

<u>A NaI-based cryogenic scintillating</u> <u>calorimeter: status and results of</u> <u>the COSINUS project</u>

Natalia Di Marco for the COSINUS Collaboration

LNGS - INFN

Max-Planck-Institut für Physik (Wornor-Hoisonberg-Institut)

WIEN

DAMA/LIBRA CLAIM

- 250 kg of high-pure NaI (Tl) crystals
- detect scintillation light using dedicated PMTs
- ~ 5 -7.5 PE/keV
- nuclear recoils show less light (LIGHT QUENCHING)
- **positive evidence** for the presence of DM particles in the galactic halo via annual modulation signal
- ~ 1.33 ton-y exposure, statistics > 9σ
- frequency and phase match expectation for DM

Assumption

Dark matter particles (WIMPs) scatter off the nucleus and induce nuclear recoils

Signature

- Earth revolution gives *seasonal modulation* with a period of 1 year and a phase peaking at June the 2nd
- Due to the solar system movement in the galaxy, the WIMP flux is expected to be **not isotropic @earth** (directionality)

Long-reigning contradicting situation in the dark matter sector: the positive evidence for the detection of a dark matter modulation signal claimed by the DAMA/LIBRA collaboration is (under standard assumptions) **inconsistent with the null-results** reported by most of the other direct dark matter experiments.

The energy transferred to the recoiling nucleus is:

$$E_r = \frac{m_r^2 v^2}{m_N} (1 - \cos \theta), \ m_r = \frac{m_{\chi} \cdot m_N}{m_{\chi} + m_N} \qquad \theta$$

n

Energy deposited in the detector ~ few keV - tens of keV

The differential recoil rate is:

$$\frac{dR}{dE_r} = N_N \frac{\rho_0}{m_\chi} \int_{v_{min}}^{v_{max}} d\vec{v} f(\vec{v}) v \frac{d\sigma}{dE_r}$$

 $N_N \rightarrow$ number of target nuclei

 $\rho_0 \rightarrow \text{local WIMP density}$

 $f(\vec{v}) \rightarrow$ WIMP velocity distribution

 $v_{min} = \sqrt{\frac{m_N E_{th}}{2m^2 r}}, v_{max} \rightarrow \text{escape velocity}$

 $\frac{d\sigma}{dE_r}$ \rightarrow WIMP-nucleus differential cross section

The energy transferred to the recoiling nucleus is:

$$E_r = \frac{m_r^2 v^2}{m_N} (1 - \cos \theta), \ m_r = \frac{m_{\chi} \cdot m_N}{m_{\chi} + m_N} \qquad \theta$$

n

Astrophysics

Energy deposited in the detector ~ few keV - tens of keV

The differential recoil rate is:

$$\frac{dR}{dE_r} = N_N \frac{\rho_0}{m_\chi} \int_{v_{min}}^{v_{max}} d\vec{v} f(\vec{v}) \gamma \frac{d\sigma}{dE_r}$$

 $N_N \rightarrow$ number of target nuclei

 $\rho_0 \rightarrow \text{local WIMP density}$

 $f(\vec{v}) \rightarrow$ WIMP velocity distribution

$$v_{min} = \sqrt{\frac{m_N E_{th}}{2m^2 r}}, v_{max} \rightarrow \text{escape velocity}$$

 $\frac{d\sigma}{dE_r}$ \rightarrow WIMP-nucleus differential cross section

The energy transferred to the recoiling nucleus is:

$$E_r = \frac{m_r^2 v^2}{m_N} (1 - \cos \theta), \ m_r = \frac{m_{\chi} \cdot m_N}{m_{\chi} + m_N}$$

n

Energy deposited in the detector ~ few keV - tens of keV

The energy transferred to the recoiling nucleus is:

$$E_r = \frac{m_r^2 v^2}{m_N} (1 - \cos \theta), \ m_r = \frac{m_{\chi} \cdot m_N}{m_{\chi} + m_N}$$

n

Energy deposited in the detector ~ few keV - tens of keV

The energy transferred to the recoiling nucleus is:

$$E_r = \frac{m_r^2 v^2}{m_N} (1 - \cos \theta), \ m_r = \frac{m_{\chi} m_N}{m_{\chi} + m_N}$$

n

test DAMA with Nal experiment(s)

Energy deposited in the detector ~ few keV - tens of keV

Astrophysics The differential recoil rate is: vmax dσ N_Nm_x $d\vec{v} f(\vec{v})$ dE_r ⁰mi1 $N_N \rightarrow$ number of target nuclei $\rho_0 \rightarrow \text{local WIMP density}$ Particle/Nuclear Physics $f(\vec{v}) \rightarrow$ WIMP velocity distribution **Detector Properties** $v_{min} = \sqrt{\frac{m_N E_{th}}{2m^2 r}}, v_{max} \rightarrow \text{escape velocity}$ $\frac{d\sigma}{dE_r}$ \rightarrow WIMP-nucleus differential cross section **Target material dependence:**

Nal experiments/R&D

DAMA/LIBRA

Running, 1keVee threshold (this year?)

ANAIS

data taking started in 2017

SABRE

in construction

COSINUS (R&D)

Funded 2016-2018 (INFN CSN V) Performance test run in 2018

Nal experments/R&D

DAMA/LIBRA

Running, 1keVee threshold (this year?)

COSINE Taking data since Sep 2016

ANAIS data taking started in 2017

SABRE

in construction

COSINUS (R&D)

Funded 2016-2018 (INFN CSN V) Performance test run in 2018

- Modulation searches No β/γ discrimination

Nal experments/R&D

in the panorama of direct search techniques

(Xmass, DEAP, MiniCLEAN)

b

Phonon signal (~ 96 %)

- (almost) independent of particle type
- precise measurement of the deposited energy

Scintillation light (~ 4%)

- amount of emitted light depends on particle type
 → LIGHT QUENCHING
- discrimination of interacting particle via the ratio light to phonon signal
 → LIGHT YIELD

COSINUS performance goal

Bring Nal-based cryogenic detectors to level of existing ones (e.g. CRESST-II):

- 1keV nuclear recoil threshold
- 4% of deposited energy measured as scintillation light

9

Simulated data

Compare DAMA to COSINUS

1st Prototype: detector setup

1st Prototype: detector setup

Nal:

- (20x30x30) mm³, 66 g
- all sides perfectly polished
- Hilger crystal company

CdWO₄ carrier crystal:

- small standard TES
- 1.5 mm thickness, 40 mm diameter
- about 13 g

Light detector:

- SOS light absorber a là CRESST
- sep. heater and ⁵⁵Fe source

1st Prototype: results

Linear relation between light output and deposited energy!

plot: arXiv: 1705.11028, accepted at JINST QF from Tretyak, Astropart. Phys. 33, 40 (2010) 13

E 0.4

1st Prototype: results

- energy threshold: 10 keV
- for β/γ -events:

3.7% of the energy deposited in the NaI crystal is measured by the light detector (design goal 4%)

11.2 detected photons per keV of energy deposition

- first successful measurement of a NaI crystal as cryogenic detector
 publication accepted at JINST arXiv: : 1705.11028
- x improve detector performance
- x no beaker-shaped light detector

2nd Prototype: detector setup

PROOF-OF-PRINCIPLE OF FINAL DETECTOR DESIGN

Final design with beaker-shaped light absorber

40mm

2nd Prototype: detector setup

- ✓ successful test of final detector concept
- ✓ Nal is an excellent scintillator at low temperatures
- beaker-shaped light detector exceeds performance goal
- x improve detector performance of NaI calorimeter to reach 1keV energy threshold
- x 205 ppm of 40K in the HILGER crystal

N. Di Marco CNNP 2017

Next steps

Quenching factors measurement@MLL - Tandem accelerator at TUM/LMU in Munich

11 MeV neutrons

Dilution cryostat available and ready to be used Smaller version of the COSINUS detector module

GOAL:

Precise determination of light quenching factor for Na and I at mK-temperatures

Next steps

Quenching factors measurement@MLL - Tandem accelerator at TUM/LMU in Munich

11 MeV neutrons

Dilution cryostat available and ready to be used Smaller version of the COSINUS detector module

GOAL:

Precise determination of light quenching factor for Na and I at mK-temperatures

3rd Prototype Detector: first measurement in a low background cryostat (CUPID/CUORE R&D cryostat, hall C at LNGS)

✓ installed SQUIDs and dedicated heater / bias lines in the cryostat

- ✓ COSINUS DAQ commissioned
- ✓ Nal crystal: 30 g (cubic)

Next steps

Quenching factors measurement@MLL - Tandem accelerator at TUM/LMU in Munich

11 MeV neutrons

Dilution cryostat available and ready to be used Smaller version of the COSINUS detector module

GOAL:

Precise determination of light quenching factor for Na and I at mK-temperatures

3rd Prototype Detector: first measurement in a low background cryostat

4th Prototype Detector:

(CUPID/CUORE R&D cryostat, hall C at LNGS)

- ✓ installed SQUIDs and dedicated heater / bias lines in the cryostat
- COSINUS DAQ commissioned
- ✓ Nal crystal: 30 g (cubic)

- ✓ test of first SICCAS radiopure crystal (CHINA)
- ✓ first measurement with Milano heater/ bias electronics modules

Conclusions

- 1st successful measurement of a Nal-based cryogenic calorimeter now published
- 2nd measurement: proof-of-principle of final detector design (incl. beaker-shaped light absorber)
- 3rd measurement in lower background cryostat, analysis ongoing
- 4th measurement of first radiopure Nal crystal, first run with COSINUS DAQ and MIB electronics

A moderate exposure of few O(100 kg-days) will be sufficient to confirm or rule out a nuclear recoil origin of the DAMA/LIBRA dark matter claim

Increasing the target mass makes the COSINUS technique also sensitive for the annual modulation signal detection.