Probing Beta Decay Matrix Elements through Heavy Ion Charge Exchange Reactions Bellone J.I.⁽¹⁾⁽²⁾*, Lenske H.⁽³⁾, Colonna M.⁽²⁾, Lay J.A.⁽⁴⁾, for the NUMEN collaboration

(1) Dipartimento di Fisica e Astronomia, Universstà degli studi di Catania, Italy (2) INFN/LNS, via S. Sofia, 62, CT – 95123, Catania, Italy (3) Institut für Theoretische Physik, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany (4) Departamento de FAMA, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain

Introduction

Nowadays neutrinoless double beta decay $(0\nu\beta\beta)$ represents one of the key cases to probe Physics beyond the Standard Model. From the half – life of nuclei which may undergo double beta decay it would be possible to extract the neutrino effective mass, once determined Phase Space (PS) factor and Nuclear Matrix element (NME)

• BDA works very well for Heavy Ion reactions at low energies \rightarrow simulations with **HIDEX**

- lot of analogies between Haevy Ion Double Charge Exchange (DCE) reactions and $\partial v\beta\beta$ [2]
- $0v\beta\beta$ strength from DCE Cross Section measurements \rightarrow DCE Cross Section factorization into the product of a reaction term and a nuclear structure one, the latter giving information about $0v\beta\beta$ strength
- once calculated the reaction term, from Heavy Ion DCE Cross Section measurements it would be possible to probe the $\beta\beta$ strength, gaining a model-independent insight into NMEs.

CEX Cross Section Factorization

code (H. Lenske) [4] on SCEX Cross Section for Heavy Ions [3].

Conclusions and Outlooks

- We provide Heavy Ion CEx Cross Section factorization by assuming *Gaussian* Reaction Kernel, due to the *Direct* nature of such reactions. Such ansatz gives exact factorization for momentum transfer $q_{\alpha\beta} = 0$, but works well up to $q_{\alpha\beta} \approx 25 - 30$ MeV.
- Calculations made within BDA framework \rightarrow analytical expression for distortion factor.
- DCE formalism code implementation in DWBA, without separation ansatz.
- Study of the link between DCE reactions and $0\nu\beta\beta$ decay.

[4] F. Cappuzzello, H. Lenske, A. Cunsolo, D. Beaumel, S. Fortier, A. Foti, A.

Lazzaro, C. Nociforo, S.E.A. Orrigo, J.S. Winfield, Nucl. Phys. A 739 (2004) 30-56

[5] M.A. Franey, W. G. Love, Phys. Rev. C 31 (1985) 488

[1] J. Barea, J. Kotila, F. Iachello, Phys. Rev. Lett. 109 042501(2012)

* bellone@lns.infn.it

[2] F. Cappuzzello, M. Cavallaro, C. Agodi, M. Bondì, D. Carbone, A.Cunsolo, A. Foti, Eur. Phys. J. A (2015), 51 [3] H. Lenske, J. I. Bellone, M. Colonna, J. A. Lay, Heavy Ion Single Charge Exchange and Beta decay Matrix Elements, in preparation.