

Competition between long- range collective and short range pairing correlations in two-neutron transfer reactions

Jesús Imbián Ríos

Institute of Physics

 Federal Fluminense University
Outline

Nuclear spectroscopy via transfer reactions between heavy ions
$>$ The $\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right)$ reaction

$>$ CRC and two-step DWBA calculations
> Microscopic cluster calculations

Nuclear spectroscopy via $\left(\mathbf{1 8}^{\mathbf{1 8}} \mathbf{0},{ }^{\mathbf{1 6}} \mathbf{0}\right)$ reaction

The $\left({ }^{18} 0,{ }^{16} \mathrm{O}\right)$ reactions are good candidates to show the role of pairing interaction thanks to
$>$ The presence of a correlated pair of neutrons in the ${ }^{18} \mathrm{O}_{\text {g.s. }}$ wave function
> The very low polarizability of the ${ }^{16} \mathrm{O}$ core
${ }^{14} \mathrm{C}$ is a good benchmark for considerations
on the reaction mechanism, ${ }^{64} \mathrm{Ni}$ and ${ }^{28}$ Si are good benchmark for studying long-range vs short-range correlations

Studies on both
${ }^{13} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{17} \mathrm{O}\right){ }^{14} \mathrm{C}$ 1n transfer and ${ }^{12} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{14} \mathrm{C} \mathbf{2 n}$ transfer

- Presence of 2 n correlations in the ${ }^{14} \mathrm{C}_{\text {g.s. }}$ wave function
- Strong selectivity in the populated states
- Absolute cross sections reproduced without any scaling factor
M. Cavallaro et al., PRC 88 (2013) 054601

Theoretical models and main ingredients

Exact finite range CRC and two-step CCBA calculations

> Sao Paulo Potential (SPP) used in the optical model

$$
\text { L.C. Chamon, et al., PRL } 79 \text { (1997) } 5218
$$

> Wood-Saxon form factors were used to generate single particle and cluster wave functions. Depth were adjusted to fit the exp. separation energies
> Deformation parameters for collective excitations
> Spectroscopic Amplitudes by shell-model in the $1 p_{1 / 2}, 1 d_{5 / 2}, 2 \mathrm{~s}_{1 / 2}$ model space (zbm interaction)
A.P. Zuker, et al., PRL 17 (1969) 983

Theoretical models and main ingredients

The CRC equations are in many cases of the form

$$
\begin{aligned}
{\left[E_{\kappa p t}-T_{\kappa L}\left(R_{\kappa}\right)-U_{\kappa}\left(R_{\kappa}\right)\right] J_{\alpha}\left(R_{\kappa}\right) } & =\sum_{\alpha^{\prime}, \Gamma>0} i^{L^{\prime}-L} V_{\alpha: \alpha^{\prime}}^{\Gamma}\left(R_{\kappa^{\prime}}\right) J_{\alpha^{\prime}}\left(R_{\kappa^{\prime}}\right) \\
& +\sum_{\alpha^{\prime}, \kappa^{\prime} \neq \kappa} i^{L^{\prime}-L} \int_{0}^{R_{m}} V_{\alpha: \alpha^{\prime}}\left(\left(R_{\kappa}\right), R_{\kappa^{\prime}}\right) J_{\alpha^{\prime}}\left(R_{\kappa^{\prime}}\right) d R_{\kappa^{\prime}}
\end{aligned}
$$

Single nucleon states are given by

$$
\begin{aligned}
& \phi_{J M}\left(\xi_{c}, \mathbf{r}\right)=\sum_{\ell j I} A_{\ell s j}^{j I J}\left[\phi_{I}\left(\xi_{c}\right) \varphi_{\ell s j}(\mathbf{r})\right]_{J M} \\
= & \sum_{\ell j I, m \mu m_{s} m_{\ell}} A_{\ell s j}^{j I J}\langle j m I \mu \mid J M\rangle \phi_{I \mu}\left(\xi_{c}\right)\left\langle\ell m_{\ell} s m_{s} \mid j m\right\rangle Y_{\ell}^{m_{\ell}}(\hat{\mathbf{r}}) \phi_{s}^{m_{s}} \frac{1}{r} u_{\ell s j I}(r)
\end{aligned}
$$

and are the solution of

$$
\left[T_{\ell}(r)+V(r)+\epsilon_{I}-E\right] u_{\ell s j I}(r)+\sum_{\ell^{\prime} j^{\prime} I^{\prime}, \Gamma>0} V_{\ell s j I \ell^{\prime} s j^{\prime} I^{\prime}}^{\Gamma}(r) u_{\ell^{\prime} s j^{\prime} I^{\prime}}(r)=0
$$

Theoretical models and main ingredients

Independent coordinate model

$$
\begin{aligned}
\varphi_{12}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)= & \sum_{i} c_{i}\left|\left(\ell_{1}(i), s_{1}\right) j_{1}(i),\left(\ell_{2}(i), s_{2}\right) j_{2}(i) ; J_{12} T\right\rangle \\
& \rightarrow \sum_{u} c_{i} \sum_{L \ell S j}\left|L,\left(\ell,\left(s_{1} s_{2}\right) S^{r}\right) j ; J_{12} T\right\rangle \phi_{L(\ell S) j}^{J_{12} T, i}(r, \rho) \\
\phi_{L(\ell S) j}^{J_{12} T, i}(r, \rho)= & \left\langle L,\left(\ell,\left(s_{1} s_{2}\right) S\right) j ; J_{12} T \mid\left(\ell_{1}(i), s_{1}\right) j_{1}(i),\left(\ell_{2}(i), s_{2}\right) j_{2}(i) ; J_{12} T\right\rangle \\
& \times\left\langle\left[Y_{L}(\hat{\mathbf{r}}) Y_{\ell}(\hat{\rho})\right]_{\lambda} \mid\left[\varphi_{\ell_{1} s_{1} j_{1}}\left(\mathbf{r}_{1}\right) \varphi_{\ell_{2} s_{2} j_{2}}\left(\mathbf{r}_{2}\right)\right]_{J_{12} T}\right\rangle
\end{aligned}
$$

and the radial integral overlaps are derived from using Moshinsky harmonic oscillator expansion

Theoretical results for other channels

Presence of two-neutron pairing correlations in other ${ }^{14} \mathrm{C}$ states
M. Cavallaro et al., PRC 88 (2013) 054601

Extreme Cluster Model

(CRC)

* Relative motion of the $2 n$ system frozen and separated by the c.m.
* Only the term with the $2 n$ coupled to $S=0$ participates to the transfer

Sequential transfer

 (DWBA)Introducing the ${ }^{17} \mathrm{O}+{ }^{13} \mathrm{C}$ intermediate partition

I ndependent coord.

(CRC)

CRC - 1 n transfer

No arbitrary scaling

New works published in 2016-2017

What happens if we add a neutron to the ${ }^{14} \mathrm{C}$ system?

Study of the ${ }^{13} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{15} \mathrm{C}$ reaction at 84 MeV incident energy

D. Carbone et al., PRC 95, 034603 (2017)

${ }^{15} \mathrm{C}$ energy spectrum

> Same states populated in the (t,p) reactions
$>$ Strong population of states with ${ }^{13} C+2 n$ configurations
$>$ Population of the Giant Pairing Vibration above $S_{2 n}$

- F. Cappuzzello et al., Nat. Commun. 6, 6743 (2015)
- D. Carbone, EPJ Plus (2015) 130:143

$$
9^{\circ}<\theta_{\text {lab }}<10^{\circ}
$$

Energy resolution ~ 200 keV

ARTICLE

Received 28 Dec 2014 | Accepted 24 Feb 2015 | Published 27 Mar 2015

Signatures of the Giant Pairing Vibration in the ${ }^{14} \mathrm{C}$ and ${ }^{15} \mathrm{C}$ atomic nuclei

F. Cappuzzello ${ }^{1,2}$, D. Carbone ${ }^{2}$, M. Cavallaro ${ }^{2}$, M. Bondi ${ }^{11,2}$, C. Agodi ${ }^{2}$, F. Azaiez ${ }^{3}$, A. Bonaccorso ${ }^{4}$, A. Cunsolo ${ }^{2}$,
L. Fortunato ${ }^{5,6}$, A. Foti ${ }^{1,7}$, S. Franchoo ${ }^{3}$, E. Khan ${ }^{3}$, R. Linares ${ }^{8}$, J. Lubian ${ }^{8}$, J.A. Scarpaci ${ }^{9}$ \& A. Vitturi ${ }^{5,6}$

Table 1 | Main spectroscopic features of the populated states.

S.No.	Excitation energy (MeV) (present work)	Excitation energy (MeV) (values from ref. 38)	$\boldsymbol{J}^{\boldsymbol{\pi}} \mathbf{(}^{\star}$)
15 C states			
1	0.00 ± 0.02	0	$1 / 2^{+}$
2	0.73 ± 0.02	0.7400	$5 / 2^{+}$
3	3.12 ± 0.02	3.103	$1 / 2^{-}$
4	4.21 ± 0.02	4.220	$5 / 2^{-}$
5	4.65 ± 0.02	4.657	$3 / 2^{-}$
6	5.87 ± 0.02	5.866	$1 / 2^{-}$
7	6.85 ± 0.02	6.841	$7 / 2^{-}$
8	7.36 ± 0.02	7.352	$9 / 2^{-}$
9	8.47 ± 0.02	8.47	$1 / 2^{+}, 3 / 2^{+}, 5 / 2^{+}$
			(from ref. 39)
10	9.06 ± 0.02	9.00	$1 / 2^{-}$(present work)
11	13.7 ± 0.1		
14 C states			0^{+}
1	0.00 ± 0.02	0	1^{-}
2	6.10 ± 0.02	6.0938	3^{-}
3	6.71 ± 0.02	6.7282	2^{+}
4	7.00 ± 0.02	7.0120	2^{-}
5	7.36 ± 0.02	7.314	2^{+}
6	8.33 ± 0.02	8.3179	0^{+}
7	9.81 ± 0.02	9.7460	$2^{+}, 3^{-}$
8	10.43 ± 0.02	$10.425,10.498$	4^{+}
9	10.73 ± 0.02	10.736	3^{-}
10	12.88 ± 0.02	12.963	
11	13.96 ± 0.02	14.05	6^{+}(from ref. 40)
12	16.42 ± 0.02	16.43	6^{-}(from ref. 40)
13	16.74 ± 0.02	16.715	0^{+}(present work)
14	16.9 ± 0.1		

*Values from ref. 38, except those explicitly indicated.

Supplementary Figure 7 - Comparison with calculations Discretized continuum scheme calculations for the $L=0$ case (red line) and experimental cross section angular distribution for the ${ }^{14} \mathrm{C}$ resonance at $16.9 \pm 0.1 \mathrm{MeV}$. No scaling factors are used.

CRC and DWBA calculations

Extreme cluster model

- Relative motion of the $2 n$ frozen and separated by the c.m.
- Only the term with the $2 n$ coupled to $S=0$ participates to the transfer
- S.A. $=1$ for all configurations

I ndependent coordinate model

- The transfer is described taking into account spectroscopic information obtained by shell model calculations

Coupling scheme	*) ${ }^{\text {誉高 }}$	

Sequential transfer (DWBA)

- Introducing the ${ }^{17} \mathrm{O}+{ }^{14} \mathrm{C}$ intermediate partition

Coupling scheme

CRC and DWBA calculations

Extreme cluster model overestimate the cross section (S.A. = 1) I ndependent coordinate model describes quite well the cross section Sequential transfer (DWBA) underestimate the cross section

Microscopic cluster calculations

Wave functions for two particles in an harmonic oscillator common potential ($j-j$ coupling)
wave functions in terms of the relative and centre of
mass coordinates of the two particles ($\angle S$ coupling)
(n, I) internal cluster state
(N, L) cluster motion relative

$$
\begin{aligned}
& \text { to the core } \\
& \hat{a}=\sqrt{2 a+1} \\
& \text { Moshinsky coefficients }
\end{aligned}
$$

Two neutron amplitudes - zbm interaction

Initial state	$\mathrm{j}_{1} \mathrm{j}_{2}$	J_{12}	Final state	Spectr. Amp.	n	1	N	L	\wedge	S	Spec. Amp. (c.m.)
${ }^{13} \mathrm{C}_{\mathrm{g} .5}\left(1 / 2^{-}\right)$	$\left(p_{1 / 2} \mathrm{~s}_{1 / 2}\right)$	0	${ }^{15} \mathrm{C}_{\text {g. }}\left(1 / 2^{+}\right)$	-0.641	1	0	2	1	1	1	-0.292
					1	1	1	2	1	1	0.338
					1	1	2	0	1	1	-0.075
	$\left(p_{1 / 2} s_{1 / 2}\right)$	1		-1.110	1	0	2	1	1	0	0.292
					1	1	1	2	1	0	-0.338
					1	1	2	0	1	0	0.075
					1	0	2	1	1	1	-0.413
					1	1	1	2	1	1	0.477
					1	1	2	0	1	1	-0.107

Microscopic cluster calculations

Extreme cluster model

Microscopic cluster 1s

- Taking into account configurations with $\mathrm{n}=1 \mathrm{I}=0$

Microscopic cluster 1s + 1p

- Taking into account configuration with $\mathrm{n}=1 \mathrm{I}=0,1$

Coupling scheme

> Transitions to ground and 3.103 MeV states reproduced rather well with $1 s+1 p$ waves
> Transition to 0.74 MeV state probably needs more configurations

Microscopic cluster calculations

New works published in 2016-2017

Test of model space for the $<{ }^{18} \mathrm{O} \mid{ }^{16} \mathrm{O}>$ projectile overlaps

Study of the ${ }^{18} \mathrm{O}\left({ }^{16} \mathrm{O},{ }^{18} \mathrm{O}\right)^{16} \mathrm{O}$ reaction at 84 MeV incident energy zbm vs psdmod interactions

Model space	valence orbitals
zbm $\left({ }^{12} \mathrm{C}\right.$-core $)$	$1 \mathrm{p}_{1 / 2}, 1 \mathrm{~d}_{5 / 2}, 2 \mathrm{~s}_{1 / 2}$
psdmod $\left({ }^{4} \mathrm{He}\right.$ core $)$	$1 \mathrm{p}_{3 / 2}, 1 \mathrm{p}_{1 / 2}, 1 \mathrm{~d}_{5 / 2}, 2 \mathrm{~s}_{1 / 2}, 1 \mathrm{~d}_{3 / 2}$

Experimental results

M. J. Ermamatov et al., PRC 94 (2016) 024610

Results of theoretical calculations

g.s. only $S=0(A)$
$2+S=0(A)$ or (P)
Extreme cluster model works
M. J. Ermamatov et al., PRC 94 (2016) 024610

For the lower states of projectile overlaps the zbm model- space is enough. The study of the higher excited states is in progress

New works in progress (some results)

Study of the ${ }^{18} \mathrm{O}\left({ }^{64} \mathrm{Ni},{ }^{66} \mathrm{Ni}\right){ }^{16} \mathrm{O}$ reaction at 84 MeV incident energy

Model space	valence orbitals
protons	$1 \mathrm{p}_{1 / 2}, 1 \mathrm{~d}_{5 / 2}, 2 \mathrm{~s}_{1 / 2}$
neutrons	$1 \mathrm{p}_{3 / 2}, 1 \mathrm{p}_{1 / 2}, 1 \mathrm{~d}_{5 / 2}, 2 \mathrm{~s}_{1 / 2}, 1 \mathrm{~d}_{3 / 2,1}, 1 \mathrm{~g}_{7 / 2}$

Results of theoretical calculations

Microscopic results: g.s.: IC results are better, specially in the bell-shaped region. Same order: one and two step. 2^{+}: Long-range correl. (coll.) dominates over the short-range (pairing)

Results of theoretical calculations

Microscopic results:
g.s.: IC results are better, specially in the bell-shaped region. 2^{+}: Long-range correl. (coll.) dominates over the short-range (pairing)

For details, see R. Magana poster
B. Paes et al PRC 96.044612 (2017) -yesterday

Results of theoretical calculations

| Nucleus B(E2); $0^{+}!$ | $2^{+}\left(\mathrm{e}^{2} \mathrm{~b}^{2}\right)$ |
| :---: | :---: | :---: |
| ${ }^{14} \mathrm{C}$ | 0.0018 |
| ${ }^{18} \mathrm{O}$ | 0.0045 |
| ${ }^{28} \mathrm{Mg}$ | 0.035 |
| ${ }^{66} \mathrm{Ni}$ | 0.060 |
| ${ }^{76} \mathrm{Ge}$ | 0.270 |

Small for ${ }^{14} \mathrm{C}{ }^{18} \mathrm{C}$
Big for ${ }^{28} \mathrm{Mg}^{66} \mathrm{Ni}{ }^{76} \mathrm{Ge}$

New works in progress (some results)

Study of the ${ }^{18} \mathrm{O}\left({ }^{28} \mathrm{Si},{ }^{30} \mathrm{Si}\right){ }^{16} \mathrm{O}$ reaction at 84 MeV incident energy

Model space (${ }^{4} \mathrm{He}$ core)

valence orbitals (similar to Ni)

$1 p_{3 / 2}, 1 p_{1 / 2}, 1 d_{5 / 2}, 2 s_{1 / 2}, 1 d_{3 / 2}$

$$
\begin{equation*}
1 p_{3 / 2}, 1 p_{1 / 2}, 1 d_{5 / 2}, 2 s_{1 / 2}, 1 d_{3 / 2} \tag{b}
\end{equation*}
$$

$\mathbf{E}(\mathrm{MeV}) ; \mathbf{J}^{\pi}$

Results of theoretical calculations

Cluster model is not good for ${ }^{28,30} \mathrm{Si}$

Microscopic results: g.s.: Two-step DWBA results are better. Same order: one and two step. 2^{+}: Long-range correl. (coll.) dominates over the short-range (pairing) Si* the same results as the 2^{+}state

Results of theoretical calculations

Does our theoretical calculations describe other observables?

- Elastic scattering
- Inelastic scattering

Conclusions and outlooks

$>{ }^{12,13} \mathrm{C}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{15} \mathrm{C},{ }^{16} \mathrm{O}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{18} \mathrm{O},{ }^{64} \mathrm{Ni}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{66} \mathrm{Ni}$, ${ }^{28} \mathrm{Si}\left({ }^{18} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{30} \mathrm{Si}$, at 84 MeV incident energy
> Four models were used to calculate the cross section:
\checkmark Extreme cluster
\checkmark Independent coordinate
\checkmark DWBA
\checkmark Microscopic cluster (only for ${ }^{13}$ C)
$>$ no need for any "unhappiness" factor to reproduce the absolute cross sections
$>$ In ${ }^{13} \mathrm{C}$ importance of a two-neutron correlation in the nuclear wave function, the extra neutron does not destroy the correlations observed in the ${ }^{14} \mathrm{C}$ case
> Dominance of the 1 s and 1 p waves in the two-neutron cluster internal wave function
$>$ Adequacy of zbm interaction for low-lying overlaps of the projectile were established for the projectile.
$>$ Dominance of long-range correlations for the excited 2^{+}state of ${ }^{66} \mathrm{NI}$ over the short-range pairing correlations. The opposite for the g.s. $>$ Dominance of long-range correlations in all states of ${ }^{30} \mathrm{Si}$.

Conclusions and outlooks

Outlooks:

$>$ Include other waves in the microscopic cluster calculations
$>$ Enlarge the model space for higher energy transitions $\left(\mathrm{d}_{3 / 2}\right)$
$>$ Describe high excited states of the projectile.
$>$ Include the deformed target (${ }^{28} \mathrm{Si}$) to study the mixing of collective and single particle configurations.
$>$ Study the $2 p$ and $n p$ transfers to study the pairing correlations in collaboration with the structure group of Genova of Prof. Santopinto.

REACTIONS SCHEME CONCERNING THE ${ }^{116} \mathrm{Cd}\left({ }^{(20} \mathrm{Ne},{ }^{20} \mathrm{O}\right){ }^{116} \mathrm{Sn}$

Working group

E. N. Cardozo, M. Ermamatov, P. de Faria, J. L. Ferreira, D. Mendes Jr., R. Linares, L. Lubian, B. Paes, V. Sagatto.
Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ, Brazil
A. Gargano

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli, Italy
S. Lenzi, A. Vitturi

Istituto Nazionale di Fisica Nucleare - Sezione di Padova, Italy
C. Agodi, S. Calabrese, D. Carbone, M. Cavallaro, F. Cappuzzello, A. Foti, G. Santagati
Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Italy Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Italy Istituto Nazionale di Fisica Nucleare - Sezione di Catania, Italy
E. Santopinto, R. Magana, H. García-Tecocoatzi

Istituto Nazionale di Fisica Nucleare - Sezione di Genova, Italy

Thank you

