Detecting electron neutrinos from solar dark matter annihilation by JUNO

Wan-lei Guo

Institute of High Energy Physics (IHEP) 2017-10-19

Conference on Neutrino and Nuclear Physics (CNNP 2017) Catania (Italy), October 15 -21, 2017

Outline

Neutrinos from Solar dark matter annihilation

JUNO performances
JUNO experiments
Analysis results

Summary

(1) DM captured and annihilation in the Sun 3

DM evolution in the Sun

Annihilation rate:

$$\Gamma_A = \frac{1}{2} C_A N^2 = \underbrace{\frac{1}{2} C_{\odot}}_{>>1} \tanh^2(\underline{t_{\odot} \sqrt{C_{\odot} C_A}})$$

At equilibrium, $\Gamma_A = C_{sun}/2$, which only depends on σ_{Ni} or σ_p

DM capture and annihilation equilibrium 5

Equilibrium Condition:

10

 $m_{\rm p} \, ({\rm GeV})$

100

10²²

$$t_{\odot}\sqrt{C_{\odot}C_A} \ge 3.0 \implies \tanh^2[t_{\odot}\sqrt{C_{\odot}C_A}] \ge 0.99$$

1000

 10^{18}

100

1000

10

 m_{ρ} (GeV)

DM capture and annihilation equilibrium 6

Equilibrium Condition:

$$t_{\odot}\sqrt{C_{\odot}C_A} \ge 3.0 \implies \tanh^2[t_{\odot}\sqrt{C_{\odot}C_A}] \ge 0.99$$

$$\langle \sigma v \rangle \approx 3 \times 10^{-26} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$$

 $t_{\odot} \simeq 4.5 \,\mathrm{Gyr}$ $C_{\odot} \geq 8.6 \times 10^{22} / (m_D / 1 \mathrm{GeV})^{3/2} \mathrm{s}^{-1}$

Spin-Dependent (SD) capture rates:

Neutrino fluxes from solar DM annihilation 7

Neutrino Fluxes:

$$\frac{d\Phi_{\nu_e}}{dE_{\nu}} = \frac{\Gamma_A}{4\pi R_{\rm ES}^2} \frac{dN_{\nu_e}}{dE_{\nu}} \simeq \frac{C_{\odot}}{8\pi R_{\rm ES}^2} \frac{dN_{\nu_e}}{dE_{\nu}}$$

 $R_{\rm ES} = 1.496 \times 10^{13} \, {\rm cm}$ is the Earth-Sun distance

Differential neutrino energy spectrum:

- Final states interactions Hadronization, interactions, decay
- Neutrino interactions
- Neutrino oscillations

Input parameters:

Annihilation Channels: $\chi\chi \to \nu\bar{\nu}, \tau^+\tau^-, bb$

Dark matter mass:

Oscillation parameters:

WimpSim

Blennow, Edsjo, Ohlsson, arXiv: 0709.3898

Monoenergetic Continuous

 $\begin{array}{ll} 4 \ {\rm GeV} \leq m_D \leq 20 \ {\rm GeV} \\ \sin^2 \theta_{12} = 0.308, & \sin^2 \theta_{23} = 0.437, & \sin^2 \theta_{13} = 0.0234, \\ \Delta m_{21}^2 = 7.54 \times 10^{-5} {\rm eV}^2, & \Delta m_{31}^2 = 2.47 \times 10^{-3} {\rm eV}^2, & \delta = 0^{\circ}. \end{array}$

(2) Jiangmen Underground Neutrino Observatory (JUNO)8

JUNO detector and physical potentials 9

- > 20 kton liquid scintillator
- 3% energy resolution ~18000 20" + ~25000 3" PMTs
- > Rich physical possibilities:
 - ✓ Neutrino MH using reactor neutrinos
 - Precision measurement of oscillation parameters
 - ✓ Supernova and Diffuse supernova neutrinos
 - ✓ Solar, Geo- and Sterile neutrinos
 - ✓ Atmospheric neutrinos
 - ✓ Dark matter searches
 - ✓ Nucleon decay
 - ✓ other exotic searches

See talk by Ranucci and Neutrino Physics with JUNO, J. Phys. G 43, 030401 (2016)

The expected event numbers:

$$N_S = N_n t \int_{E_{th}}^{m_D} \left[\frac{d\Phi_{\nu_e}}{dE_{\nu}} \sigma_{\nu_e} + \frac{d\Phi_{\bar{\nu}_e}}{dE_{\nu}} \sigma_{\bar{\nu}_e} \right] \epsilon(E_{\nu}) dE_{\nu} \left| \begin{array}{c} N_n \simeq 20 \, \mathrm{kton}/m_n \\ t = 10 \, \mathrm{years} \end{array} \right|$$

Selection conditions (MC and $10^{\circ} e^{\pm}$ angular resolution): $v \overline{v}$: $Y_{vis} > 0.5$, $Ee_{vis} > 1 \text{ GeV}$, $\theta < 20^{\circ} \sqrt{10/E_v}$, $E_{vis}/E_v > 0.9$, $E_{th} = 0.9E_v$ $b\overline{b}, \tau^+\tau^-$: $Y_{vis} > 0.5$, $Ee_{vis} > 1 \text{ GeV}$, $\theta < 30^{\circ}$, $1 < E_{vis} < E_v$, $E_{th} = 1 \text{ GeV}$ Selection efficiencies and Expected signals:

Atmospheric neutrino background

CC backgrounds: All direction → Average → Cone

 $v \,\overline{v}: Y_{vis} > 0.5, Ee_{vis} > 1 \text{ GeV}, E_{vis}/m_D > 0.9$ $b \overline{b}, \tau^+ \tau^-: Y_{vis} > 0.5, Ee_{vis} > 1 \text{ GeV}, 1 < E_{vis} < m_D$ **NC backgrounds: Neglect!**

¹/₂ CC, Several hadrons, Misidentification rate

JUNO sensitivity from v_e/\overline{v}_e 12

Summary:

✤ For the SD case, JUNO can give better limits than the DM direct searches

• For the SI case, a very narrow region in $v \overline{v}$ channel can give better limits

Thanks!

SI Experimental limits

Upper bounds on the SI elastic WIMP-nucleon cross section:

