Double-Beta Decay of Medium-Mass Nuclei within the Realistic Shell Model

Luigi Coraggio

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

October 16th, 2017

Istituto Nazionale di Fisica Nucleare

Luigi Coraggio CNNP2017, October 15-21, 2017

- L. De Angelis (INFN-NA)
- T. Fukui (INFN-NA)
- A. Gargano (INFN-NA)
- N. Itaco (UNICAMPANIA and INFN-NA)
- F. Nowacki (IPHC Strasbourg and UNICAMPANIA)
- L. C. (INFN-NA)

- The neutrinoless double- β decay
- The problematics of the calculation of the nuclear matrix element (NME) of $0\nu\beta\beta$ decay
- The realistic nuclear shell model
- Testing the theoretical framework: calculation of the GT strengths and the nuclear matrix element of 2νββ decay
- Outlook

The detection of the $0\nu\beta\beta$ decay is nowadays one of the main targets in many laboratories all around the world, triggered by the search of "new physics" beyond the Standard Model.

- Its detection
 - would correspond to a violation of the conservation of the leptonic number,
 - may provide more informations on the nature of the neutrinos (the neutrino as a Majorana particle, determination of its effective mass, ..).

The semiempirical mass formula provides two different parabolas for even-mass isobars:

- Maria Goeppert-Mayer (1935) suggested the possibility to detect $(A, Z) \rightarrow (A, Z+2) + e^- + e^- + \overline{\nu}_e + \overline{\nu}_e$
- Historically, G. Racah (1937) and W. Furry (1939) were the first ones, to suggest to test the neutrino as a Majorana particle, considering the process:

 $(A,Z)
ightarrow (A,Z+2) + e^- + e^-$

The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the NME

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \langle m_{\nu}
angle^2 \ ,$$

- G⁰^ν is the so-called phase-space factor, obtained by integrating over she single electron energies and angles, and summing over the final-state spins;
- $\langle m_{\nu} \rangle = |\sum_{k} m_{k} U_{ek}^{2}|$ effective mass of the Majorana neutrino, U_{ek} being the lepton mixing matrix.

The detection of the $0\nu\beta\beta$ -decay

It is necessary to locate the nuclei that are the best candidates to detect the $0\nu\beta\beta$ -decay

- The main factors to be taken into account are:
 - the *Q*-value of the reaction;
 - the phase-space factor $G^{0\nu}$;
 - the isotopic abundance

- First group: ⁷⁶Ge, ¹³⁰Te, and ¹³⁶Xe.
- Second group: ⁸²Se, ¹⁰⁰Mo, and ¹¹⁶Cd.
- Third group: ⁴⁸Ca, ⁹⁶Zr, and ¹⁵⁰Nd.

CNNP2017, October 15-21, 2017

The calculation of the NME

The NME is given by

$$M^{0
u} = M^{0
u}_{GT} - \left(rac{g_V}{g_A}
ight)^2 M^{0
u}_F - M^{0
u}_T \ ,$$

where the matrix elements are defined as follows:

$$M_{\alpha}^{0\nu} = \sum_{m,n} \left\langle \mathbf{0}_{f}^{+} \mid \tau_{m}^{-} \tau_{n}^{-} \mathcal{O}_{mn}^{\alpha} \mid \mathbf{0}_{i}^{+} \right\rangle \;\;,$$

with $\alpha = (GT, F, T)$.

Since the transition operator is a two-body one, we may write it as:

$$M_{\alpha}^{0\nu} = \sum_{j_{\rho}j_{\rho'}, j_{n}j_{n'}, J_{\pi}} TBTD\left(j_{\rho}j_{\rho'}, j_{n}j_{n'}; J_{\pi}\right) \left\langle j_{\rho}j_{\rho'}; J^{\pi}T \mid \tau_{1}^{-}\tau_{2}^{-}O_{12}^{\alpha} \mid j_{n}j_{n'}; J^{\pi}T \right\rangle ,$$

where the two-body transition-density matrix elements are defined as

 $\textit{TBTD}\left(j_{p}j_{p'}, j_{n}j_{n'}; J_{\pi}\right) = \langle 0_{f}^{+} \mid (a_{j_{p}}^{\dagger}a_{j_{p}'}^{\dagger})^{J^{\pi}} (a_{j_{n}'}a_{j_{n}})^{J^{\pi}} \mid 0_{i}^{+} \rangle$

and the Gamow-Teller (GT), Fermi (F), and tensor (T) operators as

These operators should be regularized consistently with the two-body NN potential

To describe the nuclear properties detected in the experiments, one needs to resort to nuclear structure models.

- Every model is characterized by a certain number of parameters.
- The calculated value of the NME may depend upon the chosen nuclear structure model.

All models may present advantages and/or shortcomings to calculate the NME

Nuclear structure calculations

 The spread of nuclear structure calculations evidences inconsistencies among results obtained with different models

The realistic shell model

- The derivation of the shell-model hamiltonian, starting from a realistic nuclear potential V_{NN} and using the many-body theory, may provide a reliable approach to the study of the $0\nu\beta\beta$ decay
- The model space may be "shaped" according to the computational needs of the diagonalization of the shell-model hamiltonian
- In such a case, the effects of the neglected degrees of freedom are taken into account by the effective hamiltonian H_{eff} theoretically

Workflow for a realistic shell-model calculation

- Choose a realistic NN potential (NNN)
- Provide the second s
- Oetermine the model space better tailored to study the system under investigation
- Oerive the effective shell-model hamiltonian by way of the many-body perturbation theory
- Calculate the physical observables (energies, e.m. transition probabilities, ...)

Three issues to be addressed:

- The "realistic" nuclear potential
- 2 The renormalization parameters (cutoff choice)
- The order where we arrest the perturbative expansion

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range repulsion

- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low}-k}$
 - SRG
 - chiral potentials

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range repulsion

- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low}-k}$
 - SKG
 - chiral potentials

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range repulsion

- Brueckner G matrix
- EFT inspired approaches
 - V_{low-k}
 SRG
 - Shu
 shiral pate
 - chiral potentials

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

Strong short-range repulsion

- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low}-k}$
 - SRG
 - chiral potentials

The shell-model effective hamiltonian

$$\begin{pmatrix} PHP & PHQ \\ \hline \\ QHP & QHQ \end{pmatrix} \begin{array}{c} \mathcal{H} = X^{-1}HX \\ \Longrightarrow \\ Q\mathcal{H}P = 0 \end{array} \begin{pmatrix} P\mathcal{H}P & P\mathcal{H}Q \\ \hline \\ 0 & Q\mathcal{H}Q \end{pmatrix}$$

 $H_{\rm eff} = P \mathcal{H} P$

Suzuki & Lee $\Rightarrow X = e^{\omega}$ with $\omega = \left(\begin{array}{c|c} 0 & 0 \\ \hline Q \omega P & 0 \end{array} \right)$

$$H_{1}^{\text{eff}}(\omega) = PH_{1}P + PH_{1}Q \frac{1}{\epsilon - QHQ}QH_{1}P - PH_{1}Q \frac{1}{\epsilon - QHQ}\omega H_{1}^{\text{eff}}(\omega)$$

The shell-model effective hamiltonian

Folded-diagram expansion

 \hat{Q} -box vertex function

$$\hat{Q}(\epsilon) = PH_1P + PH_1Qrac{1}{\epsilon - QHQ}QH_1P$$

 \Rightarrow Recursive equation for $H_{\rm eff} \Rightarrow$ iterative techniques (Krenciglowa-Kuo, Lee-Suzuki, ...)

$$\mathcal{H}_{\mathrm{eff}} = \hat{Q} - \hat{Q}^{\prime} \int \hat{Q} + \hat{Q}^{\prime} \int \hat{Q} \int \hat{Q} - \hat{Q}^{\prime} \int \hat{Q} \int \hat{Q} \int \hat{Q} \cdots$$

The perturbative approach to the shell-model H^{eff}

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q rac{1}{\epsilon - QHQ}QH_1P$$

The \hat{Q} -box can be calculated perturbatively

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

The diagrammatic expansion of the \hat{Q} -box

The shell-model effective operators

Consistently, any shell-model effective operator may be calculated

It has been demonstrated that, for any bare operator Θ , a non-Hermitian effective operator Θ_{eff} can be written in the following form:

$$\Theta_{\rm eff} = (P + \hat{Q}_1 + \hat{Q}_1 \hat{Q}_1 + \hat{Q}_2 \hat{Q} + \hat{Q} \hat{Q}_2 + \cdots)(\chi_0 + \chi_1 + \chi_2 + \cdots) ,$$

where

$$\hat{Q}_m = rac{1}{m!} rac{d^m \hat{Q}(\epsilon)}{d\epsilon^m} \Big|_{\epsilon=\epsilon_0} \; ,$$

 ϵ_0 being the model-space eigenvalue of the unperturbed hamiltonian H_0

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93, 905 (1995)

The shell-model effective operators

. . .

The χ_n operators are defined as follows:

$$\begin{split} \chi_{0} &= (\hat{\Theta}_{0} + h.c.) + \Theta_{00} , \\ \chi_{1} &= (\hat{\Theta}_{1}\hat{Q} + h.c.) + (\hat{\Theta}_{01}\hat{Q} + h.c.) , \\ \chi_{2} &= (\hat{\Theta}_{1}\hat{Q}_{1}\hat{Q} + h.c.) + (\hat{\Theta}_{2}\hat{Q}\hat{Q} + h.c.) + \\ (\hat{\Theta}_{02}\hat{Q}\hat{Q} + h.c.) + \hat{Q}\hat{\Theta}_{11}\hat{Q} , \end{split}$$

and

$$\hat{\Theta}(\epsilon) = P\Theta P + P\Theta Q \frac{1}{\epsilon - QHQ} QH_1 P ,$$

$$\hat{\Theta}(\epsilon_1; \epsilon_2) = P\Theta P + PH_1 Q \frac{1}{\epsilon_1 - QHQ} \times Q\Theta Q \frac{1}{\epsilon_2 - QHQ} QH_1 P ,$$

$$\hat{\Theta}_m = \frac{1}{m!} \frac{d^m \hat{\Theta}(\epsilon)}{d\epsilon^m} \Big|_{\epsilon = \epsilon_0} , \quad \hat{\Theta}_{nm} = \frac{1}{n!m!} \frac{d^n}{d\epsilon_1^n} \frac{d^m}{d\epsilon_2^m} \hat{\Theta}(\epsilon_1; \epsilon_2) \Big|_{\epsilon_1 = \epsilon_0, \epsilon_2 = \epsilon_0}$$

The shell-model effective operators

We arrest the χ series at the leading term χ_0 , and then expand it perturbatively:

Two-body operator

Our recipe for realistic shell model

• First issue: input *V_{NN}*, the high-precision *NN* CD-Bonn potential:

- Second issue: we renormalize the input V_{NN} deriving a V_{low-k} with a cutoff: $\Lambda = 2.6 \text{ fm}^{-1}$.
- Third issue: H_{eff} obtained calculating the Q-box up to the 3rd order in perturbation theory.
- Single-particle energies and two-body matrix elements are obtained from the one- and two-body components of H_{eff} to diagonalize the shell-model hamiltonian
- Effective operators are consistently derived by way of the MBPT

Second issue: the choice of the cutoff Λ

L. C., A. Gargano, and N. Itaco, JPS Conf. Proc. 6, 020046 (2015)

Nuclear models and predictive power

Realistic shell-model calculations for ¹³⁰Te and ¹³⁶Xe \downarrow Check this approach calculating observables related to the GT strengths and $2\nu\beta\beta$ decay and compare the results with data.

$$\left[T_{1/2}^{2\nu}\right]^{-1} = G^{2\nu} \left|M_{2\nu}^{\rm GT}\right|^2$$

Shell-model calculations

 ⁷⁶Ge,⁸²Se: four proton and neutron orbitals outside double-closed ⁵⁶Ni 0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2}

 ¹³⁰Te, ¹³⁶Xe: five proton and neutron orbitals outside double-closed ¹⁰⁰Sn * 0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2}

* L.C., L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, Phys. Rev. C **95**, 064324 (2017)

Energy spectra

Luigi Coraggio CNNP2017, October 15-21, 2017

C

-

Electric quadrupole transition strengths

Nucleus	$J_i \rightarrow J_f$	B(E2) _{Expt}	B(E2) _{Theor}	Nucleus	$J_i \rightarrow J_f$	B(E2) _{Expt}	B(E2) _{Theor}
⁷⁶ Ge				⁸² Se			
	$2^+_1 \rightarrow 0^+_1$	560 ± 20	540		$2^+_1 \rightarrow 0^+_1$	360 ± 6	390
	$2^+_2 \rightarrow 2^+_1$	750 ± 100	750		$0^+_2 \rightarrow 2^+_1$	78 ± 2	218
	$2^{\ddagger}_2 \rightarrow 0^{\ddagger}_1$	17.2 ± 0.6	3.6		$2^{+}_{2} \rightarrow 2^{+}_{1}$	106 ± 3	113
	$4_1^{\mp} \rightarrow 2_1^{+}$	730 ± 170	730		$2^{\mp}_2 \rightarrow 0^{+}_1$	30 ± 3	32
	$0^+_2 \rightarrow 2^+_1$	100 ± 40	40		$4_1^{\mp} \rightarrow 2_1^{\pm}$	400 ± 60	550
Nucleus	$J_i \rightarrow J_f$	B(E2) _{Expt}	B(E2) _{Theor}	Nucleus	$J_i \rightarrow J_f$	B(E2) _{Expt}	B(E2) _{Theor}
¹³⁰ Te				¹³⁶ Xe			
	$2^+_1 \rightarrow 0^+_1$	580 ± 20	430		$2^+_1 \rightarrow 0^+_1$	420 ± 20	300
	$6_1^+ \rightarrow 4_1^+$	240 ± 10	220		$4_1^+ \rightarrow 2_1^+$	53 ± 1	9
					$6_1^+ \rightarrow 4_1^+$	0.55 ± 0.02	1.58

GT⁻ running sums

$2\nu\beta\beta$ nuclear matrix elements

Blue dots: bare GT operator

Decay	Expt.	Bare
$\begin{array}{c} ^{76}\mathrm{Ge} \rightarrow ^{76}\mathrm{Se} \\ ^{82}\mathrm{Se} \rightarrow ^{82}\mathrm{Kr} \\ ^{130}\mathrm{Te} \rightarrow ^{130}\mathrm{Xe} \\ ^{136}\mathrm{Xe} \rightarrow ^{136}\mathrm{Ba} \end{array}$	0.140 ± 0.005 0.098 ± 0.004 0.034 ± 0.003 0.0218 ± 0.0003	0.294 0.332 0.142 0.0975

$2\nu\beta\beta$ nuclear matrix elements

Blue dots: bare GT operator Black triangles: effective GT operator

Decay	Expt.	Eff.
$\begin{array}{c} ^{76}\mathrm{Ge} \rightarrow ^{76}\mathrm{Se} \\ ^{82}\mathrm{Se} \rightarrow ^{82}\mathrm{Kr} \\ ^{130}\mathrm{Te} \rightarrow ^{130}\mathrm{Xe} \\ ^{136}\mathrm{Xe} \rightarrow ^{136}\mathrm{Ba} \end{array}$	0.140 ± 0.005 0.098 ± 0.004 0.034 ± 0.003 0.0218 ± 0.0003	0.098 0.104 0.044 0.0285

IVI	atrix elements	s of the neutro	n-proton eff	ective G i operato	or	
_	n _a l _a j _a n _b l _b j _b	3rd order $\mathrm{GT}_{\mathrm{eff}}^{-}$	quenching	n _a l _{aja} n _b l _{bjb}	3rd order GT_{eff}^{-}	quenching
-	0f5/2 0f5/2 0f5/2 1P3/2 1P3/2 0f5/2 1P3/2 1P3/2 1P3/2 1P1/2 1P3/2 1P1/2 1P1/2 1P3/2 1P1/2 1P1/2 0g9/2 0g9/2	-0.977 -0.143 0.046 2.030 -1.621 1.713 -0.697 3.121	0.37 0.62 0.55 0.58 0.67 0.70	$\begin{array}{c} 0g_{7/2} \ 0g_{7/2} \ 1d_{5/2} \\ 0g_{7/2} \ 1d_{5/2} \ 0g_{7/2} \\ 1d_{5/2} \ 0g_{7/2} \\ 1d_{5/2} \ 1d_{5/2} \\ 1d_{5/2} \ 1d_{3/2} \\ 1d_{3/2} \ 1d_{3/2} \\ 1d_{3/2} \ 1d_{3/2} \\ 1d_{3/2} \ 2g_{1/2} \\ 1d_{3/2} \ 2g_{1/2} \\ 2g_{$	-1.239 -0.019 0.131 1.864 -1.891 1.794 -1.023 -0.093 0.117	0.50 0.64 0.61 0.58 0.66
				$\begin{array}{c} 2s_{1/2} & 3s_{1/2} \\ 2s_{1/2} & 2s_{1/2} \\ 0h_{11/2} & 0h_{11/2} \end{array}$	1.598 2.597	0.65 0.69

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Third issue: pertur	bative propertie	s of the effective	operator		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Decay	1st ord $M_{2\nu}^{\rm GT}$	2nd ord $M_{2\nu}^{\rm GT}$	3rd ord $M_{2\nu}^{\rm GT}$	Expt.	L
More than 70% from 1st \rightarrow 2nd order Less than 5% from 2nd \rightarrow 3rd order	130 Te \rightarrow 130 Xe 136 Xe \rightarrow 136 Ba	0.142 0.0975	0.042 0.0272	0.044 0.0285	$\begin{array}{c} 0.034 \pm 0.003 \\ 0.0218 \pm 0.0003 \end{array}$	L
	More than 70% from 1st \rightarrow 2nd order Less than 5% from 2nd \rightarrow 3rd order					V

Outlook

• $2\nu\beta\beta$

- Role of real three-body forces and two-body currents (present collaboration with Pisa group)
- Evaluation of the contribution of many-body correlations (blocking effect)
- $0\nu\beta\beta$
 - Derivation of the two-body effective operator
 - Calculation of the two-body transition-density matrix elements (in collaboration with Frédéric Nowacki)
 - SRC calculated consistently with V_{low-k}

$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$ nuclear matrix element

Ì