

The direct neutrino mass search with KATRIN

Conference on Neutrino and Nuclear Physics CNNP 2017, October 2017, Catania/Italy

Christian Weinheimer

Institut für Kernphysik, Westfälische Wilhelms-Universität Münster weinheimer@uni-muenster.de

Introduction The KArlsruhe TRlitium Neutrino experiment KATRIN Commissioning data Neutrino mass sensitivity Conclusions

and the administration with any

Three complementary ways to the absolute neutrino mass scale

Cosmology

very sensitive, but model dependent compares power at different scales current sensitivity: $\Sigma m(v_i) \approx 0.23 \text{ eV}$

2) Search for $\mathbf{0}_{\nabla\beta\beta}$

Sensitive to Majorana neutrinos Upper limits by EXO-200, KamLAND-Zen, GERDA, CUORE

Direct neutrino mass determination: 3)

No further assumptions needed, use $E^2 = p^2c^2 + m^2c^4 \Rightarrow m^2(v)$ is observable mostly **Time-of-flight measurements** (v from supernova) SN1987a (large Magellan cloud) \Rightarrow m(v_e) < 5.7 eV 8 Kinematics of weak decays / beta decays 6 [a.u.] $m_v = 0 eV$ measure charged decay prod., E-, p-conservation β -decay searchs for m(v_p) - tritium, ¹⁸⁷Re β -spectrum ¹⁶³Ho electron capture (EC)

-1.5

- 1 $E - E_0$ [eV]

Wavelength λ [h⁻¹ Mpc] 1000 100

109

0.5

0

-0.5

Comparison of the different approaches to the neutrino mass

Direct kinematic measurement: $m^2(v_e) = \Sigma |U_{ei}^2| m^2(v_i)$ (incoherent) Neutrinolesss double β decay: $m_{\beta\beta}(v) = |\Sigma |U_{ei}^2| e^{i\alpha(i)} m(v_i)|$ (coherent) if no other particle is exchanged (e.g. R-violating SUSY) without additional uncertainties of nuclear matrix elements *M* and quenching factor g_A

 \Rightarrow absolute scale/cosmological relevant neutrino mass in the lab by single β decay

Direct determination of m (v_a)

from β -decay (and EC)

with "electron neutrino mass": $\mathbf{m}(v_e)^2 := \Sigma |U_{ei}|^2 \mathbf{m}(v_i)^2$, complementary to $0v\beta\beta$ & cosmology (modified by electronic final states, recoil corrections, radiative corrections)

Need: low endpoint energy very high energy resolution & very high luminosity & very low background

 \Rightarrow Tritium ³H (¹⁸⁷Re, ¹⁶³Ho)

⇒ MAC-E-Filter (or bolometer for ¹⁸⁷Re, ¹⁶³Ho)

WWI MÜNSTER

windowless

electron

Molecular Windowless Gaseous Tritium Source WGTS

Molecular Windowless Gaseous Tritium Source WGTS

Christian Weinheimer

CNNP, Catania, October 2017

Calibration and monitoring rear system: controling and studying systematics

Essential for diagnostics of tritium source

& spectrometer transmission

- photo-electron gun:

spectrometer transmission column density & energy losses in source

- **rear wall**: definition of source potential, neutralization of tritium plasma

- X-ray detectors:

online monitoring of tritium ß-decay activity via X-rays (BIXS)

- magnetic field: 5.6 T
- Ion monitoring by FTICR and ion manipulation by dipole and monopole electrodes inside

Christian Weinheimer

CNNP, Catania, October 2017

Monitoring and calibration instrumentation of the CPS

Condensed ^{83m}Kr conversion electron source

for energy calibration and studies of transmission properties HOPG @T=25K, UHV, on HV, can scan full flux tube surface control: heating & laser ablation, laser ellipsometry

KATRIN main spectrometer

Inner electrode system: background suppression & potential shaping

- detection of β -electrons (mHz to kHz)
- high efficiency (> 90%)
- low background (< 1 mHz) (passive and active shielding)
- good energy resolution (< 1 keV)

Properties

- 90 mm Ø Si PIN diode
- thin entry window (50nm)
- detector magnet 3 6 T
- post acceleration (30kV) (to lower background in signal region)
- segmented wafer (148 pixels)
 - \rightarrow record azimuthal and radial profile of the flux tube
 - \rightarrow investigate systematic effects
 - \rightarrow compensate field inhomogeneities

Commissioning of main spectrometer ($\Delta E = 0.93 \text{ eV}$) and detector

Background sources at KATRIN: detailed understanding, but ...

- 8 sources of background investigated and understood
- · 7 out of 8 avoided or actively eliminated by
 - fine-shaping of special electrodes
 - symmetric magnetic fields
 - LN₂-cooled baffles (cold traps)
 - wire electrode grids

WWI

MÜNSTER

 1 out of 8 remaining: caused by ²¹⁰Pb on spectrometer walls (neutral H* atoms ionised by black-body radiation in spectrometer) Background due to ionization of Rydberg atoms sputtered off by α decays

H* Rydberg atoms:

- desorbed from walls due to ²⁰⁶Pb recoil ions from ²¹⁰Po decays
- non-trapped electrons on meV-scale
- bg-rate: ~0.5 cps

counter measures:

- reduce H-atom surface coverage:
 - a) extended bake-out phase: done
 - b) strong UV illumination source

Christian Weinheimer

Technical start of KATRIN: "1st light", photo-electrons from rear wall & and ions

Testing whole 70m long beamline with electrons:

- alignment
- magn. stearing of pencil beam

With ions:

- ion removal

no tritium yet

July 2017: calibration and comissioning campaign with all 3 ^{83m}Kr sources

WWU

MÜNSTER

Line scan & stability (gaseous Kr source GKrS)

- Just one example (one out of many line scans)
- Only central detector ring shown (x30 more statistics available)
- High-resolution scans of narrow N2,3-32 doublet (670 meV hyperfine splitting, sub-eV natural widths, background-free at 32 keV) currently being analyzed

WWU HUNSTER Absolute energy scale calibration by difference of electron conversion lines

Neutrino mass analysis & sensitivity

MÜNSTER

Determining the energy loss function

Christian Weinheimer

CNNP, Catania, October 2017

Modelling of the β spectrum Reference spectrum generator ³He 3d gas-dynamics modelling State-of-the-art nuclear & molecular theory - longitudinal and radial pressure, electronic final states, radiative corrections, density, temperature profiles n/n0 Doppler effect - plasma potential minor: relativistic Fermi function & recoil. 1.003 0.04 1.002 - magnetic field model screening, finite nuclear extension, ... 1.001 0.08 Connection to extensive sensor network 5 0.02 1.000 0.999 0.06 0.01 0.998 Online gas composition monitoring 45 mm probability 0.997 via laser Raman system .04 0.02 0.03 0.04 0.01 x / m 0.2 esponse fi

.02

0.00

30

20

4 10

excitation energy in eV

3

40

50

60

70

0.1

0.0

front

rear

30

surplus energy E-qU in eV

20

10

weighted mean

40

50

Direct neutrino mass experiments:

complementary to cosmological analyses and $0\nu\beta\beta$ can look also for sterile neutrinos (eV, keV) and other BSM

KATRIN: the direct neutrino mass experiment with 200 meV sensitivity

System is complete (except tritium loops and rear wall and calibration system):

- 1st light in October 2016
- ^{83m}Kr calibration measurements in July 2017 successful
- tritium data taking will start in 2018

KATRIN inauguration ceremony: June 11, 2018 (after Neutrino 2018 at Heidelberg)

Thank you for your attention !