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METHOD

ABSTRACT

We have performed exact finite range cross section The even-even nuclei °*Ni and °°Ni and odd-even °°Ni nucleus

calculations using the coupled channel Born approx-
imation (CCBA) and coupled reaction channel (CRC)
method for the sequential and direct two-neutron trans-
fers, respectively. The microscopic interaction boson
model (IBM-2) and interacting boson-fermion model
(IBFM) has been applied to two-neutron transfer reac-

For the 94Ni and YYNi it is required consider the basic features of the effective nucleon-nucleon interaction,
that emerge from pairing, quadrupole and symmetry energy. We have calculated the theoretical spectrum of
the 49Ni nuclei coming from IBM2[2] and it is in accordance with the experimental data and we have cal-
culated the theoretical spectrum of the 9°Ni nucleus using the interacting boson fermion model (IBFM) [2]
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sequential process dominates. A competition between
long-range and short-range correlations is discussed.
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A better understanding of the
nuclear structure and reactions will help to improve the
model calculation of nuclear reactions, decays, such as
Single Beta decay and Double Beta decay. The knowl-
edge of the internal degrees of freedom is crucial to
understand nuclear structure features like: collectivity
states, ,single particle states,pairing properties ,cluster-
ing by means of elastic reactions, inelastic reactions sin-
gle and two nucleon transfer reactions.

TWO NUCLEON TRANSFER

Transfer reactions

Two nucleons transfer can be used as a test of
pairing correlations in nuclei.

Therefore one has to identity:

e If the two-neutron transfer occurs in one step (di-
rect), under strong influence of pairing correla-
tions or in two steps (sequentially).

e If the ground state of the residual nucleus is feed
from the ground state of the target

In previous works has been noticed that di-
rect two neutron transfer are important like in
120180, 160)14C[1]

Therefore we want study the collectivity proper-
ties of the nuclei

The two neutron transfer **Ni (**0,'°0)°°Ni

e The experimentalists performed the two-
neutron transfer of "*O+°*Ni at 84 MeV in-
cident energy, to the ground and first ex-
cited state of the residual *°Ni nucleus.

e Therefore to study this reaction we require
compute the spectroscopic factors and cross
sections for two neutron transfer.

o All the experimental data were measured
by the large acceptance MAGNEX spec-
trometer at the INFN- Laboratori Nazionali
del Sud (Italy)

COUPLING SCHEME

In order to proceed with the calculation, we propose a
coupling scheme:

For the direct two-neutron transfer reaction(or

one step mechanism) we use microscopic IBM-2
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TRANSFER OPERATOR

The calculation of the spectroscopic ampli-
tudes for the two nucleon transfer reactions in the
scheme of IBM2 requires the two body matrix el-
ements in the scheme the Generalized Seniority
Scheme [4]

The matrix elements between fermionic states
in the collective subspace are identical to the
matrix elements in the bosonic space, therefore
taking into account the Otsuka- Arima -Iachello
(OAI) expansion to the next to leading order
(NLO)[7] we can obtain the two nucleon transfer
operator.

The advantage of this operator is that the ef-
fects of the pairing interaction are in terms of the
occupation of different single-particle orbitals and
the two body matrix elements take into account
the non-degenerate orbits of the GS states.[5]

The calculation of the spectroscopic ampli-
tudes for single nucleon transfer reactions has
been performed in the IBFM scheme[6]

The coupled channel Born approximation
(CCBA) has been used for the the sequential two
neutron transfer. The Coupled reaction channel
(CRC)has been used for direct two neutron trans-
fer.

RESULTS AND CONCLUSIONS
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e For the transfer reaction to the ground state 9°Ni,
both two reaction mechanisms are important.

e For the transfer to the ground state of °°Ni, the
pairing correlation seems to be relevant, spe-
cially at the bell shape maximum region.

e For the two-neutron transfer to the first excited
state of the 96Ni, there is a dominance of the two
step processes.

e These results allows us to conclude that the pair-
ing correlation effects is present in the two trans-
ferred neutrons to the ground state. This state
has is weak collectivity because °°Ni, is not full
deformed, is vibrational.

e However for the 2] state of °6Ni, so the long
range correlation between nucleons are domi-
nant over short range paring correlations of two
neutrons.

e In previous experiments the forward angle oscil-
lations were not observed because they were not
able to measure the forward angles.|[3]

e [t is interesting to observe that for the same
nucleus different states prefer different transter
mechanism.
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