

Prospects and Progress of the Jinping Neutrino Experiment

Zhe Wang Department of Engineering Physics Tsinghua University (for the research group)

October 20, 2017 at CNNP2017

Contents

- Motivation
- Jinping laboratory
- Jinping Neutrino Experiment Proposal
- R&D effort Slow LS, Reflector, SST, One-ton Prototype ...
- Idea: Measure K-40 and Mantle Geoneutrinos
- Conclusion

Interests in solar, supernova, and geo neutrinos

surface fraction = core fraction

Evolution of the Sun – Solar Model

1. Fueling mechanism: pp chain **CNO cycle (mainly in high mass stars)**

2. Energy transmission: **Radiation** (opacity) inner convection outer

- **3. Equation: Balance of the gravity,** radiation, and particle pressure
- 4. Initial conditions

Abundance of H, He, metal elements Radius, age, mass ... **Assume: Initial metal fraction =**

Solar Modal and Neutrino Components

Helioseismology and conflict

Resolve the degeneracy of metallicity and radiation opacity

New (better) calculation of Solar model conflicts with helioseismology measurement: sound speed differ by ~40%

Neutrino oscillation upturn

Center-High density: Mixing angle θ_{12}^M determined by electron number density and neutrino energy

$$P_{ee}^{\odot} = \cos^4 \theta_{13} \left(\frac{1}{2} + \frac{1}{2}\cos 2\theta_{12}^M \cos 2\theta_{12}\right)$$

* If going through the Earth, the survival probability will change ~3%

$$\cos^4 \theta_{13} (\frac{1}{2} + \frac{1}{2} \cos 2\theta_{12}^M \cos 2\theta_{12})$$

The mechanism of solar evolution

- CNO neutrinos not discovered
 1% in the Sun, but major fueling process for high temperature stars
- CNO neutrinos: a direct probe of the core of the Sun Study solar metal element fraction, resolve the conflict

Neutrino oscillation

- Solar neutrino oscillation
 Transition from vacuum to matter oscillation
- Precise measurement and new physics

Geoneutrinos

Diving power

- Initial gravity
- Nuclear power, U, Th, K decay

Knowledge:

- <u>Global heat measurement</u> 47 ± 3 TW
- Theoretical predictions:
 - Low range 10 TW
 - Middle range15-30 TW
 - High range 20 TW
- <u>Geoneutrinos from U, Th:</u>
 <u>10-30 TW</u>

- Still consuming initial gravitational power
- Need more measurement of mantle neutrinos

Supernova relic neutrino

 $\frac{d\phi(E)}{dE} =$

$$\int R_{\rm ccSN}(z) \frac{dN(E')}{dE'} (1+z) \left| \frac{dt}{dz} \right| dz$$

- 1. R_{ccSN} Rate of core collapse supernova (optical observation)
- 2. dN/dE['] Neutrino energy spectrum (Supernova temperature)
- 3. Other constants: redshift

 SRN: A finger print of star formation rate and star evolution mechanism.

Jinping Laboratory

China Jinping Underground Laboratory

Flight: Beijing (Shanghai, Guangzhou) - Xichang Car: Xichang - Jinping (2 hours)

Depth and Muon Flux

Reactor Neutrino Background

Closest reactor 1200 km

CJPL-I status

CJPL-II Layout

CJPL Current status

Air system at CJPL-II

- Fresh air pipes: 9km Φ800 PE x3
- Main fan: 75kW x4
- Max. fresh air flux: 45000m³/h
- Normal fresh air flux: 24000m³/h
- Will work in Oct. 2017

2017/10/20

Jinping Neutrino Experiment Proposal

Jinping Neutrino Experiment Proposal

Chinese Physics C 41 (2017) 023002

With 2 kton fiducial mass for solar neutrino (equivalently 3 kton for geo and supernova relic neutrinos)

- 1. Discover CNO neutrinos
- 2. Solar v oscillation
- Precise geoneutrino flux measurement and U/Th ratio
- 4. Study SRN

Solar Neutrinos

Simulation study with Borexino and Jinping assumptions. O-15 precision 10%, constrain oscillation upturn

Geoneutrinos

35

30

- U geoneutrino spectrum
- Th geoneutrino spectrum
- Th/U ratio $\sim 10\%$
- Geo-reactor

2017/10/20

- Address mantel contribution
- Geoneutrino flux prediction at Jinping Sci. Rep. 6, 33034 (2016) 23

Expected sensitivity for SRN with Slow LS

15 kton-year for a discovery with Slow LS
The PSD in LS is not included here.

R&D Effort

Slow liquid scintillator

Time and light yield scan

- <u>Distinguish Cherenkov</u> and scintillation light
- <u>Reasonable light yield</u>

```
arXiv:1708.07781
```

Liquid Cherenkov Scintillator (More)

- Directionality (> 5MeV)
- Particle identification

 (mainly for electron, muon, proton, minor
 effect for gamma and positron)

Use 3400 photon/MeV for estimation: 3400 x 100% (coverage) x 30% (QE) x 60% (attenuation) = 612 PE/MeV Good for both solar, geo and SRN detection Wide field-of-view and high-efficiency light concentrator

- Solar neutrino physics need high light yield.
- We add two more ideas to the String Method
 - 1. Consider the 3D geometry profile of PMT

Geometry acceptance and numbers

90° Cut-off	Photo cathode Coverage	Collection efficiency	N of PMT (m ⁻²)
No reflector	91%	100%	14.73
Modified hexagonal	100%	97%	11.65

A 1-ton prototype at Jinping

- 1. Measure fast neutron background
- 2. Test detection material: water, LS, and slow LS
- 3. A low bkg. facility
- 4. Reconstruction

30 8" PMTs FADC 10 bit 1GS/s Transparent acrylic vessel => Inside: 1ton for LS => Water outside Whole detector: lead shielding

Design and installation

A 1-ton prototype at Jinping

Since May 10, 2017, taking data with pure water inside. Now taking data with a type of liquid scintillator.

One-ton prototype calibration

Jinping simulation & analysis package

JSAP

- 1. Comprehensive optical simulation
- 2. Flexible to different geometry setup
- 3. Waveform simulation
- 4. Flow style simulation G4->PMT->Elec-> Trigger (Not event by event)
- 5. Doing Slow LS study6. Doing Detector Optimization

Low background SST by smelting process

Analyzed by GDMS (1E-9 g/g), HPGe-groud (Bq/Kg), HPGe-Jinping (mBq/Kg)

- 1. C, Si, MgO sand: have a significant radioactivity
- 2. S, P: harmful to SST
- 3. Mn is not 100% necessary
- 4. Settle down on Fe, Cr, Ni (304L), Mo (316L)
- 5. Small impact from MgO crucible

mBq/kg	316L	Borexino	NEXT	
U-238	~6	4.6±0.9	32±9	
Th-232	~5	11.4±1.2	1.9±0.2	
K-40	~11	<14	3.2±0.7	
Co-60	~2	6±1	1.8±0.1	

More wild thought on slow liquid scintillator

Volatile elements on the Earth

- Measure U, Th can fix refractory elements
- Need measurement of <u>K40</u> geoneutrinos to finish the picture for volatile elements

arXiv:1709.03743

Suppression of solar neutrino background

With Te>0.8, solar and geo neutrinos are in different groups.

Statistics in a		All geoneutrinos	⁴⁰ K	Mantle
	$\cos\theta_{\odot} < 0$	189	64	32
2kton detector	$\cos\theta_{\odot}$ <0.5	291	97	46
with le>U.X				

Distinguish K-40 neutrinos

At 0.8 MeV, K-40 dominant, distinguishable structure With LAPPD, it works without any question.

Mantle and crust neutrinos

Distinguish mantle from crust components by spectrum fitting.

Next step

CJPL in the 13th Five Year Plan

CJPL has been listed into the 13th five-year national plan for major science and technology infrastructure programs

国家重大科技基础设施建设"十三五"规划

(三) 极深地下极低辐射本底前沿物理实验设施。

Statements from the CJPL international advisory committee

 Build a strong collaboration and formulate an optimal strategy for advancing to a large, deep and unique observatory for low-energy neutrinos.

Workshop for Jinping Neutrino Experiment

- 1. 2015, 2017 two international workshops
- 2. Participants from: Tsinghua, SYSU, Queen's University, UCAS, Guangxi **University, Shandong** University, BNL, University of Maryland, Technische **Universität Dresden, Mainz University, Charles University, University of Michigan, Tohoku University, Nanjing University, Wuhan University**

18'-20': TDR

16'-18': CDR

14'-15': LOI

construction 17-18: 10-ton Prototype, **Slow LS and low bkg. Tech**

16: 1 ton Prototype

14-15: 20 L Prototype

14-15: Physics Sensitivity, Baseline parameter

- Basic questions for solar, geo, and supernova relic neutrino detections are unsolved.
- CJPL is ideal for these studies. Jinping Neutrino Experiment proposal
- Many R&D efforts: Reflector, low background SST, 1-ton prototype, liquid Cherenkov scintillator (acrylic strength, Electro-magnetic function, etc. not mentioned
- More thoughts on SRN and geo neutrinos
- A 10-ton prototype is in plan

More details can be found at http://jinping.hep.tsinghua.edu.cn/

Thank you for your attention.