

Nuclear structure studies at iThemba LABS relevant for neutrino physics

R Neveling¹, P Adsley², L Donaldson^{1,3}, P Papka^{1,4}, L Pellegri^{1,3}, FD Smit¹, GF Steyn¹

¹ iThemba Laboratory for Accelerator Based Sciences
 ² IPN Orsay
 ³ University of the Witwatersrand
 ⁴ Stellenbosch University

$0\nu\beta\beta$: Role of nuclear reaction studies

Observation of lifetime of $0\nu\beta\beta$ & knowledge of the **NME** will yield information on neutrino mass

Measure matrix elements

- heavy-ion double charge exchange reactions: NUMEN@LNS & RCNP
 - low cross-sections

OR

Constrain matrix elements

- constraining models by measuring numerous nuclear structure observables through single nucleon & pair transfer
- also requires magnetic spectrometer facilities, **BUT**

"suitable magnetic spectrographs ... on the verge of extinction" "dwindling facilities ... RCNP Osaka, IPN Orsay, Munich Q3D..."

$0\nu\beta\beta$: Role of nuclear reaction studies

Observation of lifetime of $0\nu\beta\beta$ & knowledge of the **NME** will yield information on neutrino mass

Measure matrix elements

- heavy-ion double charge exchange reactions: NUMEN@LNS & RCNP
 - low cross-sections

OR

Constrain matrix elements

- constraining models by measuring numerous nuclear structure observables through single nucleon & pair transfer
- also requires magnetic spectrometer facilities, **BUT**

"suitable magnetic spectrographs ... on the verge of extinction" "dwindling facilities ... RCNP Osaka, IPN Orsay, Munich Q3D..." ...soon also TUNL Split-pole & FSU Split-pole...

iThemba LABS in Cape Town, South Africa

Largest National Research Facility in SA and the largest accelerator facility in the southern hemisphere :

- more than 55% of the NRF budget for research facilities (~20M USD)
- approx 300 staff members

- Fundamental studies of nuclear phenomena,
- Applications of ion beams, nanoscience research,
- Research and development of radionuclides for science & medicine
- Radiation biology and particle therapy

• AMS

iThemba LABS: SSC facility

Big problem for overseas collaborators: fragmented beam schedule e.g. 6 day experiment requires visit of 3 weeks

Changes in scheduling regiment:

- with immediate effect: Wed PM to Mon AM possible
- SAIF will make 24-7 running possible

South African Isotope Facility (SAIF)

- ACE-ISOTOPES, new 70 MeV cyclotron at iThemba LABS
- Isotope Production off SSC and onto new cyclotron
- Free SSC for research
- More than doubles physics beam time (including stable light and heavy ions)
- Production of low energy radioactive beams using the ISOL method

South African Isotope Facility (SAIF)

PHASE 1: 2017-2021

The budget speech of the minister of Science and Technology (16/05/2017) "The NRF supports a transdisciplinary research agenda at the iThemba Laboratory for Accelerator-Based Sciences. This facility, which has developed a plan for the South African Isotope Facility, will support research in nuclear physics, materials sciences, radiobiology and the production of rare and exotic radio-isotopes for the medical industry."

$0\nu\beta\beta$: Role of nuclear reaction studies: The K600 at iTL

A kinematically corrected QDD magnetic spectrometer for light ions

IUCF design:

3 focal planes: low, medium & high dispersion Kinematic correction coils: K & H Nominal Bending radius: 2.1m B(max)= 1.64 Tesla Bρ(max)= 3.6 TM

Medium Dispersion focal plane:

Large momentum range: p_{max}/p_{min} =1.097 Resolving power: $\Delta p/p = 1/28000$ Horizontal magnification M_x =-0.52 Vertical magnification M_y =-5.5 Dispersion: 8.4 cm/% B(D1)=B(D2) Acceptance: ±37 mrad Solid angle: 4.4 msr

ununununununun

The K600 at iTL

The K600 at iTL

Characterize initial and final states in $0\nu\beta\beta$ nuclei

- specific configuration of valence nucleons making up ground states
 Freeman & Schiffer, J.Phys.G: Part Phys 39 (2012) 124004
- big changes in configuration of nucleons mean decay is inhibited e.g. deformation
- consistent results can be obtained by measuring both nucleon adding and removal reactions on same target **

n adding:	(d,p) (α,³He)	n vacancy
n removal:	(p,d) (³ He,α)	n occupancy
p adding:	(α,t) (³ He,d)	p vacancy
p removal:	(d, ³ He)	p occupancy

0.0

Characterize initial and final states in $0\nu\beta\beta$ nuclei

- specific configuration of valence nucleons making up ground states *Freeman & Schiffer, J.Phys.G: Part Phys 39 (2012) 124004*
- big changes in configuration of nucleons mean decay is inhibited e.g. deformation
- consistent results can be obtained by measuring both nucleon adding and removal reactions on same target **

n adding:	(d,p) (α, ³ He)	n vacancy	
n removal:	(p,d) (³ He,α)	n occupancy	
p adding:	(α,t) (³ He,d)	p vacancy	
p removal:	(d, ³ He)	p occupancy	need cyclotron

"dwindling facilities: RCNP Osaka, IPN Orsay, Munich Q3D, TUNL & FSU Split-pole"

→ 4 tandems facilities, one cyclotron

Characterize initial and final states in $0\nu\beta\beta$ nuclei

- specific configuration of valence nucleons making up ground states Freeman & Schiffer, J.Phys.G: Part Phys 39 (2012) 124004
- big changes in configuration of nucleons mean decay is inhibited e.g. deformation
- consistent results can be obtained by measuring both nucleon adding and removal reactions on same target **

n adding:	(d,p) (α, ³ He)	n vacancy	4
n removal:	(p,d) (³ He,α)	n occupancy	
p adding:	(α,t) (³ He,d)	p vacancy	
p removal:	(d, ³ He)	p occupancy	need cyclotron

		RF "blind spot"	good E
	р	20 - 30 MeV	mid 20's
	d	35 - 46 MeV	mid 10's, above 80
	α	-	around 40
	^з Не	-	mid 20's
RF Labor	ABS ratory for Accelerator d Sciences		** PRL108 (2012) 022501

Characterize initial and final states in $0\nu\beta\beta$ nuclei

- specific configuration of valence nucleons making up ground states Freeman & Schiffer, J.Phys.G: Part Phys 39 (2012) 124004
- big changes in configuration of nucleons mean decay is inhibited e.g. deformation
- consistent results can be obtained by measuring both nucleon adding and removal reactions on same target **

n adding:	(d,p) (α, ³ He)	n vacancy	
n removal:	(p,d) <mark>(³He,α)</mark>	n occupancy	
p adding:	(α,t) (³ He,d)	p vacancy	Lions @
p removal:	(d, ³ He)	p occupancy	need cyclotron
			Dec

Looking at systematic data

 \rightarrow along isotopic chains - not just at $0\nu\beta\beta$ candidates

Probing pairing properties of double beta decay candidates

Test assumptions of BCS of GS of even-even nuclei

If BCS true, (p,t) should not populate 0⁺ states

- Measure the energy spectrum of outgoing ions.
- Identify 0⁺ states via forward peaked ℓ=0 transitions.
- Measure cross sections accurately by minimizing systematic effects.
- Useful to make measurements on neighbouring isotopes for consistency.

Looking at systematic data (p,t) along isotopic chains - not just at 0vββ candidates

The K600 at 0°: since 2009

Supported by the **South African NRF** and the **German DFG** under contracts SFB 634, NE 679/2-2

The K600 at 0°: (p,t)

- 0-degree mode: enhanced sensitivity to 0+ states
- Easier to confirm weak 0⁺ states

- Lowest proton beam of 30 MeV a problem?
- As you move neutron-deficient, Q-values become more negative
 →Need slightly higher beam energy to maintain good matching condition
 at all excitation energies
- E_t-byte of \sim 4 MeV @ E_t=22 MeV

Existing focal plane detectors

2 MWDC + 2 scintillators (2 generations available)

2nd generation:

- \bullet 2 wireplanes (vertical and 50°), sandwiched between 3 Al HV planes
- 198 (X) + 143 (U) active wires per detector, 682 signal wires in total
- 20 m diameter Au plated W wires
- 20 m thick aluminium HV planes (16 mm separation)
- 90% Ar 10% CO₂ gas mixture

Focal plane detectors...

New focal plane detectors required

Problems:

- No low energy detection capability (e.g. ³He, α at 10-20 MeV/u)
- No heavy ion detection capability
- Resolution in (α,α'): affected by target thickness and multiple scattering from Kapton exit window

New focal plane detector needed:

- low pressure, thin vacuum exit window
- Minimal or no wires
- TPC-like, proportional drift chamber, position and dE information from cathode pads at bottom
- Considering micromegas technology for signal amplification stage

What happens next?

- Design process kickstarted: visit to CEA-Saclay
- LETTER OF INTENT submitted to Dec 2017 PAC
- Detailed design, source funding ...

+ 195 mi

00

Depth vs. Y-Axis

Summary

- Combination of K200 SSC and K600 magnetic spectrometer with 0 degree capabilities
- New scheduling possibilities, more beamtime on horizen
- New focal plane detector system to be built to exploit transfer reactions

iThemba LABS:

new opportunities and an exciting future

(d,³He) example: shell structure

Probing the proton gap: behavior of π f7/2 orbital

⁷⁰Zn(d,³He)⁶⁹Cu - Pierre Morfouace et al. PRC **93** 064308 (2016)

Orsay Enge split pole at 6°,9°,12°,15, 18°,21°,24° 27 MeV deuteron beam ⁷⁰Zn target: 18.7µg/cm² on ¹²C backing 42 keV (FWHM) resolution triton contamination of Ex spectrum

Missing strength, no proper momentum matching for L=3

iThemba LABS: SSC facility

National Research Laboratory for Accelerator Based Sciences SSC: 30 years in operation !!

CAKE (Coincidence Array for K600 Experiments)

- Up to 5 MMM-type Double-Sided Silicon Strip Detectors
- 25% solid angle covered

aboratory for Accelerato

- Energy resolution of 30-40 keV
- Target thickness dominates experimental resolution
- PID through time-of-flight relative to decay particle energy

5× MMM-400 Double Sided Silicon Strip Detectors Lampshade configuration 400 mm thick (7 MeV p, 28 MeV a) 16 rings, 8 sectors , q range: 114° - 166° divided in 16 angle bins total solid angle: 26% of 4p; 0.66 msr/DSSSD target to detector separation: 100-110 mm

K600 magnetic spectrometer: Recent Developments

BaGeL (Ball Gemaniums and LaBr)

- Different distance from the target (10cm-20cm)
- 12 detectors at backward angles and 3 at forward angles
- Independent HV system (with bias shutdown capability) and a clover temperature monitoring
- Automated LN2 filling system
- For measurement at 0° or > 19°

BaGeL in action

<u>First successful experiment</u> on October 2016: PDR in deformed nuclei ¹⁵⁴Sm(α , α ' γ)

National Research Foundation BaGeL with 8 Clovers+2 LaBr₃:Ce @ 17cm from tgt Eff 8 Clover = 0.6% @ 6 MeV, with addback Eff 2 LaBr3:Ce = 0.4% @ 6 MeV

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

$ALBA = \underline{A}$ frican $\underline{L}a\underline{B}r_3$:Ce \underline{A} rray

- African LaBr₃:Ce Array ALBA: 23 large-volume LaBr3:Ce. First four arrived September 2017
- Tapering of LaBr3:Ce detectors (allow to get to 11cm).
- Detectors mounted in flexible and interchangeable arrays.

High Efficiency

ALBA array

23 large volume LaBr₃:Ce

Efficency at 11cm from target			
γ-ray Energy (MeV)	1 LaBr3:Ce (%)	6 LaBr3:Ce (%)	20 LaBr3:Ce (%)
1	1.2	7.1	23.5
5	0.5	2.9	9.8
10	0.3	1.7	5.6

Low-statistics experiments now possible...

large-volume LaBr3:Ce radius 90mm, length 203mm

BaGeL in action

With only one LaBr3:Ce detector:

GATES: PID & Y1 plane & GammaTime

With only one LaBr3:Ce detector:

26Mg(α, α' γ)

Only the peaks that decay to the 1st excited states are selected

New detector requirements

Resolution in (α, α') : affected by target thickness AND multiple scattering from Kapton exit window

Want to have low energy detection capability: e.g. investigate pair transfer through (p,t) reaction along isotopic chains @ $E_{_{beam}}$ =30 MeV

