Deficiency and particle physics proposal

Current deficiency in neutrino count rate at 94% (2-3 σ)

Very exciting, but...it is real?

Understanding of all corrections & nuclear structure is crucial!

An et al. (Daya Bay Collab.), PRL 118 (2017) 251801 & J. Kopp et al., JHEP 05

β participant sketch

Nuclear β decay is complicated

β participant sketch

Nuclear β decay is complicated

Both greatly influence the spectrum shape!

β participant sketch

Nuclear β decay is complicated

Both greatly influence the spectrum shape!

Additional lower order effects: Atomic, electrostatic, kinematic...

Möller et al., ADNDT 109-110 (2016) 1; L.H. et al., arXiv: 1709.07530

Weak magnetism in T = 1/2 mirrors

Main nuclear structure influence in allowed decays

Oblate deformation for 33 Cl, 35 Ar changes sign & magnitude! Level mixing for high Z, N is non-trivial

State of the art

Approaches split up in 2:

1. Huber method: virtual β branch fits

State of the art

Approaches split up in 2:

- 1. Huber method: virtual β branch fits
- Summation method: Build from databases & extrapolate a la #1

Huber, PRC 84 (2011) 024617; Mueller et al., PRC 83 (2011) 054615

Extrapolation & Virtual branches

How to construct these fictitious β branches?

Parametrised $Z(E_0)$ fit with simple polynomial

Assume allowed shape, extrapolated average nuclear matrix elements

P. Huber, PRC 84 (2011) 024617

Huber (extrapolation) model has many issues:

- Estimated average *b*/*Ac* from spherical mirrors, but highly transition and deformation dependent
- Incorrectly estimates $(\alpha Z)^2$ effects, RNA $(\langle Z \rangle^2) \neq \langle RNA(Z^2) \rangle$!
- ²³⁹Pu cross section does not agree with experiment
- Only allowed transitions (dominant $0^+ \leftrightarrow 0^-$ transitions)
- Quenching of g_A is absent
- . . .

Predictions are dubious

Planned improvements

Central idea is more realistic uncertainty by assessing 3 main sources of error

- Fission yields
- Proper (forbidden) spectral shapes
- Database extrapolation

Central idea is more realistic uncertainty by assessing 3 main sources of error

- Fission yields
- Proper (forbidden) spectral shapes
- Database extrapolation

Collaboration with SCK-CEN for FY uncertainties, Jyvaskyla for forbidden shape factors

Forbidden shape factors

Out of thousands of β^- decays, many dominant are forbidden

Nuclide	$J^{\pi}_{gs} ightarrow J^{\pi}_{gs}$	Contr.	GS β_2
		(%)	
⁹⁶ Y	$0^- ightarrow 0^+$	6.3	0.308
⁹² Rb	$0^- ightarrow 0^+$	6.1	0.240
¹⁰⁰ Nb	$1^+ ightarrow 0^+$	5.5	0.412
¹³⁵ Te	$(7/2-) \rightarrow 7/2^+$	3.7	-0.011
¹⁴² Cs	$0^- ightarrow 0^+$	3.5	0.141
¹⁴⁰ Cs	$1^- ightarrow 0^+$	3.4	0.097
⁹⁰ Rb	$0^- ightarrow 0^+$	3.4	-0.105
⁹⁵ Sr	$1/2^+ ightarrow 1/2^-$	3.0	0.308
⁸⁸ Rb	$2^- ightarrow 0^+$	2.9	-0.073

Sonzogni et al., PRC 91 (2015) 011301(R)

Forbidden shape factors

Differences can be dramatic

Additional uncertainty from g_A and γ_5 renormalization

Results by Joel Kostensalo (Jyvaskyla)

Database contains much more information to use

Trivial extension to improve $(\alpha Z)^2$ behaviour, fixed weights

Database contains much more information to use

Trivial extension to improve $(\alpha Z)^2$ behaviour, fixed weights

Employ Machine Learning clustering algorithms to find better patterns

Nuclear β decays live in high-dimensional vector spaces

- *Z*, *A*
- Branching Ratio, E_0 , daughter excitation
- $\Delta J^{\Delta \pi}$ (forbiddenness, unique)
- Initial and final deformation
- . . .

Nuclear β decays live in high-dimensional vector spaces

- *Z*, *A*
- Branching Ratio, E_0 , daughter excitation
- $\Delta J^{\Delta \pi}$ (forbiddenness, unique)
- Initial and final deformation
- ...

Clusters in high dimensions are smeared in 2D projections

Clustering visualisation

Use dimensional reduction (t-SNE) to visualise results

Clear clusters, intercluster distance irrelevant here

Intercluster comparison

Example comparison for 2 clusters

Large differences visible for simple histograms!

How to combine these results?

Instead of a single $Z(E_0)$ fit, use Monte Carlo to sample

- Clusters
- Fission yields
- Other known or estimated errors

How to combine these results?

Instead of a single $Z(E_0)$ fit, use Monte Carlo to sample

- Clusters
- Fission yields
- Other known or estimated errors

Build a distribution of anomaly \rightarrow better uncertainty estimate

Summary

Current anomaly analysis has shaky foundation

Current anomaly analysis has shaky foundation

Triple-pronged approach to better assess (mean, σ)

Current anomaly analysis has shaky foundation

Triple-pronged approach to better assess (mean, σ)

Nuclear β decays live in high-dimensional clusters, use of Machine Learning to investigate

"It's a dangerous business, going out your door."