New spectrometer projects for challenging particle-gamma measurements of nuclear reactions

J.R.B. Oliveira, for the NUMEN (LNS-INFN,Catania, Italy) and NC (IFUSP-São Paulo, SP, Brazil) collaborations

Conference on Neutrino and Nuclear Physics October 15 - 21, 2017 Catania, Italy

CNNP2017

Talk summary

- Spectrometer projects and their objectives
 - NC (SP) and
 - GNumen (LNS):
 - Requirements
 - Observational limit model
 - Solutions
 - Preliminary tests (prototypes)
 - Predicted performance
 - Final remarks

Projects and objectives

- Particle gamma coincidence for selection and identification of excited nuclear states
- NC gamma spectrometer (IFUSP)
 - Complimentary system to a near 4π charged particle telescope array
 - Reactions with weakly bound stable and radioactive beams (RIBRAS) to study transfer and break up mechanisms
- GNumen gamma "calorimeter" (LNS)
 - Complimentary system to MAGNEX
 - Measurement of DCE cross sections

"Easy" and "difficult" DCE experiments

Examples of 2⁺ state energies of $\beta\beta$ emitters

Nuclide	E*(2⁺) [keV]
⁴⁸ Ca	3831.7
⁸² Se	654.8
⁹⁶ Zr	1750.5
¹⁰⁰ Mo	535.6
¹¹⁰ Pd	373.8
¹²⁴ Sn	1131.7
¹²⁸ Te	743.2
¹³⁰ Te	839.5
¹³⁶ Xe	1313.0
¹⁴⁸ Nd	301.7
¹⁵⁰ Nd	130.2
¹⁵⁴ Sm	82.0
¹⁶⁰ Gd	75.3
¹⁹⁸ Pt	407.2

Difficult:

- E(2⁺) < 500 keV (Magnex resolution @ 15A MeV)
- ~all cases at ~50A MeV

γ calorimeter

- "veto" 2⁺ state decay and measure gs x-section
- measure 2⁺ state x-section

GNumen project

Requirement: Sufficient energy resolution

Requirement: High efficiency

- Angular distribution data point: 12 pb \rightarrow 100 counts after 1 week @ 6 x 10¹² pps beam on 600 µg/cm² A~150 target
 - \rightarrow High photopeak efficiency (high density+high effective Z)
 - → High geometric efficiency (→ 4π)

Requirement: Tolerance to high rates

- Gamma multiplicity: $M_{\gamma} \sim 3-30$, $R_{\gamma} \rightarrow 1$ GHz!
 - \rightarrow High granularity (~2000 detectors)
 - → Small opening detectors
- High radiation hardness (n, γ) inorganic scintillators

Requirement: Good timing resolution

• \rightarrow reduce random coincidence BG at high rates

With some model assumptions, it can be predicted analytically:

O.L. model: BG count probability

Probability of 1 bg count (or more) within the 2⁺ window range

O.L. model: 2 event types

- Both with a DCE reaction product identified in the FPD
- Composed of experimentally undistinguishable events
- 0+-like
 (no γ)

• 2+-like (1 γ or more in ΔE_{γ}) • 2+-like **detected true 2+ not detected detected true 2+ not detected detected**

$$(\widetilde{P}_{F}=1-P_{F},\widetilde{\varepsilon}=1-\varepsilon)$$

bg

O.L. predictions, as a function of \overline{k}

Solutions - Detector crystals

• Inorganic scintillators:

Туре	Dens. g/cm ³	Zeff	Decay const., ns	Res. @662keV	Higrosc.
Nal(Tl)	3.8	50	250	7%	yes
LaBr ₃ (Ce)	5.1	44.1	30	2.6%	yes
LYSO(Ce)	7.1	66	40	10%	No
GAGG(Ce)	6.6	54.4	80 (70%)* 280 (30%)	5%	No

LYSO

Rad. Hard. $\gamma > 10^{6}$ Gy

•SiPM (Sensl)

- Tolerance to magnetic fields

Models: 1.6 cm: 16x3mm pixels 1.2 cm: 4x6 mm pixels

GAGG No bg

Improves (!) with γ radiation >10Gy-800Gy

Solutions: Crystal "Pixel" modules

- Parallel section of crystals \rightarrow best light collection in SiPM of same size
- GEANT simulations for 1 MeV gamma rays:
 - Intrinsic photopeak efficiency: Sum 65%; Central 42%.
 - Compton continuum around 400 keV: reduced by a factor of 2.
 - Total rate increases by 40% due to Compton cross-talk, but is reduced by 6.4 times compared to a monolithic piece of same total size.
 - Pile-up reduced to a few % (at 6 x 10¹² pps or $\overline{k} \approx$ 1)

Solutions: Modular geometry $\rightarrow 4\pi$

- 3 x 3 pixel modules
- "square" walls with 9 (3 x
 3) modules each
- 6 sides x 4 = 24 "squares"
- Total: 1944 crystals
- $\Omega_{\gamma} \sim 60\%$ of 4π
- Openings for target post, beam entrance and exit, vacuum pumping and/or additional detectors.
- Circumscribes a sphere of ~25 cm radius

Preliminary tests - prototypes

⁶⁰C0

LYSO

1.33

GAGG

1 17

- Energy and Time resolutions with 1.2 cm side x 4 cm length crystals (NC project, phase 1):
 - LYSO + SiPM \rightarrow OK for both, full energy range
 - GAGG + SiPM → OK for both at gamma energies above ~250 keV. Bad below ~100 keV (SiPM spectral match)
- LYSO in beam ¹¹⁶Cd(²⁰Ne, ²⁰Ne)¹¹⁶Sn @15MeV/nucleon:

Expected performance

Final remarks

- Looks challenging but feasible
- Next steps:
 - Detailed GEANT4 simulations
 - Detailed tests of prototypes (LNS & IFUSP NC1)
 - With radioactive sources
 - In beam
 - Electronics tests
 - Measurement of in-beam bg and gamma multiplicity
 - Detailed design of array and electronics
 - Building in steps as experiments/techniques advance

Collaborators

NC1:

J.R.B.O., J. A. Alcantara-Núñez, L. Gasques, M.A. Gonzalez-Alvarez, N.H. Medina, M. Moralles, V.A.P. Aguiar, R. Escudeiro, A. Freitas, V. Kurman, V.A.B. Zagatto

IFUSP, IPEN, Brazil

NUMEN – WP6 (GNumen):

J.R.B.O., P.Finocchiaro, C.Agodi, I.Boztosun, F.Cappuzzello, P.N.de Faria, L. Gasques, R.Linares, N.Medina, D.R.Mendes, M.Moralles, S.O.Solakcı, V.A.B. Zagatto

IFUSP, IFUFF, IPEN, Brazil, LNS/INFN, Italy, Erciyes Un., Turkey

... and the other NUMEN WP's

Funding: • INFN

- FAPESP THANKS!
- CNPq