KM3NeT: the next-generation neutrino telescope

A distributed research infrastructure with 2 main physics topics: ORCA & ARCA

>240 people
55 institutes / 41 cities
15 countries

- Single collaboration, same technology

Oscillation Research with Cosmics In the Abyss
Low-energy (~GeV) studies of atmospheric neutrinos

Astroparticle Research with Cosmics In the Abyss
High-energy (TeV-PeV) neutrino astrophysics

See poster G. Ferrara
The (new) ORCA detector

Digital Optical Module (DOM)

- Uniform angular coverage
- Directional information
- Digital photon counting
- All data to shore

~8 Mt instrumented volume
115 strings (detection units, DUs)
18 DOMs / DU (~50 kt ~ 2 × SK)
31 PMTs / DOM (~3 kt ~ MINOS)
Total: 64k x 3” PMTs

Depth = 2435 m
Light absorption length ~ 60 m
Cherenkov telescope: detection principle

- Detection of neutrino (ν) and electron (e)
- Measurement of time, position, and amplitude of hits
- Determination of energy and arrival direction

Diagram shows a Cherenkov telescope with a track and shower indicating the reconstruction of neutrino properties.
Simulations ongoing to study the detector performance with final layout:

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Vertical spacing (between DOM)</th>
<th>horizontal spacing (between strings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoI-based</td>
<td>9 m on average with alternate 6 m and 12 m</td>
<td>20 m</td>
</tr>
<tr>
<td>New</td>
<td>realistic (9 m average)</td>
<td>23 m</td>
</tr>
</tbody>
</table>

All technical constraints (now) included in simulations

Instrumented volume: from 5.7 Mton (LoI) to ~8 Mton (with same number of DOMs)

New set of simulations launched with new geometry, improving in various areas:
 - Trigger + reconstruction + PID + background rejection
Simulations ongoing to study the detector performance with final layout:

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Vertical spacing (between DOM)</th>
<th>Horizontal spacing (between strings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoI-based</td>
<td>9 m on average with alternate 6 m and 12 m</td>
<td>20 m</td>
</tr>
<tr>
<td>New</td>
<td>realistic (9 m average)</td>
<td>23 m</td>
</tr>
</tbody>
</table>

All technical constraints (now) included in simulations

Instrumented volume: from 5.7 Mton (LoI) to ~8 Mton (with same number of DOMs)

New set of simulations launched with new geometry, improving in various areas:

- Trigger + reconstruction + PID + background rejection

Installed as of today: main electro-optical cable, juction box ...and first ORCA line!
Sept 22d: deployment + connection of first ORCA DU

Deployment of the line coiled in a spherical frame (position accuracy ~1m)
Sept 22d: deployment+connection of first ORCA DU

Deployment of the line coiled in a spherical frame (position accuracy ~1m)

Inspection on the seabed with remotely operated submarine (ROV)
Sept 22d: deployment+connection of first ORCA DU

Deployment of the line coiled in a spherical frame (position accuracy ~1m)

Inspection on the seabed with remotely operated submarine (ROV)

Connection to the Junction box with the ROV
Sept 22d: deployment+connection of first ORCA DU

Deployment of the line coiled in a spherical frame (position accuracy ~1m)

Inspection on the seabed with remotely operated submarine (ROV)

Connection to the Junction box with the ROV

Unfurling of the line (triggered by ROV)
Sept 22d: deployment+connection of first ORCA DU

Deployment of the line coiled in a spherical frame (position accuracy ~1m)

Inspection on the seabed with remotely operated submarine (ROV)

Connection to the Junction box with the ROV

Unfurling of the line (triggered by ROV)

Inspection of line by ROV
First ORCA data!

- First event with recorded track reconstructed by ORCA (down-going muon)
First ORCA data!

- A bright muon bundle

![Graph showing data points and time hit in the ORCA experiment.](image-url)
ORCA: measuring the neutrino mass hierarchy

- A "free beam" of known composition (ν_e, ν_μ)
- Wide range of baselines (\leftrightarrow zenith) and energies
- Oscillation pattern distorted by Earth matter effects
 - Maximum difference $\text{IH} \nRightarrow \text{NH}$ for resonance in Earth mantle: $\theta = 130^\circ$ (7645 km) and $E_\nu = 7$ GeV

Approach:
- Measure θ, E of upgoing atmospheric GeV-scale neutrinos, identify and count **track** and **shower** channel events
- Careful treatment of systematics mandatory

Credits: J. Coelho
Event topologies

Discrimination of tracks, showers and atmospheric muons (~%) via RDF
Event topologies

At 10 GeV:

~90% correct ID of ν_e^{CC}

~70% correct ID of ν_μ^{CC}
Reconstruction performances (from LoI)

7°(5°) for 5(10) GeV for both channels
Dominated by kinematic smearing

Energy resolution below 30% in relevant energy range
Statistical analysis

<table>
<thead>
<tr>
<th>parameter</th>
<th>true value distr.</th>
<th>initial value distr.</th>
<th>treatment</th>
<th>prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{23} $[^\circ]$</td>
<td>${40, 42, \ldots, 50}$</td>
<td>uniform over $[35, 55]$ †</td>
<td>fitted</td>
<td>no</td>
</tr>
<tr>
<td>θ_{13} $[^\circ]$</td>
<td>8.42</td>
<td>$\mu = 8.42, \sigma = 0.26$</td>
<td>fitted</td>
<td>yes</td>
</tr>
<tr>
<td>θ_{12} $[^\circ]$</td>
<td>34</td>
<td>$\mu = 34, \sigma = 1$</td>
<td>nuisance</td>
<td>N/A</td>
</tr>
<tr>
<td>ΔM^2 $[10^{-3} \text{ eV}^2]$</td>
<td>$\mu = 2.4, \sigma = 0.05$</td>
<td>$\mu = 2.4, \sigma = 0.05$</td>
<td>fitted</td>
<td>no</td>
</tr>
<tr>
<td>Δm^2 $[10^{-5} \text{ eV}^2]$</td>
<td>7.6</td>
<td>$\mu = 7.6, \sigma = 0.2$</td>
<td>nuisance</td>
<td>N/A</td>
</tr>
<tr>
<td>δ_{CP} $[^\circ]$</td>
<td>0</td>
<td>uniform over $[0, 360]$</td>
<td>fitted</td>
<td>no</td>
</tr>
<tr>
<td>overall flux factor</td>
<td>1</td>
<td>$\mu = 1, \sigma = 0.1$</td>
<td>fitted</td>
<td>yes</td>
</tr>
<tr>
<td>NC scaling</td>
<td>1</td>
<td>$\mu = 1, \sigma = 0.05$</td>
<td>fitted</td>
<td>yes</td>
</tr>
<tr>
<td>$\nu/\bar{\nu}$ skew</td>
<td>0</td>
<td>$\mu = 0, \sigma = 0.03$</td>
<td>fitted</td>
<td>yes</td>
</tr>
<tr>
<td>μ/e skew</td>
<td>0</td>
<td>$\mu = 0, \sigma = 0.05$</td>
<td>fitted</td>
<td>yes</td>
</tr>
<tr>
<td>energy slope</td>
<td>0</td>
<td>$\mu = 0, \sigma = 0.05$</td>
<td>fitted</td>
<td>yes</td>
</tr>
</tbody>
</table>

- **Profile over 4 oscillation & 5 systematic parameters**

- Generate pseudo-experiments and compute $\text{LLR} = \log \left(\mathcal{L}_{\text{NH}} / \mathcal{L}_{\text{IH}} \right)$

- **Median sensitivity** \Leftrightarrow probability of observing median LLR of wrong hierarchy

$$S_{\text{NH}} = \frac{\mu_{\text{NH}} - \mu_{\text{IH}}}{\sigma_{\text{IH}}}$$
Sensitivity to NMH (from LoI)

- Worst case: $\sim 3\sigma$ sensitivity to NMH in 4 years
- The combination of NH and upper octant of θ_{23} gives significantly improved sensitivity ($>5\sigma$ in 3 years)
- For IH, sensitivity is essentially independent of θ_{23}
- The value of δ_{cp} has moderate impact on sensitivity ($\sim 0.5\sigma$)
Other measurements

➢ Oscillation parameters
 • High statistics and excellent resolution
 • Achieve 2-3% precision in Δm^2_{32} and 4-10% in $\sin^2\theta_{23}$ (depending on hierarchy)
 • Competitive with NOvA and T2K projected sensitivity in 2020

➢ Tau neutrino appearance
 • $\approx 3k n_\tau$ CC events/year with full ORCA \rightarrow early physics result!
 • Rate constrained within $\approx 10\%$ in 1 year
Non-standard interactions

\[H_{eff} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m^2_{2\rightarrow 1}}{2E} & 0 \\ 0 & 0 & \frac{\Delta m^2_{3\rightarrow 1}}{2E} \end{bmatrix} U^\dagger + V_e \left[\begin{array}{cccc} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{array} \right] \]

- ORCA sensitive to NSI effects of the order of 10% of Fermi interaction
- for some of the parameters: x10 improvement on direct bounds
- competitive with global limits from oscillation (including solar neutrinos)
Sterile neutrinos

- Dominant effect of adding an eV-scale sterile neutrino: suppression of $\nu_\mu \leftrightarrow \nu_\tau$ oscillation at $\sim 20\text{GeV}$
- ORCA sensitive to $|U_{\tau 4}|^2$ 2x smaller than current limits set by SuperK & IceCube
- ORCA is sensitive to the electron density N_e while geophysics measure ρ_m

- 1σ stat.+ syst. uncertainty after 10 years (NH)
 - ~ 5% in the whole mantle (c)
 - ~ 6% in the whole outer core (b)

10 year sensitivity including systematics

\[
\frac{N_e}{\rho_m} \propto \sum_i w_i \frac{Z_i}{A_i}
\]

- PREM model basis for ρ_m
- uniform Z/A rescaling in layer
- Monte Carlo response & PID
- 4 osc. + 4 syst. param. fitted
ORCA(/ARCA) sensitivity to supernovae

SN1987A-like simulation: 10 kpc, 3x 10^{53} \text{ erg} \\
1/6 in $\bar{\nu}_e$ \\
25% in the first 100 ms

Spectra: $E_{\nu}^{\text{SN}} = \frac{1}{4\pi(10 \text{ kpc})^2} \left[\frac{3 \times 10^{53} \text{ erg}}{6 E_{\nu}} \times \frac{0.25}{100 \text{ ms}} \right] \frac{E_{\nu}^{\text{SN}} \exp(-\alpha+1)E_{\nu}/E_{\nu}}{\text{Normalization}}$, $\alpha=3$

$E_{\bar{\nu}_e} = 12, 14 \& 16 \text{ MeV}$

Best sensitivity for PMT coincidence level between 6 and 10

$\tilde{E}_{\bar{\nu}_e}$

$\begin{array}{|c|c|c|c|}
\hline
\tilde{E}_{\bar{\nu}_e} & N_{\text{ev}} \text{ per block} & D_{5\sigma/3\sigma} \text{ (kpc)} \text{ ARCA} & D_{5\sigma/3\sigma} \text{ (kpc)} \text{ ORCA} \\
\hline
12 & 60 & 23/30 & 16/20 \\
14 & 100 & 29/37 & 19/25 \\
16 & 150 & 37/47 & 24/31 \\
\hline
\end{array}$

>80% of all Galactic SN with a single building block
Improved performances: trigger

- **New trigger**: requires only ONE local DOM coincidence (L1) + causally-connected hits (L0) on neighbouring DOMs (do not have to be coincidences)
 (before: cluster of 3-4 causally connected L1 coincidences)

- Keep bandwidth requirements: trigger rate from pure-noise (~20 kHz) smaller than irreducible trigger rate from atmospheric muons (~50 Hz)

Increase of effective volume at low energies despite sparser detector!
Improved performances: reconstruction

- Reconstruction strategies adjusted for new trigger: allow for fainter events

Efficiency significantly improved - angular resolution unchanged

Expect an increase in sensitivity to NMH and oscillation parameters

(full chain processing ongoing)
Outlook

- New realistic layout simulated accounting for all technical constraints
- Increased detector volume, improved trigger and event reconstruction wrt to LoI
 ...working hard to determine the corresponding increase in sensitivity
- ORCA 3σ median significance for NMH could be reached in less than 3 years (with full detector)
- First detection unit in data taking since last week!
- Plan for completing the construction by 2020
 - Process for securing the funds for construction
 - of full detector launched

 Sept 2017: 1 string
 End 2020: full ORCA (115 strings)
BACKUP
KM3NeT: calibration

40Ca

Up to 150 Cherenkov γ per decay; stable 40K concentration

40K (β decay)

Scattered photons
Direct photons
Nanobeacon

Cross-calibration with muons

Time offset
Efficiency
Time spread

2-fold coincidence rate [Hz]

Time difference [ns]

KM3NeT preliminary
DU-2 nanobeacon visibility (DOM1, run #2621)

Calibrated hit time [ns] modulo pulse period

#hits/pulse
• Optical background mostly from 40K decays in the water
• Look for coincidences in time and PMT direction to reduce trigger rate.
• Causality further restricts space and time correlations for extra power.
• Final trigger rate \sim59 Hz, with 70% of events containing a cosmic ray muon.
1) Start with a track or shower hypothesis
2) Use *causality* to perform a robust *hit selection*
3) Find *vertex* and *direction* that best match hit pattern
4) Estimate track range for computing *track energy* (0.24 GeV / m)
5) Estimate *Shower energy* and direction from hit distribution after initial fit to the vertex position and time
Oscillation parameters measurement

- Achieve 2-3% prec. in Δm^2_{32} and 4-10% in $\sin^2\theta_{23}$ (3 years)
- Competitive with LBL experiments projected sensitivity in 2020
- Early determination of the octant of θ_{23} is feasible

- Analysis based on Asimov datasets
- θ_{12}, θ_{13} and δm^2 fixed
- Other param. unconstrained
- Energy scale uncertainty added (has no impact on NMH sens.)
Oscillation parameters measurement

- Achieve 2-3% prec. in Δm^2_{32} and 4-10% in $\sin^2\theta_{23}$ (3 years)
- Competitive with LBL experiments projected sensitivity in 2020
- Early determination of the octant of θ_{23} is feasible

- Analysis based on Asimov datasets
- θ_{12}, θ_{13} and δm^2 fixed
- Other param. unconstrained

- Energy scale uncertainty added (has no impact on NMH sens.)
 - MH known
 - MH unknown
Non-Standard Interactions (NSI)

\[
H_{\text{eff}} = U \begin{bmatrix}
0 & 0 & 0 \\
0 & \frac{\Delta m_{21}^2}{2E} & 0 \\
0 & 0 & \frac{\Delta m_{31}^2}{2E}
\end{bmatrix} U^\dagger + V_e \begin{bmatrix}
1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\
\epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\
\epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau}
\end{bmatrix}
\]

Sterile Neutrinos (3+N Flavours)

\[
H_{\text{eff}} = U_S \begin{bmatrix}
0 & 0 & 0 & 0 & \cdots \\
0 & \frac{\Delta m_{21}^2}{2E} & 0 & 0 & \cdots \\
0 & 0 & \frac{\Delta m_{31}^2}{2E} & 0 & \cdots \\
0 & 0 & 0 & \frac{\Delta m_{41}^2}{2E} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix} U_S^\dagger + \begin{bmatrix}
V_e & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

\[
U_S = U_{N-1,N} \cdots U_{34} U_{24}^{(c)} U_{14}^{(c)} U_{23} U_{13}^{(c)} U_{12}
\]