Pinpointing astrophysical bursts of low-energy ν embedded into the noise

Giulia Pagliaroli

Gran Sasso Science Institute, Italy giulia.pagliaroli@gssi.infn.it In collaboration with C. Casentini, C. Vigorito and V. Fafone

Conference on Neutrino and Nuclear Physics 15-21 October 2017, Catania

S GRAN SASSO SCIENCE INSTITUTE SCHOOL OF ADVANCED SPUDIES Scuola Universitaria Superiore

Outline

- Sources of low-energy neutrinos bursts
- Common Signal features
- <u>Novel Search Method for bursts</u>
- Results

Core Collapse Supernovae

Core Collapse Supernovae

As the massive star nears its end, it takes on an onion-layer structure of chemical elements

2 million kilometers

> Iron does not undergo nuclear fusion, so the core becomes unable to generate heat. The gas pressure drops, and overlying material suddenly rushes in

"Failed" Supernovae

5 The shock sweeps through the entire star, blowing it apart

Silicon

Core Collapse Supernovae

Neutrinos Experiments 10 years of background data 3650 injected signals

Kamland

- Liquid Scintillator
- Energy & NC
- M= 1 kton

Borexino

- Liquid Scintillator
- Energy & NC
 - M= 0.3 kton

•

SuperK

- Water Cerenkov
- Energy & NC
- M≈ 22 kton

LVD

- Liquid Scintillator
- Energy & NC
- M= 1 kton

17/10/17

Neutrinos Burst

The observation of an astrophysical burst

Giulia Pagliaroli

The observation of an astrophysical burst

17/10/17

Giulia Pagliaroli

The observation of an astrophysical burst

Background-Signal separation

Optimal cut value for blind search

allowed by the proposed method

 $\eta(D)$ Detection efficiency = Survived signals/Injected signals

Misidentification probability = Background clusters/Survived clusters

 $\eta(D)$ Detection efficiency = Survived signals/Injected signals

 $\zeta(L)$

) Misidentification probability = Background clusters/Survived clusters

Gain Factors

Detector	M(kton)	$E_{thr}(MeV)$	f_{bkg} (Hz)	$\bar{\xi}(\mathrm{Hz})$	$\bar{D}(\mathrm{kpc})$	G
Borexino	0.3	1	0.048	0.65	20	6.9
SuperK	22.5	7	0.012	0.72	200	8.9
KamLAND	1	1	0.015	0.77	50	13.4
LVD	1	10	0.028	0.72	40	14.0

Table 1: Columns in order show: sensitive detector mass in kton; energy threshold considered for the anlisys in MeV; average background frequency in Hz; value for the $\bar{\xi}$ parameter that maximize the signal to noise ratio, as described in the text; maximal distance \bar{D} without efficiency loss after the new cut; gain factor obtained by using the new proposed method.

Clusters Selection for Networks

$$\xi_K * \xi_L \ge \bar{\xi}_L * \bar{\xi}_K$$

The product of the ξ values bigger than:

$$\overline{\xi}^* = \prod_{X=1}^N \overline{\xi}_X$$

The network LVD+Kamland

The network LVD+Kamland

 $\eta^*(D)$ Detection efficiency = Survived coincidences/Injected signals $\zeta^*(D)$ Misidentification probability = Background coincidences/Total 40 60 80 100 120 1.0 1.0 0.8 0.8 New 0.6 0.6 Procedure *4 0.4 0.4 0.2 0.2 0.0 0.0 40 60 80 100 120 D(kpc)

Results for a network LVD+Kamland

Conclusions

The novel proposed method:

- Exploits the temporal structure of a burst emission
- Holds for all the impulsive sources of low-energy neutrinos
- Applies to different detectors or networks of detectors
- Allows to decrease the misidentification probability between a factor 10-20 without loosing on detection efficiency

Backup Slides

SNEWS comparison

Increasing the detection probability of faint signals 57%->75%

Giulia Pagliaroli

Clusters Selection

- New Procedure
 - Standard cut
 - The new selection criteria

$$\xi_i > \overline{\xi}$$

 $\eta(D)$ Detection efficiency = Survived signals/Injected signals $\zeta(D)$ Misidentification probability = Background clusters/Survived clusters

Clusters Selection for Networks

- Standard Procedure:
 - Coincidences in time

 $w_c = 10s$

• Statistical cut on the global false alarm rate $FAR = 2w_c^{N-1} \prod_{X=1}^{N} f_X^{im}$

- New Procedure
 - Standard cuts
 - The new selection criteria: the product of the xi values bigger than:

$$\overline{\xi}^* = \prod_{X=1}^N \overline{\xi}_X$$

 $\eta^*(D)$ Detection efficiency = Survived coincidences/Injected signals $\zeta^*(D)$ Misidentification probability = Background coincidences/Total

17/10/17

Giulia Pagliaroli

Time Integrated Features

Total energy budget Fluences for $\langle E_x \rangle = 1.3 \langle E_{\overline{V}_x} \rangle$ 5×10^{10} $E_{h} = 3 \cdot 10^{53} erg$ $\begin{bmatrix} & 4 \times 10^{10} \\ & 5 \end{bmatrix}$ 3×10^{10} v NC **Equipartition Hypothesis** $\overline{\nu}$ NC $\mathcal{E}_i = \mathbf{E}_h \cdot f_i$ $\stackrel{1}{\xrightarrow{}} 2 \times 10^{10}$ \overline{v}_e NH $f_i = 1/6$ v_e NH 1×10^{10} Fluence at the Earth $\Phi_i = \frac{\mathcal{E}_i}{4\pi D^2} \times \frac{E^{\alpha} e^{-E/T_i}}{T_i^{\alpha+2} \Gamma(\alpha+2)}$ 10 2030 50 40 E_{ν} [MeV] Pinched spectra with $\alpha = 3$ $T_i = \langle E_i \rangle / (\alpha + 1)$

Supernova Neutrinos Detection

