Shape Mixing in 0vββ Candidates

Volker Werner

Institut für Kernphysik, TU Darmstadt

Volker Werner | AG Pietralla | CNNP 2017 | Catania, Italy | 19 October 2017 |

Outline

- The scissors mode and $0\nu\beta\beta$
 - Test of wave functions: shape coexistence / mixing
 - Isovector \rightarrow complementary information
 - Decay behavior of the scissors mode
 - Photon-scattering experiments
 - First results
- Outlook
 - Next step: E0 measurements
 - WIMP nucleus scattering
 - First electron-scattering experiments prepared
 - Survey of M1 response for v-nucleus scattering

Location of 0vßß Candidates

Volker Werner | TU Darmstadt | AG Pietralla | CNNP 2017 | Catania, Italy | 19 October 2017 | Shape Mixing $0v\beta\beta$ Candidates

Location of 0vßß Candidates

Volker Werner | TU Darmstadt | AG Pietralla | CNNP 2017 | Catania, Italy | 19 October 2017 | Shape Mixing 0vββ Candidates

Quadrupole Collectivity

Volker Werner | TU Darmstadt | AG Pietralla | CNNP 2017 | Catania, Italy | 19 October 2017 | Shape Mixing 0vββ Candidates

Shape Coexistence has Influence on Decay Behavior of S.M.

- Scissors Mode excited from sph/def mixed state
- Will decay to both 0⁺ states, same configurations in both !
- Search for Scissors Mode Branching to excited 0⁺ state
- Complementary observable for shape/configuration mixing: E0-strength

Shape Coexistence has Influence on Decay Behavior of S.M.

Same can (and does) happen for mother and daughter isotopes

Decay Behavior of S.M. connected to Double-Beta Rates

10

TECHNISCHE UNIVERSITÄT

DARMSTADT

Decay Behavior of S.M. connected to Double-Beta Rates

Volker Werner | TU Darmstadt | AG Pietralla | CNNP 2017 | Catania, Italy | 19 October 2017 | Shape Mixing 0vββ Candidates 11

¹⁵⁴Sm/Gd – first constraints from scissors mode decays

Volker Werner | TU Darmstadt | AG Pietralla | CNNP 2017 | Catania, Italy | 19 October 2017 | Shape Mixing 0vββ Candidates

¹⁵⁴Sm/Gd – first constraints from scissors mode decays

Volker Werner | TU Darmstadt | AG Pietralla | CNNP 2017 | Catania, Italy | 19 October 2017 | Shape Mixing 0vββ Candidates

"Application": Dipole strength and 0vββ-decays

PRL 111, 172501 (2013)

PHYSICAL REVIEW LETTERS

week ending 25 OCTOBER 2013

Constraint on $0\nu\beta\beta$ Matrix Elements from a Novel Decay Channel of the Scissors Mode: The Case of ¹⁵⁴Gd

J. Beller,^{1,*} N. Pietralla,¹ J. Barea,² M. Elvers,^{3,†} J. Endres,^{3,‡} C. Fransen,³ J. Kotila,⁴ O. Möller,¹ A. Richter,¹ T. R. Rodríguez,¹ C. Romig,¹ D. Savran,^{5,6} M. Scheck,^{1,7} L. Schnorrenberger,¹ K. Sonnabend,⁸ V. Werner,⁹ A. Zilges,³ and M. Zweidinger¹

"Application": Dipole strength and 0vββ-decays

PHYSICAL REVIEW LETTERS

week ending 25 OCTOBER 2013

Constraint on $0\nu\beta\beta$ Matrix Elements from a Novel Decay Channel of the Scissors Mode: The Case of ¹⁵⁴Gd

J. Beller,^{1,*} N. Pietralla,¹ J. Barea,² M. Elvers,^{3,†} J. Endres,^{3,‡} C. Fransen,³ J. Kotila,⁴ O. Möller,¹ A. Richter,¹ T. R. Rodríguez,¹ C. Romig,¹ D. Savran,^{5,6} M. Scheck,^{1,7} L. Schnorrenberger,¹ K. Sonnabend,⁸ V. Werner,⁹ A. Zilges,³ and M. Zweidinger¹

¹⁵⁰Nd:

larger $0\nu\beta\beta$ decay branch to 0_2^+ state than to gs due to QSPT at N=90.

TECHNISCHE UNIVERSITÄT

DARMSTADT

Part of new CRC 1245 "From Fundamental Interactions to Structure and Stars"

Nuclear Resonance Fluorescence

High-Intensity Gamma-ray Source (HIGS) @ TUNL/Duke U.

Monoenergetic

TECHNISCHE Monoenergetic vs. Bremsstrahlg. UNIVERSITÄT DARMSTADT Flux 2000 Photon 1000 Counts 0 \mathbf{E}_{0} Energie 2000 1000 0 1000 2000 3000 4000 5000 6000 7000 Energy (keV)

Gamma-Ray Detection: γ^3

Gamma-Ray Detection: γ^3

Gamma-Ray Detection: γ^3

B. Löher et al., NIM A 723 (2013) 136

- 4 x 3x3" LaBr(Ce)
 - Efficiency: ~1 % @ 1.5 MeV
 - Energy Resolution: ~ 30 keV
 - Time Resolution: ~ 0.1 ns

- 4 x 60% HPGe
 - Efficiency: ~0.2%
 - Energy Resolution: ~ 3 keV
 - Time Resolution: $\sim 1 \text{ ns}$

¹⁵⁰Sm Spectra at 3.11 MeV Beam Energy

Results for ¹⁵⁰Sm

Analog experiment on ¹⁵⁰Nd already performed, analysis in progress !

J. Kleemann, BA-Thesis, TUDa 2016

What's next?

- The scissors mode and $0\nu\beta\beta$
 - Use the new data to constrain models
 - First: IBM-2 calculations \rightarrow derive Majorana parameter
- E0 strength @ S-DALINAC
 - Another signature for shape mixing
 - First experiments with electron-scattering prepared

S-DALINAC Today

First sc-electron LINAC in Europe (1991)

A. Richter: Operational Experience at the S-DALINAC, Proceedings of EPAC 1996, Sitges, Barcelona, (1996) 110.

F. Hug, C. Burandt, R. Eichhorn, M. Konrad, N. Pietralla: *Measurements of a Reduced Energy Spread of a Recirculating Linac by Non-Isochronous Beam Dynamics*, Proceedings of LINAC 2012, Tel-Aviv, Israel (2012) 531.

First ERL under commissioning in Germany

M. Arnold, Dissertation, 2016

E0 Strength and Shape Mixing

$$\begin{split} \langle 0^+_1 | r^2 | 0^+_2 \rangle &= (\alpha^2 - \beta^2) \langle j^2_1 | r^2 | j^2_2 \rangle \\ &+ \alpha \beta \left(\langle j^2_1 | r^2 | j^2_1 \rangle - \langle j^2_2 | r^2 | j^2_2 \rangle \right) \end{split}$$

TECHNISCHE

DARMSTADT

E0 is large when

a) the two configurations have different avg. radii (deformations, shapes)

b) the two configurations mix strongly (αβ term)

E0 Strength and Shape Mixing

E0 strengths corresponds to different radii (deformations)

$$\begin{split} \langle 0^+_1 | r^2 | 0^+_2 \rangle &= (\alpha^2 - \beta^2) \langle j^2_1 | r^2 | j^2_2 \rangle \\ &+ \alpha \beta \left(\langle j^2_1 | r^2 | j^2_1 \rangle - \langle j^2_2 | r^2 | j^2_2 \rangle \right) \end{split}$$

First successful E0 measurement at S-DALINAC

TECHNISCHE

UNIVERSITÄT DARMSTADT

What's next?

- The scissors mode and $0\nu\beta\beta$
 - Use the new data to constrain models
 - First: IBM-2 calculations \rightarrow derive Majorana parameter
- E0 strength @ S-DALINAC
 - Another signature for shape mixing
 - First experiments with electron-scattering prepared
- Probe material for WIMP detection @ S-DALINAC
 - What if the WIMP-Nucleus interaction is spin-dependent?

Spin-dependent Cross Section ?

- spin-dependency of WIMP-nucleon interaction unknown
- if spin-dependent, only odd mass number Xe isotopes interact
- large-scale shell-model calculations (e.g. A. Schwenk et al.)
- form factors for spin-dependent interaction calculated
- → significant contribution from *inelastic* WIMP-nucleon scattering
- at low momentum transfer ${\sim}0.5~\text{fm}^{\text{-1}}$
- range of operation of S-DALINAC: (e,e') as a "surrogate" for (WIMP,WIMP')

What's next?

- The scissors mode and $0\nu\beta\beta$
 - Use the new data to constrain models
 - First: IBM-2 calculations \rightarrow derive Majorana parameter
- E0 strength @ S-DALINAC
 - Another signature for shape mixing
 - First experiments with electron-scattering prepared
- Probe material for WIMP detection @ S-DALINAC
 - What if the WIMP-Nucleus interaction is spin-dependent?
- Probe M1 response for v-nucleus scattering
 @ S-DALINAC & HIGS
 - Little known on Spin-Flip M1 resonance

Another Application: (v,v')

Foreseen neutrino detectors (e.g., Mo-based MOON) work by

 $n + v_e \rightarrow p + e^-$ and (v,v')

v-scattering excites M1 excitation \rightarrow Spin-Flip / GT excitations

We need to know where, and how much M1 strength there is.

What's next?

- The scissors mode and $0\nu\beta\beta$
 - Use the new data to constrain models
 - First: IBM-2 calculations \rightarrow derive Majorana parameter
- E0 strength @ S-DALINAC
 - Another signature for shape mixing
 - First experiments with electron-scattering prepared
- Probe material for WIMP detection @ S-DALINAC
 - What if the WIMP-Nucleus interaction is spin-dependent?
- Probe M1 response for v-nucleus scattering
 @ S-DALINAC & HIGS
 - Little known on Spin-Flip M1 resonance

Thank you !

Collaboration:

U. Gayer, P.C. Ries, T. Beck, J. Isaak, J. Kleemann, H. Pai, O. Papst, N. Pietralla, M. Schilling, M. Zweidinger *TU Darmstadt* SINP Kolkata

D. Savran, B. Löher, J. Isaak GSI Osaka U

W. Tornow, Krishichayan *Duke U*

Neutrino Detection, e.g. ¹⁰⁰Mo

Volker Werner | TU Darmstadt | AG Pletralia CNNP 2017 | Catania, Italy | 19 October 2017 | Shape Mixing 0vββ Candidates

Weak Interactions and Nuclear Structure

Determination of E1 and M1 PSFs

- In Xe region, M1 makes up about 10% of total strength
- Can have significant impact on photon strength functions
- Direct input for photonuclear / radiative-capture reactions in statistical reaction codes
- Central role in stellar nucleosynthesis