

New results on solar neutrinos from Borexino

Sandra Zavatarelli INFN, Sezione di Genova (Italy) on behalf of the Borexino Collaboration

CNNP 2017, Catania (Italy)

Outline

- Solar neutrino physics: a brief summary
- High precision solar neutrino spectroscopy with Borexino:
 - In 2017:
 - New updated results with the Phase II data on all the solar neutrino species: pp, ⁷Be, pep, CNO and ⁸B neutrinos;
 - \succ New limit on the neutrino magnetic moment;
- The future

Solar v as sensitive tool to test solar models

Original motivation of the first experiments on solar v was to test the Standard Solar Model (SSM)

CNNP 2017, Catania (Italy)

Solar v as sensitive tool to test solar models: expected fluxes

FLUX	B16-GS98
pp (10 ¹⁰ cm ⁻² s ⁻¹)	5.98(1±0.006)
pep (10 ⁸ cm ⁻² s ⁻¹)	1.44(1±0.01)
⁷ Be (10 ⁹ cm ⁻² s ⁻¹)	4.94(1±0.06)
⁸ B (10 ⁶ cm ⁻² s ⁻¹)	5.46(1±0.12)
¹³ N (10 ⁸ cm ⁻² s ⁻¹)	2.78(1±0.15)
¹⁵ O (10 ⁸ cm ⁻² s ⁻¹)	2.05(1±0.17)
¹⁷ F(10 ⁶ cm ⁻² s ⁻¹)	5.29(1±0.20)

N. Vinyoles et al., Astrophys. J. 836 (2017) 202

Original motivation of the first experiments on solar v was to test the Standard Solar Model (SSM)

CNNP 2017, Catania (Italy)

The solar neutrino problem: Homestake/Kamioka/Gallex-Sage

(years: 1970-2000) Solar Neutrino Problem:

Fluxes 1/2 or 1/3 of expectations!

CNNP 2017, Catania (Italy)

The solar neutrino problem : possible explanations

- Wrong experiments?
 - *
- Nuclear physics solution?
- If neutrinos are massive: flavour oscillations?

$$|
u(t=0)
angle = |
u_e
angle = U_{e1} \left|
u_1
angle + U_{e2} \left|
u_2
angle + U_{e3} \left|
u_3
angle$$

CNNP 2017, Catania (Italy)

The solution: SNO experiment (year: 2000)

 $\Phi_{NC}(v_x) = (4.94 \pm 0.21 \text{ (stat)}^{+0.38}\text{ (syst.)})x 10^6 \text{ cm}^{-2}\text{s}^{-1}$ 391 days salt phase

 $\Phi_{SSM}(v_x) = 5.46 (1\pm 0.12) \times 10^6 \text{ cm}^{-2}\text{s}^{-1}$

The signal depends on the detection reaction and on the neutrino flavor composition at the detector

SNO

Flavour oscillations in the Sun

Enhanced conversion in the Sun for multi-MeV neutrinos because of v_e forward scattering process with electrons (MSW effect)

$$P_{ee}^{3\nu} = \frac{1}{2}\cos^{4}\theta_{13} \left(1 + \cos 2\theta_{12}^{M} \cos 2\theta_{12}\right)$$

$$\cos 2\theta_{12}^{M} = \frac{\cos 2\theta_{12} - \beta}{\sqrt{(\cos 2\theta_{12} - \beta)^2 + \sin^2 2\theta_{12}}}$$
$$\beta = \frac{2\sqrt{2}G_F \cos^2\theta_{13} n_e E_{\nu}}{\Delta m_{12}^2}$$

The importance of precision spectroscopy: Particle physics

Maltoni & Smirnov,Eur.Phys.J.2016

 Improve the knowledge of mixing parameters, confirm MSW-LMA or exploit possible traces of non-standard neutrino-matter interaction, subleading effects, mixing with light sterile v's

Help to understand the high/Low metallicity solar model controversy

CNNP 2017, Catania (Italy)

The importance of precision spectroscopy: Sun physics

Metallicity	FLUX	B16-GS98	B16-AGSs09met	DIFF. (HZ-LZ)/HZ
puzzle	pp (10 ¹⁰ cm ⁻² s ⁻¹)	5.98(1±0.006)	6.03(1±0.005)	-0.8%
B16-GS98	pep (10 ⁸ cm ⁻² s ⁻¹)	1.44(1±0.01)	1.46(1±0.009)	-1.4%
0.010 B16-AGSS09met	⁷ Be (10 ⁹ cm ⁻² s ⁻¹)	4.94(1±0.06)	4.50(1±0.06)	8.9%
8 0.005	⁸ B (10 ⁶ cm ⁻² s ⁻¹)	5.46(1±0.12)	4.50(1±0.12)	17.6%
0.000	¹³ N (10 ⁸ cm ⁻² s ⁻¹)	2.78(1±0.15)	2.04(1±0.14)	26.6%
	¹⁵ O (10 ⁸ cm ⁻² s ⁻¹)	2.05(1±0.17)	1.44(1±0.16)	29.7%
0.0 0.2 0.4 0.6 0.8 r/R _{sun}	¹⁷ F(10 ⁶ cm ⁻² s ⁻¹)	5.29(1±0.20)	3.26(1±0.18)	38.3%

N. Vinyoles et al., Astrophys. J. 836 (2017) 202

Improve the knowledge of mixing parameters, confirm MSW-LMA or exploit possible traces of non-standard neutrino-matter interaction, subleading effects, mixing with light sterile v's

Help to understand the high/Low metallicity solar model controversy

CNNP 2017, Catania (Italy)

Borexino goal: the measure in real time of the single v components

CNNP 2017, Catania (Italy)

The Borexino detector

CNNP 2017, Catania (Italy)

Borexino phase II data

1	PHASE I	Scint.Purification	PHASE II		Sox	
20	⁷ Be, pep, 07 ⁸ B, geo v Rare process. Calibrations	2010 20 New phase II d	⁷ Be seasonal modu 12 pp, geo v • Larger ex lata • Backgrou • More acc of detecto	ulation 2017 20 posure; nd reduction; urate description or response	018	
\succ	Spectral mea	asurement of the p	o rate (Nature, Vo	<i>I. 512 2014</i>) wit	n a dedicated	
	analysis of the low energy portion of the spectrum;					
	Seasonal mo	dulations of the ⁷ B	e solar neutrino	signal (Astr.Phy	s. 92 (2017) 21);	
	First Simulta	neuos Precision S	pectroscopy of p	p, ⁷ Be and pep	Solar	
	Neutrinos (a	rXiV:1707.09279);	NEW!			
	Updated ⁸ B r	esult (arXiV: 0808.2	2868); NEW!			
	New upper li	mit on neutrino ma	ignetic moment (arXiV:1707.093	55) NEW!	

CNNP 2017, Catania (Italy)

Signal and backgrounds

After 2010 purifications:

- ²³²Th (from ²¹²Bi-Po):
 < 5.7 10⁻¹⁹ g/g at 95%C.L.
- ²³⁸U (from ²¹⁴Bi-Po):
 <u>9.4 10⁻²⁰ g/g at 95%C.L.</u>
- ⁸⁵Kr reduced by a factor 5 and ²¹⁰Bi by a factor 2.3

Event selection:

- Removal μ and conmogenics (1.5% dead time)
- Removal of ²¹⁴Bi-Po
- Noise events
- Fiducial Volume (71.3 tons)
- No α/β discrimination;

Good events removed by cuts :1.5%

CNNP 2017, Catania (Italy)

¹¹C cut: 1) the three fold coincidence

¹¹C is produced by muons together with neutron(s);

 μ + ¹²C \rightarrow μ + ¹¹C + n

The likelihood that a certain event is ¹¹C is obtained using:

- Distance in space and time from the μ-track;
- Distance from the neutron;
- Neutron multiplicity;
- Muon dE/dx and number of muon clusters in an event;

Performances: 92.4 <u>+</u> 4 % tagging efficiency Exposure: 64% in the ¹¹C subtracted spectrum

2) The β^+/β^- pulse-shape variable PS-L_{PR}:

¹¹C decays β^+ : the probability density function (PDF) of the scintillation time profile is different for e⁻ and e⁺ for two reasons:

- in 50% of the case e⁺ annihilation is delayed by ortho-positronium formation (τ~3ns);
- e⁺ energy deposit is not point-like because of the two annihilation gammas;

New discrimination parameter based on the output likelihood of the pos-reco alghoritm

CNNP 2017, Catania (Italy)

First simultaneous spectroscopy of pp,⁷Be and pep-v: analysis method

The presence of residual backgrounds (¹⁴C, pile-up, ⁸⁵Kr, ²¹⁰Bi, ²¹⁰Po, ¹¹C) makes it complex to extract the neutrino signal from our data;

Method: Maximize a binned likelihood through a multivariate approach

$$\sum L(\vartheta) = L_{11C-sub}(\vartheta) \cdot L_{11C-tag}(\vartheta) \cdot L_{radial}(\vartheta) \cdot L_{PS-L_{PR}}(\vartheta)$$

We include in the likelihood:

- Energy spectrum (¹¹C-tagged and ¹¹C-subtracted)
- Pulse-shape distribution PS- L_{PR} ; 4
- Radial distribution;

Checks for systematical effects:

- Fit performed in different conditions (energy range, energy variable, binning..);
- Developed a Toy-MC to :
 - ✓ Fit with pdf used to fit the data
 - ✓ Check bias, sensitivity, correlations
- Energy fit performed both with the MonteCarlo and the Analytical methods.

CNNP 2017, Catania (Italy)

S. Zavatarelli, INFN Genova (Italy)

to disentangle ¹¹C

background

to disentangle external

First simultaneous spectroscopy of pp,⁷Be and pep-v: analysis method

Problem: CNO v recoil and ²¹⁰Bi: very similar energy spectrum

Simulation of signal and background spectra

Analysis strategy

1) pp ⁷Be pep flux measurement: set a constrain of the CNO rate to the HZ and LZ values

- $CNO HZ = (4.92 \pm 0.56) cpd / 100t$
- CNO LZ =(3.52 <u>+</u> 0.37) cpd /100t

For details ...see M. Redchuk poster!

CNNP 2017, Catania (Italy)

Results : example of multivariate fit of the data

CNNP 2017, Catania (Italy)

S. Zavatarelli, INFN Genova (Italy)

Comparison between Phase I and Phase II results

arXiV:1707.09279

- **Data-set:** Dec 14th 2011- May 21st 2016;
- Total exposure: 1291.5 days x 71.3 tons= 252.3 ton*year;
- Fit range: (0.19-2.93) MeV;
- All rates are fully compatible with and improve the uncertainty of the previously published Borexino results;

	Previous BX results (cpd/100t)	This work (cpd/100t)	Uncertainty reduction
рр	144±13±10	134±10 ⁺⁶ - ₁₀	11 ➔9%
⁷ Be(862 keV)	46.0±1.5 ^{+1.6} _{-1.5}	46.3±1.1 ^{+0.4} -0.7	4.7 → 2.7%
nen	3 1+0 6+0 3	(HZ) 2.43±0.36 ^{+0.15} -0.22	22-> 16%
P.A	0.120.020.0	(LZ) 2.65±0.36 ^{+0.15} -0.24	

CNNP 2017, Catania (Italy)

Implications of Phase II results: $^{7}\text{Be-}\nu$ seasonal modulation

Present precision on ⁷Be flux : 2.7%, theoretical error : 7%

CNNP 2017, Catania (Italy)

Implications of Phase II results: evidence of pep solar ν at 5σ

Selected the innnermost β -like events Radius < 2.4 m Ps-LPR < 4.8

CNNP 2017, Catania (Italy)

Implications of Phase II results: Upper limit on the CNO flux

95% C.L. limit on the CNO-ν rate: Rate < 8.1 cpd/100t Flux <7.9 10⁸ cm⁻² s⁻¹

(including systematical uncertainties)

- pp/pep ratio constrained: (47.7±1.2)
- LMA-MSW included
- Toy MC to study the sensitivity:
- The median 95% C.L. is : 9 cpd/100t (LZ)

- 10 cpd/100t (HZ)

	Borexino result	Expected HZ	Expected LZ	
CNO ν (cpd/100t)	< 8.1 (95% C.L.)	4.91 <u>+</u> 0.56	3.62 <u>+</u> 0.37	

CNNP 2017, Catania (Italy)

Implications of Phase II results: probe solar fusion with ν -fluxes rates

$$R = \frac{2\Phi({}^{7}Be)}{\Phi(pp) - \Phi({}^{7}Be)} = \frac{{}^{3}He + {}^{4}He Rate}{{}^{3}He + {}^{3}He Rate}$$

Reactions of the pp chain

J. Bahcall 2003

Expected values: (from G. Pena-Garay priv. comm)

R= 0.180 <u>+</u> 0.011 HZ R= 0.161 <u>+</u> 0.010 LZ

Measured value (Borexino):

R= 0.18 <u>+</u> 0.02

CNNP 2017, Catania (Italy)

New! arXiV: 0808.2868

⁸B- ν : up turn or downturn?

Borexino: 2010 analysis -> Present (2017) 488 days -> 2062 days

The fiducial mass has been extended from 100 tons to the whole FV (~ 300 tons)

Total exposure : 1.5 kton year (11.5 - fold increase)

CNNP 2017, Catania (Italy)

⁸B-v study: two energy windows

Selection cuts:

- Neutron cut : 6.5 veto after internal μ
- ¹⁰C cut : like TFC, veto around each n after μ
- Run stop/start cut: 6.5 s veto after run start time
- Fast coincidence cut: no ²¹⁴Bi-Po
- Random coincidence cut: no events closer that 5 s

Dead Time: 27.6 %

CNNP 2017, Catania (Italy)

Multi-MeV range energy estimator: charge (p.e.)

Two ROI's	e- Recoil Energy	<ev></ev>
LE: 1560-2950 p.e.	~ 3-5 MeV	7.9 MeV
HE: 2950-8500 p.e.	~ 5-17 MeV	9.9 MeV

Backgrounds:

- HE: fraction of μ and fast cosmogenics surviving the cuts, ¹¹Be + external γ from (n,γ) reactions
- LE: faction of μ,n, fast cosmogenics and ²¹⁴Bi surving the cuts + ¹¹Be + ²⁰⁸Tl + external γ from (n,γ) reactions
 - ²¹²Bi-Po fast coincidence was used to quantify ²⁰⁸Tl in the scintillator bulk:

⁸B-v : log-L fit of the radial distribution

Component	LE rate	HE rate
	[cpd/227.8 t]	[cpd/266.0 t]
⁸ B neutrinos	$0.310{\pm}0.029$	$0.235 {\pm} 0.021$
External	$0.224{\pm}0.078$	$0.239{\pm}0.022$
²⁰⁸ Tl bulk	0.042 ± 0.008	-
²⁰⁸ Tl emanation	$0.469{\pm}0.063$	-
²⁰⁸ Tl surface	$1.090{\pm}0.046$	-
Background	LE rate	HE rate
	$[10^{-4} \text{ cpd}/100 \text{ t}]$	$[10^{-4} \text{ cpd}/100 \text{ t}]$
Fast cosmogenics	$13.6{\pm}0.6$	$10.4{\pm}0.4$
Muons	$1.2{\pm}0.1$	$3.8{\pm}0.3$
Neutrons	$0.72{\pm}0.02$	0
10		
^{10}C	9.5 ± 14.1	0
¹⁰ C ¹¹ Be	$\begin{array}{r}9.5{\pm}14.1\\0^{+36.3}_{-0.0}\end{array}$	$0\\0^{+54.9}_{-0.0}$
¹⁰ C ¹¹ Be ²¹⁴ Bi	$\begin{array}{r} 9.5{\pm}14.1\\ \\ 0{}^{+36.3}_{-0.0}\\ \\ 2.2{\pm}1.0 \end{array}$	$\begin{array}{c} 0 \\ 0^{+54.9} \\ -0.0 \\ 0 \end{array}$

Equivalent flavor-stable flux:

0.211 + 0.025 cpd/100t Assuming B16(G98) SSM and MSW+LMA

Uncertainty reduced by a factor 2

CNNP 2017, Catania (Italy)

New pp, ⁷Be, pep and ⁸B- ν results

Rates	Borexino results cpd/100t	Expected HZ cpd/100t	Expected LZ cpd/100t
рр	$134 \pm 10^{+6}_{-10}$	131.0 ± 2.4	132.1 ± 2.4
⁷ Be (862+384 keV)	$48.3 \pm 1.1^{+0.4}_{-0.7}$	47.8 ± 2.9	43.7 ± 2.6
Pep (HZ)	$2.43 \pm 0.36^{+0.15}_{-0.22}$	2.74 ± 0.05	2.78 ± 0.05
Pep (LZ)	$2.65 \pm 0.36^{+0.15}_{-0.24}$	2.74 ± 0.05	2.78 ± 0.05
⁸ B (E _{e-} > 3MeV)	0.220 + 0.015 - 0016 + 0.006	0.211± 0.025	0.173± 0.021
Fluxes	Borexino results Flux (cm ⁻² s ⁻¹)	Expected HZ Flux (cm ⁻² s ⁻¹)	Expected LZ Flux (cm ⁻² s ⁻¹)
рр	$(6.1 \pm 0.5^{+0.3}_{-0.5})10^{10}$	5.98 (1± 0.006)10 ¹⁰	6.03 (1± 0.005)10 ¹⁰
⁷ Be (862+384 keV)	(4.99 ± 0.13 ^{+0.07} -0.10) 10 ⁹	4.93 (1± 0.06) 10 ⁹	4.50 (1± 0.06) 10 ⁹
Pep (HZ)	$(1.27 \pm 0.19^{+0.08}_{-0.12}) \ 10^8$	1.44 (1± 0.009) 10 ⁸	1.46 (1± 0.009)10 ⁸
Pep (LZ)	$(1.39 \pm 0.19^{+0.08}_{-0.13}) \ 10^8$	1.44 (1± 0.009) 10 ⁸	1.46 (1± 0.009)10 ⁸

CNNP 2017, Catania (Italy)

Implications of Phase II results: towards probing HZ and LZ

Global fit of all solar + Kamland reactors with the new Borexino results

$$f_{\rm Be} = \frac{\Phi({\rm Be})}{\Phi({\rm Be})_{\rm HZ}} = 1.01 \pm 0.03$$

 $f_B = \frac{\Phi({\rm B})}{\Phi({\rm B})_{\rm HZ}} = 0.93 \pm 0.02$

- Hints towards High Metallicity?
- Important to reduce the theoretical uncertainties

Only 1 σ theoretical uncertainty in the plot

Borexino: v_e survival probability vs solar model metallicity

 $P_{ee} = \Phi_{meas} / \Phi_{exp}$

It depends on the reference solar model

CNNP 2017, Catania (Italy)

S. Zavatarelli, INFN Genova (Italy)

Neutrino survival probability P_{ee}: Borexino impact **Before Borexino**

0.8

0.7

CNNP 2017, Catania (Italy)

S. Zavatarelli, INFN Genova (Italy)

pp - all solar (w.o. BX)

Homestake

all solar (Rad. + Cher. w.o. BX)

10

New! arXiV: 1707.0955

Neutrino magnetic moment

• In simple extension of SM, if $m_v > 0 \Rightarrow \mu_v > 0$ Additional EM term influencing the v scattering cross section off electrons and thus the spectral shape:

$$\left(\frac{d\sigma}{dT}\right)_{EM} = \mu_{eff}^2 \frac{\pi \alpha_{em}^2}{m_e^2} \left(\frac{1}{T} - \frac{T}{E_v}\right)$$

$$\mu_{eff}^2 = P^{3\nu}\mu_e^2 + (1 - P^{3\nu})(\cos^2\vartheta_{23}\cdot\mu_{\mu}^2 + \sin^2\vartheta_{23}\cdot\mu_{\tau}^2)$$

The limit on the neutrino effective magnetic moment has been obtained studying the X² profile as a function of the hypothetical EM contribution (proportional to μ_{eff}^2) and by using the radiochemical constraint.

Exp.	Method	90% C.L. (10 ⁻¹¹ μ _Β)
Gemma	Reactor v	<2.9
Borexino	⁷ Be -pp v	<2.8

CNNP 2017, Catania (Italy)

Best limit among solar-reactor experiments

Conclusions

In September 2017 Borexino has celebrated the 10 years of data taking

- With Phase-II data Borexino has entered the era of precision spectroscopy of solar neutrinos;
- Thanks to its exceptional radiopurity, Borexino has gone well beyond its original goal providing a complete study of solar neutrinos from the entire proton-proton chain;

The newest results:

- First simultaneous extraction of pp, pep and ⁷Be neutrino rate from the same multivariate fit;
- Improved precision in all flux measurements (notably ⁷Be precision is now 2.7%);
- New determination of the ⁸B neutrino flux (precision increased by 55%);
- >5 σ evidence of the pep neutrino signal;
- Hint towards the High Metallicity hypothesis coming from the ⁷Be and ⁸B ν measurement;
- First experimental determination of the ratio R between the ³He-⁴He and ³He-³He reactions in the Sun;
- New limit on neutrino magnetic moment :

The future : achieved a good thermal stabilitization of the detector spring 2018 => Sox project (see M. Pallavicini talk!)

CNNP 2017, Catania (Italy)

CNNP 2017, Catania (Italy)

First simultaneous spectroscopy of $pp,^7Be$ and pep-v: analysis method

Two methods to determine the reference spectral shapes of signal and background:

MonteCarlo *arXiV*:1703.02291

- Full simulation of all processes: energy
- deposition, light production (scintillator and
- Cerenkov), propagation and collection;
- All known material properties included;
- Known time variations of the detector
- included (for example, number of live PMTs
- and electronics channels);
- Tuned on calibration data of Phase-I;
- Free parameters in the fit: only the rates
- of signal and background;

pros

 Tuning of the MC parameters is done on calibration data which is completeley independent from the data to be analyzed;

cons

 it cannot take into account unknown variations of the detector properties

Analytical Phys.Rev.D 89, 112007 (2014)

- energy scale and response described analytically (including cerenkov, quenching);
- Spatial dependence of reconstructed E and σ(E); some parameters determined from calibrations and fixed in the fit (Birk's quenching factor..);
- Free parameters in the fit: the rates of signal and background + 6 parameters of the response function (L.Y., 2 resol. parameters, ²¹⁰Po peak position and width, starting point of ¹¹C spectrum;

pros

More flexibility in case of unknown variations of the detector;

cons

More free parameters \rightarrow more prone to correlations

The two methods are complementary and provide internal cross-check to the analysis

CNNP 2017, Catania (Italy)

Back-up slides

pp,⁷Be and pep- ν analysis: backgrounds from multivariate fit

Background species	Rate (cpd/100t)	
¹⁴ C (Bq/100t)	40.0±2.0	Factor 4.6 reduction
⁸⁵ Kr	6.8±1.8	with respect to Phase
²¹⁰ Bi	17.5±1.9	Factor 2.3 reduction
¹¹ C	26.8±0.2	with respect to Phase
²¹⁰ Po	260.0±3.0	
Ext ⁴⁰ K	1.0±0.6	
Ext ²¹⁴ Bi	1.9±0.3	
Ext ²⁰⁸ TI	3.3±0.1	

Statistical and systematical errors added in quadrature

CNNP 2017, Catania (Italy)

S. Zavatarelli, INFN Genova (Italy)

o Phase-I

o Phase-I

pp,⁷Be and pep-v analysis: systematical uncertainties

Energy estimators: $N_{p,} N_{p}^{dt2}, N_{h,}, N_{pe}$

- Energy scale
- Not uniformity of the
- energy responce
- ²¹⁰Bi spectral shape

	p_{I}	p	⁷ E	Be	$p\epsilon$	p
Source of uncertainty	-%	+%	-%	+%	-%	+%
Fit method (analytical/MC)	-1.2	1.2	-0.2	0.2	-4.0	4.0
Choice of energy estimator	-2.5	2.5	-0.1	0.1	-2.4	2.4
Pile-up modeling	-2.5	0.5	0	0	0	0
Fit range and binning	-3.0	3.0	-0.1	0.1	1.0	1.0
Fit models (see text)	-4.5	0.5	-1.0	0.2	-6.8	2.8
Inclusion of 85 Kr constraint	-2.2	2.2	0	0.4	-3.2	0
Live Time	-0.05	0.05	-0.05	0.05	-0.05	0.05
Scintillator density	-0.05	0.05	-0.05	0.05	-0.05	0.05
Fiducial volume	-1.1	0.6	-1.1	0.6	-1.1	0.6
Total systematics (%)	-7.1	4.7	-1.5	0.8	-9.0	5.6

⁸B analysis: systematical uncertainties

	\mathbf{LE}	HE	LE+HE
Source	σ	σ	σ
Active mass	2.0	2.0	2.0
Energy scale	0.5	4.9	1.7
z-cut	0.7	0.0	0.4
Live time	0.05	0.05	0.05
Scintillator density	0.5	0.5	0.5
Total [%]	2.2	5.3	2.7

CNNP 2017, Catania (Italy)

CNO-v: perspectives for the future

- Need for a stabilization in temperature of the detector;
- Insulation of the detector with a 20cm-thick layer of rock wool : work completed in dec 2015

