

New results from the NUMEN experiment

Diana Carbone for the NUMEN collaboration

CNNP2017 Conference on Neutrino and Nuclear Physics

Outline

Neutrinoless double beta decay

> The nuclear matrix elements involved

The role of nuclear DCE reactions

The pilot experiment

- > ⁴⁰Ca(¹⁸O,¹⁸Ne)⁴⁰Ar DCE reaction
- The competing channels

The NUMEN project

- ➤ The idea
- The program
- > NUMEN experimental runs
- > The ²⁰Ne + ¹¹⁶Cd reaction @ 15 AMeV
 - ✓ ¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn DCE channel
 - ✓ ¹¹⁶Cd(²⁰Ne,²⁰F)¹¹⁶In SCE channel
 - ✓ ¹¹⁶Cd(²⁰Ne,¹⁸O)¹¹⁸Sn 2p-transfer channel

CNNP2017 Conference on Neutrino and Nuclear Physics

Ονββ decay

Open problem in modern physics:

Neutrino absolute mass scale

Neutrino nature

Ονββ is considered the most promising approach

Still not observed

 $^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z+2}Y_{N-2} + 2e^{-}$

Beyond standard model

- ✓ Process mediated by the weak interaction
- \checkmark Occurring in even-even nuclei where the single β -decay is energetically forbidden

CNNP2017 Conference on Neutrino and Nuclear Physics

Double β-decay

Two-neutrino double beta decay

- 1. Within standard model
- 2. $T_{1/2} \approx 10^{19}$ to 10^{24} yr

$$1/T_{\frac{1}{2}}^{2\nu}(0^+ \to 0^+) = G_{2\nu} \left| M^{\beta\beta 2\nu} \right|^2$$

Neutrinoless double beta decay

E. Majorana, Il Nuovo Cimento 14 (1937) 171 W. H. Furry, Phys Rev. 56 (1939) 1184

- 1. Beyond standard model
- 2. Access to effective neutrino mass
- 3. Violation of lepton number conservation
- 4. CP violation in lepton sector
- 5. A way to leptogenesis and GUT $1/T_{\frac{1}{2}}^{0v} (0^+ \rightarrow 0^+) = G_{01} \left| M^{\beta\beta\,0v} \right|^2 \left| \frac{\langle m_v \rangle}{m_e} \right|^2$

CNNP2017 Conference on Neutrino and Nuclear Physics

The idea

0vββ decay half-life

$$\begin{aligned} & \text{Phase space factor} & \text{contains the average} \\ & \left(T_{\frac{1}{2}}^{0\nu\beta\beta}\left(0^{+}\rightarrow0^{+}\right)\right)^{-1} = G_{0\nu\beta\beta} \left|M_{0\nu\beta\beta}^{0\nu\beta\beta}\right|^{2} \left|f\left(m_{i},U_{ei}\right)\right|^{2} \end{aligned}$$

Nuclear Matrix Element (NME)

$$\left|M_{\varepsilon}^{0\nu\beta\beta}\right|^{2} = \left|\left\langle\Psi_{f}\right|\hat{O}_{\varepsilon}^{0\nu\beta\beta}\left|\Psi_{i}\right\rangle\right|^{2}$$

Transition probability of a **nuclear** process

Nuclear physics plays a key role!

Calculations (still sizeable uncertainties): QRPA, Large scale shell model, IBM, EDF
 Measurements (still not conclusive for 0vββ):

 (π^+, π^-) single charge exchange (³He,t), (d,²He) electron capture transfer reactions muon nucleus scattering

A new experimental tool: heavy-ion Double Charge-Exchange (DCE)

CNNP2017 Conference on Neutrino and Nuclear Physics

Heavy-ion DCE reactions

As surrogate processes for $0\nu\beta\beta$

- Induced by strong interaction
- Sequential nucleon transfer mechanism 4th order:

Brink's Kinematical matching conditions D.M.Brink, et al., Phys. Lett. B 40 (1972) 37

- > Meson exchange mechanism 2^{nd} order in the nucleus-nucleus potential
- > Possibility to go in both directions

Ονββ vs HI-DCE

Differences

- DCE mediated by **strong interaction**, $0\nu\beta\beta$ by **weak interaction**
- DCE includes **sequential** multinucleon transfer **mechanism**

Similarities

- Same initial and final states: Parent/daughter states of the $\partial \nu \beta \beta$ decay are the same as those of the target/residual nuclei in the DCE
- **Similar operator:** Fermi, Gamow-Teller and rank-2 tensor components are present in both the transition operators, with tunable weight in DCE
- Large linear momentum (~100 MeV/c) available in the virtual intermediate channel
- **Non-local** processes: characterized by two vertices localized in a pair of valence nucleons
- Same nuclear medium: Constraint on the theoretical determination of quenching phenomena on $\partial v \beta \beta$
- Off-shell propagation through virtual intermediate channels

The NUMEN project

NUclear Matrix Elements for Neutrinoless double beta decay

The collaboration Spokespersons: F. Cappuzzello and C. Agodi

L. Acosta, C. Agodi, N. Auerbach, J. Bellone, S. Bianco, R. Bijker, D. Bonanno, D. Bongiovanni, T. Borello-Lewin, I. Boztosun, V. Branchina, S. Burrello, M.P. Bussa, S. Calabrese, L. Calabretta, A. Calanna, D. Calvo, F. Cappuzzello, D. Carbone, M. Cavallaro, E.R. Chávez Lomelí, A. Coban, M. Colonna, G. D'Agostino,
G. De Geronimo, F. Delaunay, N. Deshmukh, P.N. de Faria, C. Ferraresi, J.L. Ferreira, P. Finocchiaro, M. Fisichella, A. Foti, G. Gallo, H. Garcia, G. Giraudo, V. Greco, A. Hacisalihoglu, J. Kotila, F. Iazzi, R. Introzzi, G. Lanzalone,
A. Foti, G. Gallo, H. Garcia, G. Giraudo, V. Greco, A. Hacisalihoglu, J. Kotila, F. Iazzi, R. Introzzi, G. Lanzalone,
A. Lavagno, F. La Via, J.A. Lay, H. Lenske, R. Linares, G. Litrico, F. Longhitano, D. Lo Presti, J. Lubian, N. Medina, D. R. Mendes, A. Muoio, J. R. B. Oliveira, A. Pakou, L. Pandola, H. Petrascu, F. Pinna, S. Reito, D. Rifuggiato,
A. M.R.D. Rodrigues, A. D. Russo, G. Russo, G. Santagati, E. Santopinto, A. Spatafora, O. Sgouros, S.O. Solakci, G. Souliotis, V. Soukeras, D. Torresi, S. Tudisco, R.I.M. Vsevolodovna, R. Wheadon,

77 members19 Institutions12 countries

B. A. Yildirin, V. A. B. Zagatto

CNNP2017 Conference on Neutrino and Nuclear Physics

DCE @ INFN-LNS

The LNS laboratory in Catania

INFN Laboratori Nazionali del Sud Catania

CNNP2017 Conference on Neutrino and Nuclear Physics

DCE @ INFN-LNS

Crucial for the experimental challenges

K800 Superconducting Cyclotron

MAGNEX spectrometer

F. Cappuzzello et al., Eur. Phys. J. A (2016) 52: 167

- In operation since 1996.
- Accelerates from H to U ions
- Maximum energy 80 MeV/u.

Optical characteristics	
Maximum magnetic rigidity (Tm)	
Solid angle (msr)	
Momentum acceptance	
Momentum dispersion (cm/%)	
	Measured resolutions: • Energy $\Delta E/E \sim 1/1000$ • Angle $\Delta \theta \sim 0.2^{\circ}$ • Mass $\Delta m/m \sim 1/160$
	cs dity (Tm) cm/%)

CNNP2017 Conference on Neutrino and Nuclear Physics

The pilot experiment

40Ca(18O,18Ne)40Ar @ 270 MeV

- > ${}^{18}O^{7+}$ beam from Cyclotron at 270 MeV (10 pnA, 3300 μ C in 10 days) > ${}^{40}Ca$ target 300 μ g/cm²
- ► Ejectiles detected by the MAGNEX spectrometer $0^{\circ} \le \theta_{lab} \le 10^{\circ}$ corresponding to a momentum transfer ranging from 0.17 fm⁻¹ to 2.2 fm⁻¹

- **Measured channels**
- DCE reaction ⁴⁰Ca(¹⁸O, ¹⁸Ne)⁴⁰Ar
- SCE reaction ⁴⁰Ca(¹⁸O,¹⁸F)⁴⁰K
- 2p-transfer ⁴⁰Ca(¹⁸O,²⁰Ne)³⁸Ar
 - 2n-transfer ⁴⁰Ca(¹⁸O,¹⁶O)⁴²Ca

CNNP2017 Conference on Neutrino and Nuclear Physics

The pilot experiment

40Ca(18O,18Ne)40Ar @ 270 MeV

- **Experimental feasibility:** zero-deg, resolution (500 keV), low cross-section (µb/sr) Limitations of the past HI-DCE experiments are overcome!
- **Data analysis feasibility:** the analysis of the DCE cross-section has lead to NME compatible with the existing calculations $|M_{\sigma\tau}^{DCE}({}^{40}Ca)|^2 = 1.2 \pm 0.6$

F. Cappuzzello et al. Eur. Phys. J. A (2015) 51: 145

$$M_{\tau}^{DCE} ({}^{40}Ca)^2 = 1.1 \pm 0.5$$

CNNP2017 Conference on Neutrino and Nuclear Physics

The pilot experiment

The role of the competing processes

CNNP2017 Conference on Neutrino and Nuclear Physics

The NUMEN project

Moving towards hot-cases (⁷⁶Ge, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe, ...)

Caveat

- Reaction **Q**-values normally more negative than in the ⁴⁰Ca case
- (¹⁸O,¹⁸Ne) reaction particularly advantageous, but is of $\beta^+\beta^+$ kind
- Reactions of $\beta^{-}\beta^{-}$ kind are likely not as favourable as the (¹⁸O,¹⁸Ne):
 - ➤ (¹⁸Ne,¹⁸O) requires a radioactive beam
 - \geq (²⁰Ne,²⁰O) or (¹²C,¹²Be) have smaller B(GT)
- In some cases gas or implanted target necessary (e.g. ¹³⁶Xe or ¹³⁰Xe)
- In some cases MAGNEX energy resolution not enough to separate the g.s. from the excited states in the final nucleus \rightarrow Detection of γ -rays

(talk J. De Oliveira)

Much higher beam current is needed

CNNP2017 Conference on Neutrino and Nuclear Physics

The NUMEN project

NUclear Matrix Elements for Neutrinoless double beta decay

F. Cappuzzello et al., J. Phys.: Conf. Ser. 630 (2015) 12018

>Phase1: The experimental feasibility (completed)

F. Cappuzzello et al., Eur. Phys. J. A 51 (2015) 145

Phase2: Experimental exploration of few cases (NURE) and work on theory (running until 2021)

Phase3: Facility upgrade (Cyclotron, MAGNEX, beam line, ...) to work with two orders of magnitude more intense beam <u>(talk D. Lo Presti)</u>

Phase4: Systematic experimental campaign on all the systems with the upgraded facility

CNNP2017 Conference on Neutrino and Nuclear Physics

NUMEN runs – Phase 2

¹¹⁶Cd - ¹¹⁶Sn case

- ➤ Two experiments @ 15 MeV/A
- ➢ ¹⁸O + ¹¹⁶Sn
- ➢ ²⁰Ne + ¹¹⁶Cd

and B

¹²⁹Te

(²⁰Ne,²¹Ne)

(²⁰Ne.²²Ne)

130**Te**

Ν

129**T**

¹²⁸Te

N

¹³⁰Te – ¹³⁰Xe case

One experiment @ 15 MeV/A
 ²⁰Ne + ¹³⁰Te

⁷⁶Ge – ⁷⁶Se case

Experiment in November 2017

The ¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn reaction

- ²⁰Ne¹⁰⁺ beam at 15 AMeV incident energy delivered by CS accelerator
 ¹¹⁶Cd rolled target, 1370 µg/cm² thickness
- Ejectiles detected by the MAGNEX large acceptance spectrometer
- > Angular acceptance $3^{\circ} < \theta_{lab} < 14^{\circ}$

Measured channels

- DCE reaction ¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn
- SCE reaction ¹¹⁶Cd(²⁰Ne,²⁰F)¹¹⁶In
- 2p-transfer ¹¹⁶Cd(²⁰Ne,¹⁸O)¹¹⁸Sn
- 2n-transfer ¹¹⁶Cd(²⁰Ne,²²Ne)¹¹⁴Cd
- 1p-transfer ¹¹⁶Cd(²⁰Ne,¹⁹F)¹¹⁷In
- 1n-transfer ¹¹⁶Cd(²⁰Ne,²¹Ne)¹¹⁵Cd

erc

S. Calabrese and G. Santagati posters

CNNP2017 Conference on Neutrino and Nuclear Physics

Experimental results

DCE reaction ¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn

- Absolute cross section measured
- \succ g.s. \rightarrow g.s. transition isolated

Resolution ~ 800 keV FWHM

CNNP2017 Conference on Neutrino and Nuclear Physics

Experimental results

SCE reaction ¹¹⁶Cd(²⁰Ne,²⁰F)¹¹⁶In

High level density in residual and ejectile

Population of high multipolarity states Multipole decomposition analysis needed

CNNP2017 Conference on Neutrino and Nuclear Physics

Experimental results

	¹¹⁶ Sn	¹¹⁷ Sn	¹¹⁸ Sn
Ť	¹¹⁵ In	¹¹⁶ In	¹¹⁷ In ²⁰ Ne,180
Z	¹¹⁴ Cd	¹¹⁵ Cd	¹¹⁶ Cd
'		→ N	

2p-transfer ¹¹⁶Cd(²⁰Ne,¹⁸O)¹¹⁸Sn

cross section towards g.s. comparable with the DCE channel similar to the ⁴⁰Ca experiment

CNNP2017 Conference on Neutrino and Nuclear Physics

Calculations for multi-nucleon transfer

	¹¹⁶ Sn	¹¹⁷ Sn	¹¹⁸ Sn
Ť	¹¹⁵ In	¹¹⁶ In	¹¹⁷ In ⁽²⁰ Ne, ¹⁸ 0)
Z	¹¹⁴ Cd	¹¹⁵ Cd	¹¹⁶ Cd
		→ N	

Fully microscopic approach

(J. Lubian talk) (R. Vsevolodovna poster)

CNNP2017 Conference on Neutrino and Nuclear Physics

Calculations for multi-nucleon transfer

The role of multi-nucleon transfer routes

VS

The diagonal process (experimental cross section)

Calculations for multi-nucleon transfer

The role of multi-nucleon transfer routes

VS

The diagonal process (experimental cross section)

We can rule out the contribution of multi-nucleon transfer on the diagonal DCE process

CNNP2017 Conference on Neutrino and Nuclear Physics

Conclusions and Outlooks

Use of HI-DCE reaction for 0vββ decay

- > Relevant results achieved in the pilot experiment
- Promising results from the first experiments on "hot" cases
- ¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn measured for the first time together with all the competing channels
 - \checkmark Good energy resolution to isolate the g.s. \rightarrow g.s. transition
 - ✓ Absolute cross section measured
- > Role of multi-nucleon transfer routes negligible with respect to the diagonal DCE

<u>Outlooks</u>

- > Complete the data reduction for all the measured channels
- Measurement on other targets of interest
- > Theoretical developments for DCE and SCE on the way
- CS and MAGNEX FPD upgrade for reaching high intensity

Thank you

CNNP2017 Conference on Neutrino and Nuclear Physics