A Multi-Pixel Photon Counter detector prototype for direct detection of scintillation light in liquid xenon.

جامعـة نيويورك أبوظـي NYU ABU DHABI

Adriano Di Giovanni, CNNP 2017, 15-21 October, Catania

Goals

- Realization of a low power cryogenic electronics operable at 175 K for the readout of VUV sensitive MPPCs (S13370-3050CN, a.k.a. VUV4).
- Selection of a commercial operational amplifier working in cryo-environment
- Optimize the maximum numbers of MPPCs that can be readout as a single channel.
- Provide a design allowing for gain equalization in real time.
- Dark Matter experiments look for single photon detection capability.

An amplifier for VUV photomultipliers operating in cryogenic environment

- ~ 80 MHz Bandwidth for typical signal with <4 ns rise time
- IN/OUT impedance 50 Ohm
- 2X AD8011 operational amplifiers (± 5V, can be "unbalanced" to match the dynamics)
- Low Noise (< 200 µV RMS @ 5X amplification)
- Designed for 0.5 X & (5 X to 15 X) dedicated outputs
- Power consumption: Min 6 mW, Max 20 mW (amplification unaffected, only dynamic range involved)

Presented at "Frontier detectors for frontier physics - 13th PISA Meeting on Advanced detectors", 24-30 May 2015

Performances of AD8011 in cold environments

Current [mA]

S13370-3050CN = VUV4 MPPC family manufactured by Hamamatsu

PROS:

- Sensitive to LXe-LAr scintillation light
- P.D.E. (@ 178 nm) ~ 25%
- Intrinsic Single Photon Detection capability
- "Cold proof"
- Low Voltage operation (~56 V @ 298 K)
- Gain ~ standard PMT
- Magnetic Field Insensitive

CONS:

- Dark Counting Rate
- Cross Talk / Afterpulses
- Characteristics = f(Temperature)
- Size (usually < cm²)
- "Large" Pixel Capacitance: fraction of pF
- Naked: handle with care
- Grouping of many MPPCs is challenging
- Everything but cheap

MPPC electrical scheme

- APD "ingredients": junction resistance (Rj), junction capacitance (Cj), voltage source (Vbd), light switch (S)
- **MPPC cell "ingredients"**: APD + quenching resistor (Rq)
- Current limiting resistor (Ra), Bypass capacitor (Cb) and decoupling resistor (Rs) are all external components
- A MPPC is usually made of thousands of MPPC cells connected in parallel

MPPC typical waveform

Adapting the AD8011 to a readout of a multiple MPPC array (16 devices reported here)

S13370-3050CN = VUV4 MPPC family manufactured by Hamamatsu

https://arxiv.org/abs/1707.08004

Schematics of 16-channels-electronics

• This technique is effective only if the dark counting is small enough (~ sub-Hz)

- Noise contributions must be evaluated
- A similar "Standard" circuit was proposed by DarkSide colleagues: JINST 10 (2015) P08013

Noise model and estimation

Source of Noise	i_a	e_a	e_{f}	$\mathbf{e_s}$
${\bf B}({\bf k},{\bf f})$	$i_a \times \mathbf{R}_{\mathbf{f}}$	$e_a \times \left(1 + \frac{\mathbf{R}_{\mathbf{f}}}{\mathbf{Z}_{\mathbf{s}}(\mathbf{f})}\right)$	$4\mathrm{KT} \times R_f$	$4\mathrm{KT}\frac{R_f}{Z_s(f)}$
$\frac{\mathbf{Spectral\ density\ noise}}{\mathbf{C}(\mathbf{f})} \big[\frac{\mathbf{V}}{\sqrt{\mathbf{Hz}}}\big]$	5.0×10^{-9}	$\leq 6.4 \times 10^{-7}$	9.6×10^{-18}	$\leq 3 \times 10^{-18}$

The most significant contribution to the noise budget is due to input voltage noise of the operational amplifier.

- Nitrogen in gas phase used to purge water vapor condensation at 175 K.
- The MPPC array has been operated at different over voltages and illuminated by a pulsed UV LED.

A glimpse to the waveforms

Typical waveforms corresponding to a single photon and to 2 photons taken at 175 K, 2 V of over-voltage (50 Ω termination).

Single photon counting capability

Measurement conditions

- Data acquisition performed by Lecroy HDO6104.
- The DAC control for the biasing fine tuning not activated here.
- NO FILTER (hardware).
- No Y-axis increased resolution.
- NO offline FILTER (Optimum, Matched, ...).
- Infinite persistance mode.

Single photon counting capability (low light intensity)

- 8 gaussian functions used to fit the charge distribution
- The gain of the array operating @ 3 V of over voltage, 175 K is ~ 2 x 10⁷
- The charge of the 1 p.e. is (3.21 ± 0.26) pC
- The overall charge noise (pedestal) is (1.47 ± 0.16) pC

$$\sigma_{p.e.}^2 = \sigma_{ELE}^2 + \sigma_{DC}^2 + \sigma_{AP}^2 + \sigma_{CT}^2 + \sigma_{GF}^2$$

Detector contribution is dominant

More MPPCs can be summed up without ruining the performance of the electronics

Single photon counting capability (high light intensity, @ 2 V of over voltage, 175 K)

Timebas	е	-96 ו	ns	Trigger	C2 DC
	100	ns/d	iv	Stop	1.65 V
2.5 kS	2.5	5 GS	/s	Edge	Positive

C1	DC50	F1	hist(P1)
	5.00 mV/div		20.0 #/div
	14.500 mV		500 pWb/div
			19.831 k#

Single photon counting capability (high light intensity)

- 14 gaussian functions used to fit the charge distribution
- The gain of the array operating @ 2 V of over voltage, 175 K is ~1.4 x 10⁷
- The charge separation between two consecutive photopeaks is ~2.3 pC

Distinctive charge-photopeaks distribution is preserved at higher intensity

Rev. 2.0

- More compact layout using two PCB sides. It can readout up to 64 VUV4-MPPCs.
- DAC biasing tool and temperature control mounted on board.

Rev. 2.0

Conclusions

- Our group is gaining expertise in the use of VUV(n)-MPPC families in cryogenic environment.
- We developed a cryogenic electronics to operate a "large" number of MPPCs as single detector.
- We have an excellent, low power amplification system, which also works for PMTs.
- The extension of this system to multiple SiPMs, to replace a standard PMT, looks promising.

Next steps:

- Radio-purity screening (in measurement);
- Use of radio-pure Pyralux/Cirlex/Kapton PCBs (under investigation);
- Characterization of multiple (up to 64) MPPCs array using a VUV monochromator (coming soon);
- Test in Liquid Xenon (early 2018);
- Signal to noise ratio assessment and optimization by means of Optimum/matched filters (software anytime, hardware to be implemented).

Thanks for the attention

- New York University Abu Dhabi: Francesco Arneodo, Adriano Di Giovanni, Valerio Conicella, Osama Fawwaz, Lotfi Benebderrahmane
- Gran Sasso National Laboratory: Attanasio Candela
- Age Scientific srl: Giovanni Franchi

