WESTFÄLISCHE WILHELMS-UNIVERSTÄT MÜNSTER

D. Frekers

Novel approaches to the nuclear physics of ßß-decay:

chargex reactions, mass-measurements, μ -capture

CNNP Catania 2017

Where do we stand in $\beta\beta$ decay when putting together the pieces of the puzzle?

- 1. General features
- 2. Chargex-reactions (³He,t) & (d,²He) \succ perfect for $2\nu\beta\beta$ NME's
- 3. Chargex-reactions
 - > limited for $0\nu\beta\beta$ NME's (here: 2⁻ states and nuclear wave function)
- 4. Mass measurements
 - > $0\nu\beta\beta$ NME > ${}^{96}Zr$ is a "golden" case (PRL116, Feb-2016) ${}^{96}Zr(\beta^{-}) \xrightarrow{4u}$ 96Nb, and g_{Δ}
- 5. Muon capture projects starting (MuSIC)
 - > a high-q transfer phenomenon !! gives handle on g_A quenching

-1-General features (2νββ / Ονββ **decay)**

 $\Gamma_{(\beta^{-}\beta^{-})}^{2\nu} = \frac{C}{8\pi^{7}} \left(\frac{G_{F} g_{A}}{\sqrt{2}} \cos(\Theta_{C}) \right)^{4} \left| M_{DGT}^{(2\nu)} \right|^{2} F_{(-)}^{2} f(Q)$ $M_{DGT}^{(2\nu)}$ $= \mathbf{G}^{2\nu} (\mathbf{Q}, \mathbf{Z}) \quad g_{\mathbf{A}}^{4}$

 $q_{tr} \sim 0.01 \text{ fm}^{-1}$

$$M_{\text{DGT}}^{(2n)} = \overset{\circ}{\text{a}}_{m} \frac{\left\langle 0_{g.s.}^{(f)} \middle| \overset{\circ}{\text{a}}_{k} s_{k} t_{k}^{-} \middle| 1_{m}^{+} \right\rangle \left\langle 1_{m}^{+} \middle| \overset{\circ}{\text{a}}_{k} s_{k} t_{k}^{-} \middle| 0_{g.s.}^{(i)} \right\rangle}{\frac{1}{2} Q_{\text{bb}}(0_{g.s.}^{(f)}) + E(1_{m}^{+}) - E_{0}}$$
$$= \overset{\circ}{\text{a}}_{m} \frac{M_{m} \left(GT^{+}\right) M_{m} \left(GT^{-}\right)}{E_{m}}$$

to remember:

- 2 sequential & "allowed" β⁻-decays of "Gamow-Teller" type
- 2. "1, 2, 3, ... forbidden" decays negligible
- 3. Fermi-transitions do no contribute (because of different isospin-multiplets)

Can be determined via chargeexchange reactions in the (n,p) and (p,n) direction (e.g. (d,²He) or (³He,t))

 $\mathbf{G}_{(\mathbf{b}^{-}\mathbf{b}^{-})}^{0n} = G^{0n} (\mathbf{Q}, \mathbf{Z}) g_A^4 \qquad M_{\mathrm{DGT}}^{(0n)} - \begin{array}{c} \overbrace{g_A}^{0} \overbrace{g_A}^{0} \overbrace{g_A}^{0} \\ \overbrace{g_A}^{0} \overbrace{g_A}^{0} \end{array} M_{\mathrm{DF}}^{(0n)}$ mne Majorana-v!

q_{tr} ~ 0.5 fm⁻¹ !!

The situation of the Nuclear Matrix Elemets for neutrinoless $\beta\beta$ decay

-2-Charge-exchange reactions GT-part (2νββ decay)

Charge-exchange reactions

Grand Raiden Magnetic Spectrometer

Resolution is the key !!!

almost 70 !! resolved single states up to 5 MeV identified as GT 1+ transitions !!!

the other leg (BGT⁺): $^{76}Se(d,^{2}He)^{76}As$ ($\Delta E = 120 \text{ keV}$)

a surprise:

low-E part of NME makes up ~100% of total 2vββ-ME

no need for GT giant resonance contribution

question: why so stable !!!

What's the size of the NME?

A. Poves (simultaneous to our publication):

there is no $B(GT^+)$ strength, except for lowest 1^+ state

Shell model provides conclusive explanation for the deemed "pathologically" long half-life of ¹³⁶Xe. Expt'l test: ¹³⁶Ba(d,²He)¹³⁶Cs

-3-Charge-exchange reactions **spin-dipole part** (0vββ decay)

Charge-exchange reaction towards the $0v\beta\beta$ NME's

Here: 2⁻ states via chargex reactions

Low-energy spin-dipole (2⁻) strength to test nuclear wave function for $0\nu\beta\beta$ decay NME's

-4-Mass measurements and $0\nu\beta\beta$ NMEs 96Zr

β-β-

Idea

Competition between $\beta \& \beta\beta$ decay of 96 Zr

Q-value $\longrightarrow M_{\beta}^{4u} \longrightarrow (T_{1/2}^{0\nu\beta\beta})^{-1} \propto Q^5 \left| M_{\beta\beta}^{0\nu} \right|^2 \left\langle m_{\beta\beta} \right\rangle^2$

Results

Ramsey excitation

Next: need $T_{1/2}$ of single β decay

Important side effect:

single β decay depends on g_A^2 $2\nu/0\nu\beta\beta$ decay depends on g_A^4

A measurements of single β decay gives expmtl handle on the quenching of g_A

-5-Muon capture and 0vßß NMEs

Motivations

- μ-cap features momentum transfers similar
 to 0vββ decay (q_{tr} ~0.5fm⁻¹ ~100MeV/c)
- μ-cap processes to 1⁺ states in A(μ⁻,ν)B may be compared with charge-ex reactions of (n,p) type.
- $\mu\text{-}\text{cap}$ may give access to g_A quenching issue

However

- only the On-channel (~5%) is most relevant for 0vββ decay
- level scheme of final odd-odd nucleus is extremely!! poorly known

The muon capture and g_A in weak decays

$\underline{\text{Title}}$

Exclusive μ -capture on ²⁴Mg, ³²S and ⁵⁶Fe populating low-lying 1⁺ states to probe the weak axial current at high momentum transfer

M. Alanssari,¹ I. H. Hashim,² L. Jokiniemi,³ H. Ejiri,⁴
E. Ideguchi,⁴ A. Sato,⁴ J. Suhonen,³ and D. Frekers¹
¹Institut für Kernphysik, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
²Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
³University of Jyvaskyla, Department of Physics, FI-40014, Finland
⁴Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

The amazing muon

There has not been any other elementary particle so "successful" in advancing our knowledge in so many different areas of physics.

Production: $p + A \rightarrow X + \pi^{-}$ (26ns) $\mu^{-} + \overline{\nu}_{\mu}$ (2.2 μ s) $e^{-} + \overline{\nu}_{e} + \nu_{\mu}$

$$\Gamma_{\mu} = \frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} (1 - \varepsilon) = (2,196981(2) \ \mu \sec)^{-1} \ (\varepsilon \approx 10^{-3})$$
$$G_F = 1,16637(2) \cdot 10^{-5} \, \text{GeV}^{-2}$$

But: Hold your horses !!! things are a bit more complicated

What is this ????

 π -1

μ

 \rightarrow \rightarrow \rightarrow

Conclusion

- Charge-ex reactions:
 - useful tool for $2\nu\beta\beta$ decay NME's.
- Spin-dipole excitation via charge-ex:
 - used for first time, low-E spin-dipole strength mirrors ground-state properties
- Precision mass measurement:
 - ^{96}Zr is a golden case for testing $0\nu-NME's$ and getting experimental handle on g_A
- μ-cap:
 - -maybe the only viable tool to study weak response at high momentum transfer and to fix the g_A problem by comparing with (d,²He)