

Topological search for Matter Creation[©] with NEMO-3 and SuperNEMO

Ruben Saakyan University College London CNNP-2017, Catania, Italy 18 October 2017

Experimentalist's view on 0vbb

NEMO-3/SuperNEMO Design

Unique Detection principle: reconstruct topological signature

- Source separated from detector: (almost) any solid isotope can be hosted.
- Generally poorer energy resolution than "homogeneous" detectors such as HPGe and bolometers.
- Full topological event reconstruction including e[±], γ-ray and α-particle identification.
- Strong background suppression by particle identification, event characterisation & timing.
- Ability to disentangle different mechanisms for 0vββ, by looking at variables other than ΣE.

Background Suppression

But much more modest energy resolution:

Powerful **background rejection** and **characterisation** through topology, timing, particle ID (e+, e-, α , γ)

One of the lowest background indices

NEMO-3

 $b = 10^{-3} \text{ cnts } \text{kg}^{-1} \text{ keV}^{-1} \text{ yr}^{-1} - \text{data!}$

SuperNEMO

b = (0.5-1)×10⁻⁴ cnts kg⁻¹ keV⁻¹ yr⁻¹

Calorimeter expts (GERDA, CUORE)

 $b = 10^{-3} \text{ cnts } \text{kg}^{-1} \text{ keV}^{-1} \text{ yr}^{-1}$

(fantastic achievement by GERDA)

SuperNEMO(⁸²Se), FWHM=4% *b*×Δ*E* = 5×10⁻⁵ x 120keV = <u>0.006</u> HPGe, FWHM=0.2% *b*×Δ*E* = 0.001 x 4keV = <u>0.004</u>

NEMO-3/SuperNEMO Design Implications

Topology Reconstruction — open-minded search for Lepton Number Violation

"Probing new physics models of $0\nu\beta\beta$ with SuperNEMO", EPJ C (2010) 70, pp. 972-943.

Topology can be used to disentangle underlying physics mechanism

NEMO-3 — Neutrino Ettore Majorana Observatory

Data taking: Feb'03 - Jan'11

NEMO-3 - 20 sectors with ~10 kg of isotopes Plastic scintillator 25G B-field **Passive shielding** + anti-radon shielding Wire Chamber NEMO-3 "camembert" (source top view) ∞Mo 6,9 kg ⁰⁰Mo PMTs OMO ^{e=}Se 0,93 kg 100Mo ¹⁰⁰Mo **•Te 0,45 kg 130Te Qu **6Cd 0,40 kg [™]Te 100 Mo ¹⁵⁰Nd 36,5 g 118Od 100Mo 130Te Mo 96Zr 9,43 g ^{ICC}MO $\beta\beta$ isotope foils

10

4ºCa 6,99 g

The "Anatomy" of ββ decay with NEMO

Search for $0\nu\beta\beta$

 $T_{1/2}(0\nu\beta\beta) > 1.1 \times 10^{24}$ yr at 90%CL

$$\langle m_v \rangle < 0.33 - 0.62 \text{ eV}$$

(with only 7kg of isotope!)

No events > 3.2 MeV after 5 yr of running! (34.3 kg x yr of 100 Mo) Background free technique for high Q_{ββ} isotopes 48 Ca(4.27 MeV), 150 Nd(3.37 MeV) 96 Zr(3.35 MeV)

<u>Ot</u>	<mark>her 0</mark> νββ results	V+	A	SUSY	Majoron
	Isotope	〈λ〉 (1E-6)	〈η〉 (1E-8)	λ'111/f (1E-2)	⟨gee⟩ (1E-5)
	Mo100 (NEMO3)	0.9-1.3	0.5-0.8	4.4-6.0	1.6-3.0
	Te130(CUORICINO)	1.6-2.4	0.9-5.3		17-33
	Xe136 (K-Z)				0.8-1.6
	Ge76 (GERDA)				3.4-8.7
	Ge76 (HdM)	1.1	0.64		8.1

R. Saakyan, NEMO-3 and Su

Summary of $2\nu\beta\beta$ Results

Isotope	Mass (g)	Qββ(keV)	T(2v) (1E19yrs)	S/B	Comment	Reference
Se82	932	2996	9.6 ± 1.0	4	World's best	Phys.Rev.Lett. 95(2005) 483
Cd116	405	2809	2.74 ± 0.18	10	World's best*	Phys. Rev. D 95 (2017) 012007
Nd150	37	3367	0.93 ± 0.06	2.7	World's best	Phys. Rev. D 94 (2016) 072003
Zr96	9.4	3350	2.35 ± 0.21	1	World's best	Nucl.Phys.A 847(2010) 168
Ca48	7	4271	6.4 ± 1.2	6.8 (h.e.)	World's best	Phys. Rev. D 93 (2016) 112008
Mo100	6914	3034	0.71 ± 0.05	80	World's best	Phys.Rev.Lett. 95(2005) 483
Te130	454	2533	70 ± 14	0.5	First direct detection	Phys. Rev. Lett. 107, 062504 (2011)

Crucial experimental input for

- 1) NME calculations
- 2) Ultimate background characterisation for $0 \ensuremath{\nu}$
- 3) Sensitive to exotic BSM physics (e.g. Lorentz

violation, G_f time dependence, bosonic

neutrinos etc)

* Together with Aurora

Quadruple (!) beta decay — 0v4b

ΔL = 4 BSM physics with Dirac neutrinos

J. Heeck, W. Rodejohann, Europhys. Lett. 103, 32001 (2013). M.-C. Chen, M. Ratz, C. Staudt, P. K. S. Vaudrevange, Nucl. Phys. B 866, 157 (2013).

J. Heeck, Phys. Rev. D 88, 076004 (2013)

Only possible with full topological reconstruction of all electrons

90%CL limit	Symmetric	Uniform	Semi- symmetric	Anti- symmetric
Observed	3.2 × 10 ²¹ y	2.6 × 10 ²¹ y	1.7 × 10 ²¹ y	1.1 × 10 ²¹ y
Sensitivity	3.7 × 10 ²¹ y	3.0 × 10 ²¹ y	2.0 × 10 ²¹ y	1.3 × 10 ²¹ y
4 11 11 16 6				

First experimental limit

on this process *Phys. Rev. Lett.* 119 031801 (jul-2017) *Editor's suggestion*

(combined limits for 3 topologies) Preliminary

The goals of SuperNEMO :

- 1. Build on the experience of the extremely successful NEMO-3 experiment.
- 2. Use the power of the tracking-calorimeter approach to identify and suppress backgrounds aiming at a zero-background experiment in the first (Demonstrator Module) phase.
- Prove that a 100 kg scale experiment can reach 50 meV neutrino mass scale. Explore feasibility of scaling up topological technique beyond 100kg and probe inverse mass ordering.
- 4. In the event of a **discovery** by any of the next-generation experiments, use the trackingcalorimeter approach to provide **"smoking gun"** evidence, measure **multiple isotopes** and attempt to **characterise** the **mechanism** of $0\nu\beta\beta$ decay.

From NEMO-3 to SuperNEMO

		collaboration
NEMO-3	R&D since 2006	SuperNEMO
¹⁰⁰ Mo	Isotope	⁸² Se (or ¹⁵⁰ Nd or ⁴⁸ Ca)
7 kg	Isotope mass M	100+ kg
²⁰⁸ TI: ~ 100 µBq/kg ²¹⁴ Bi: < 300 µBq/kg	Contaminations in the $\beta\beta$ foil	²⁰⁸ TI ≤ 2 μBq/kg ²¹⁴ Bi ≤ 10 μBq/kg
Rn: 5 mBq/m ³	Rn in the tracker	Rn ≤ 0.15 mBq/m ³
~8% @ 3MeV	Calorimeter energy resolution (FWHM)	~4% @ 3 MeV
$T_{1/2}(\beta\beta0v) > 1.1 \times 10^{24} y$ <m<sub>v> < 0.3 – 0.6 eV</m<sub>	Sensitivity	$T_{1/2}(\beta\beta0v) > 1 \times 10^{26} y$ $< m_v > < 0.04 - 0.1 eV$

supernemo

From NEMO-3 to SuperNEMO

R&D since 2006

	_		F	-			-	 -
2	\equiv	Σ						
		(2	1	2	2		

supernemo

collaboration

SuperNEMO

	NEMO-3	R&D SINCE 2006	Supernemo
	¹⁰⁰ Mo	Isotope	⁸² Se (or ¹⁵⁰ Nd or ⁴⁸ Ca)
	7 kg	Isotope mass M	100+ kg
	 ²⁰⁸TI: ~ 100 μBq/kg ²¹⁴Bi: < 300 μBq/kg Rn: 5 mBq/m³ 	Contaminations in the ββ foil Rn in the tracker	208 TI $\leq 2 \mu$ Bq/kg 214 Bi $\leq 10 \mu$ Bq/kg Rn $\leq 0.15 m$ Bq/m ³
	~8% @ 3MeV	Calorimeter energy resolution (FWHM) demonstrated	~4% @ 3 MeV
I	- _{1/2} (ββ0v) > 1.1 x 10 ²⁴ y <m<sub>v> < 0.3 – 0.6 eV</m<sub>	Sensitivity	T _{1/2} (ββ0v) > 1 x 10 ²⁶ y <m<sub>v> < 0.04 - 0.1 eV</m<sub>

From NEMO-3 to SuperNEMO

	om NEINO-3 to SuperNEI	NO supernemo
		collaboration
NEMO-3	R&D since 2006	SuperNEMO
¹⁰⁰ Mo	Isotope	⁸² Se (or ¹⁵⁰ Nd or ⁴⁸ Ca)
7 kg	Isotope mass M	100+ kg
²⁰⁸ TI: ~ 100 μBq/kg ²¹⁴ Bi: < 300 μBq/kg	Contaminations in the $\beta\beta$ foil	²⁰⁸ TI ≤ 2 µBq/kg ²¹⁴ Bi ≤ 10 µBq/kg
Rn: 5 mBq/m ³	Rn in the tracker partly demonstrated	Rn ≤ 0.15 mBq/m ³
~8% @ 3MeV	Calorimeter energy resolution (FWHM) demonstrated	~4% @ 3 MeV
{/2} (ββ0v) > 1.1 x 10 ²⁴ y <m.,> < 0.3 – 0.6 eV</m.,>	Sensitivity	$T{1/2}(\beta\beta0v) > 1 \times 10^{26} y$ <m<sub>v> < 0.04 - 0.1 eV</m<sub>

 T_1

SuperNEMO Demonstrator

- Location: LSM
- $\beta\beta$ Source (40-50mg/cm² foil)
 - Baseline: ⁸²Se (high $Q_{\beta\beta}$, long $T_{1/2}(2\nu)$
 - Possibility to add ¹⁵⁰Nd, ⁴⁸Ca almost any isotope possible

Tracker

- drift chamber (95% He + 4%C₂H₅0H + 1%Ar) ~2000 cells in Geiger mode
- Calorimeter
 - 550 PMTs + scintillators + endcap + veto
- 25G B-field
- Passive shielding: iron + water
- Anti-Rn system

Full baseline SuperNEMO:

15-20 Demonstrator-like modules with 5-7kg of isotope = 100kg

Straightforward extrapolation due to modular design!

Aiming at zero background

				-
Events in window $E_{SUM} \in [2.8, 3.2] MeV$	NEMO-3 Phase 2 (29 kg.yr)	Demonstrator Module (29 kg.yr)	Comments	NEMO-3
External Bkgnd	<0.16	<0.16	(conservative)	sensitivity ir
Bi214 from Rn222	2.5 ± 0.2	0.07	radon reduction	4.5 months
Bi214 internal	0.80 ± 0.08	0.07	internal contamination	
TI208 internal	2.7 ± 0.2	0.05	reduction	
2νββ	7.16 ± 0.05	0.20	Mo100 to Se82 8% to 4% resolution	
Total expected	13.1 ± 0.3	0.39		-
Data	12	N/A (yet)		-

- **Demonstrator** 17.5 kg.yr (~2.5 yr of running)
 - T_{1/2} > 6.5 x 10²⁴ yr , $\langle m_{\nu} \rangle$ < 0.16 0.40 eV (90%CL)
- Straightforward extrapolation to full SuperNEMO (20 modules)
- Full SuperNEMO
 - $T_{1/2}$ > 1 x 10²⁶ yr , $\langle m_v \rangle$ < 0.04 0.10 eV (90%CL)

SuperNEMO Strategy: Background Reduction (U, Th, Rn assays) and Rejection (topology, timing etc)

²²²Rn is one of the key problems

Dedicated facilities developed, built and commissioned

Rn removal from gas with cold charcoal trap:

- **He**: <u>10¹⁰(!) suppression</u>, complete removal
- N₂: ~<u>x20 suppression</u> purification down to 20µB/m³ (measured!)

SN ²²²Rn Concentration Line (RnCL) Sensitivity

SuperNEMO Low Background Program

Dedicated BiPo detector to measure $\beta\beta$ source foil contamination, 10µBq/kg for ²¹⁴Bi, 2 µBq/kg for ²⁰⁸TI — operating since Feb'13 @LSC (Canfranc)

+ low background HPGe facilities at LSM, Bordeaux and Boulby, ICPMS at UCL

Measurement Time [month]

Tracker Cell Production (completed)

Quarter-tracker zoomed view

Tracker Assembly and Commissioning (completed)

4 C-shaped tracker modules Rn emanation from fully assembled tracker Target (150 µBq/m³) <u>reached with fully</u> <u>instrumented tracker!</u>

100 NO

Commissioning with cosmic rays

All 4 quarter-tracker modules delivered to LSM

Science Life and Physics

How the particle that led Bohr to think energy might not be conserved could lead the next revolution in physics

Neutrinos are ubiquitous, but mysterious. A Nobel prize was awarded this year for the discovery that they have mass, and undergo quantum oscillations as they travel - discoveries that fundamentally changed our understanding of physics and cosmology. A rare nuclear decay, being searched for now, might lead to a similar revolution

The tunnel where, in Oct 2015, the first module of the SuperNEMO neutrinoless-double-beta-decay detector arrived after making the trip from the Surrey Hills to the Cottian Alps (from UCL's Mullard Space Science Laboratory to the Laboratoire Souterrain de Modane). Photograph: David Waters

Calorimeter Production

- 5" PMTs in outer rows/columns, endcaps and veto
- Every block characterised
- Target performance achieved with full production

Nucl. Instr. Meth. A 868 (2017) 98-108.

- Both calorimeter walls are assembled and installed at LSM
- Light Injection calibration system to monitor gain drift within 1%

Calorimeter Integration at LSM

Calorimeter Integration at LSM

All detector modules delivered underground (LSM) Half of detector (calorimeter + tracker) fully integrated

All detector modules delivered underground (LSM) Half of detector (calorimeter + tracker) fully integrated

All detector modules delivered underground (LSM) Half of detector (calorimeter + tracker) fully integrated

First events from half-detector commissioning Mar'17

Calorimeter wall (France side)

ββ Source Module and Calibration Sources Deployment System

- Calibration sources: ²⁰⁷Bi + ⁶⁰Co + others
- "Rn-free" deployment system

⁸²Se

foil production at LAPP

- Detector integration complete by Jan'18
- Start running for physics early 2018
- Measure target levels of ²¹⁴Bi in foil and ²²²Rn within couple of months
- ²⁰⁸TI ~ 1 year
- Target sensitivity (6.5 x 10²⁴ yr) in 2.5 yr
- Critical input to future tracko-calo and other ββ experiments — unique ability to constrain and characterise backgrounds

SuperNEMO Inauguration 9-Nov-2017

Full SuperNEMO — 15-20 modules, 100kg of isotope(s)

- Distributed location in different underground labs possible/ beneficial
- Construction can proceed in parallel with data taking
- Can provide superior sensitivity with high Q_{ββ} isotopes (¹⁵⁰Nd, ⁴⁸Ca, ⁹⁶Zr)
- Cost range: €2.5M/module
- Expensive to extrapolate >100kg

Is it possible to reduce footprint and cost? In particular, is it possible to achieve detector cost ≤ isotope cost?

SuperNEMO Design with scintillator bars

Input from Demonstrator (background, resolutions and their interplay) <u>crucial</u>!

- 14mx14mx2.5m sufficient to accommodate 100kg of isotope^{*}
- Detector cost estimate: ~€50k per kg of isotope (c.f. >€250k/kg for baseline design),
- i.e. detector cost ~ isotope cost
- Further optimisation possible/ needed
 - Fewer tracker cells, perhaps 3-4 hits enough?
 - Shorter distance between foil and calorimeter — more compact, higher efficiency
 - Readout
 -

* Can fit in new hall at Boulby lab

- Fopological approach to bb detection is **unique**
 - Smoking gun signature and comprehensive background characterisation
 - Isotope **flexibility**
 - Sensitive to **different 0vββ mechanisms**
 - Rich physics potential outside 0vββ, both BSM (Lorentz violation, 0v4β, bosonic neutrino, etc) and nuclear models (e.g. Single State Dominance vs Higher State Dominance) as demonstrated by NEMO-3
- Topological reconstruction approach can in principle eliminate all backgrounds apart from 2vββ. Will learn a lot more once Demonstrator starts running next year.
- If radioactive backgrounds and cost (detector~isotope) are brought under control — topological technique can be in principle scalable to tonnes.
 - Even better if enrichment of high $Q_{\beta\beta}$ isotopes becomes feasible
- In case of discovery best way for **full characterisation** of $0v\beta\beta$

Thank You

BACKUP

Full topology reconstruction = unprecedented understanding of backgrounds

Measuring ²²²Rn in NEMO-3. 5mBq/m³ in Phase-II

Full topology reconstruction = unprecedented understanding of backgrounds

"Handbook" on backgrounds for ββ experiments: Background measurement in NEMO3: NIM A 606 (2009) pp. 449-465.

Quadruple beta decay

Experimental signature

- 4 electrons in the decay
- No neutrinos no invisible energy
- Q(4β) < Q(2β)
 Peak lies in middle of 2v background spectrum
- You will need to count electrons and reject twoelectron events
 - Only NEMO technique can do this

12 April 2017

Electronics, Slow Control and DAQ

R. Saakyan, NEMO-3 and SuperNEMO, CNNP2017

New Underground Lab at Boulby

- Large Experimental Hall: 45m(L) x 7m(W) x 6.5m(H). Class < 10,000 cleanroom throughout.
- Low background screening laboratory: < 1,000 cleanroom
- 10T lifting capacity
- Transportation capacity: 2m x 2.1m x 2.1m in manshaft cage. Up to 8m long items with a week notice. Larger than in SNO and Homestake
- Uninterrupted Power Supply, 100-1000 Mbps internet
- Low natural Rn, 2.5 Bq/m³
- Essentially ready for beneficial occupancy

UC

Scalability of topological technique

All ~tonne detectors will be background limited

 \succ External γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Major bkg for $2\nu\beta\beta$ but small for $0\nu\beta\beta$

 $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

pair creation

Compton + Compton

Compton + Möller

e-

source

foil

Compton + Möller

External γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Major bkg for $2\nu\beta\beta$ but small for $0\nu\beta\beta$

 $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination inside the $\beta\beta$ source foil

beta + Möller

beta + Compton

source

foil

e-

foil

 \succ External γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Major bkg for $2\nu\beta\beta$ but small for $0\nu\beta\beta$

 $(^{100}\text{Mo and }^{82}\text{Se } Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}\text{Tl}) \sim 2.6 \text{ MeV})$

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination inside the $\beta\beta$ source foil

Radon (²¹⁴Bi) inside the tracking detector

- deposits on the wire near the $\beta\beta$ foil
- deposits on the surface of the $\beta\beta$ foil

 \succ External γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Major bkg for $2\nu\beta\beta$ but small for $0\nu\beta\beta$

 $(^{100}\text{Mo and }^{82}\text{Se } Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}\text{Tl}) \sim 2.6 \text{ MeV})$

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination inside the $\beta\beta$ source foil

e-

source

foil

Radon (²¹⁴Bi) inside the tracking detector

- deposits on the wire near the $\beta\beta$ foil
- deposits on the surface of the $\beta\beta$ foil

Crossing electron (external BG)

UC

Radon

Pure sample of ²¹⁴Bi – ²¹⁴Po events

Radon

Anti-radon "factory" - trapping Rn in cooled charcoal. A must for a low-background lab.

Pure sample of ²¹⁴Bi – ²¹⁴Po events

Anti-Rn factory: Input=15Bq/m³ \rightarrow Output 15mBq/m³

Inside the detector:

Phase 1: Feb'03 → Sep'04 A(Radon) ≈ 40 mBq/m³

➢ Phase 2: Dec. 2004 → Jan'11
A (Radon) ≈ 5 mBq/m³

Radon

Anti-radon "factory" - trapping Rn in cooled charcoal. A must for a low-background lab.

"Handbook" on backgrounds for ββ experiments: Background measurement in NEMO3: NIM A 606 (2009) pp. 449-465. 10⁵ χ^2/ndf 54.70 / 51 **P1** 0.1917E+05 16.05 \pm \pm P2 0.6688 0.1878E-01 **P**3 0.1633 0.3174E+05 P4 0.2284E+05 **P5** 16.31 ± 2.481 10⁴ Fraction of non α events: 0.59± 1.33% $T_{1/2}=162.9 \ \mu s$ 10³ 200 400 600 800 1000 Delay time of the α track (µs)

Pure sample of ²¹⁴Bi – ²¹⁴Po events

Anti-Rn factory: Input=15Bq/m³ →Output 15mBq/m³

Inside the detector:

- Phase 1: Feb'03 → Sep'04 A(Radon) ≈ 40 mBq/m³
- ➢ Phase 2: Dec. 2004 → Jan'11
 A (Radon) ≈ 5 mBq/m³

NEMO3 : 100Mo decay to excited states

"Probing new physics models of neutrinoless double beta decay with SuperNEMO"; R. Arnold et al., Eur. Phys. Jr. C DOI 10.1140/epjc/s10052-010-1481-5

Radon activity measurement

<u>Requirement</u>: Rn activity inside tracker < 150 µBq/m³

Gas Flow Rate Study

The tracker works at high flow rates : a possible solution for suppressing radon.