

October 18, 2017 - CNNP 2017 - Catania, Italy

Outline

- Why Tellurium?
- Experimental approaches
 - CUORE
 - CUPID
 - SNO+
 - Cobra
- Conclusions

ββ0v sensitivity master formula

The number of background events expected along the experiment lifetime is $N_B = bkg \cdot \Delta E \cdot M \cdot t_{meas}$

Two cases are then possible depending on the extent of the background:

$$N_B >> 1 \longrightarrow S_{1/2}^{0\nu} \propto \epsilon \frac{i.a.}{A} \sqrt{\frac{M \cdot t_{meas}}{bkg \cdot \Delta E}}$$
$$N_B < 1 \longrightarrow S_{1/2}^{0\nu} \propto \epsilon \frac{i.a.}{A} M \cdot t_{meas}$$

generally named "zero background" condition

By inserting the proper nuclear factor of merit is then possible to get the sensitivity on the effective neutrino Majorana mass

> Despite their simplicity these formula's outline the dependence of the sensitivity on the critical experimental parameters: Mass, Measure Time, **Energy resolution, Background and Isotope choice**

 $\frac{1}{S_{1/2}^{0\nu}(m_{ee})} \propto$

N _{nuc}	number of active nuclei
	in the experiment
t meas	measuring time [y]
Μ	detector mass [kg]
3	detector efficiency
i.a.	isotopic abundance
A	atomic number
ΔE	energy resolution [keV]
bkg	background [c/keV/y/kg]

$$\sqrt{S_{1/2}^{0\nu} \cdot G^{0\nu} |M^{0\nu}|}$$

Why Tellurium?

Isotope	i.a.(%)	Q [MeV]
⁴⁸ Ca	0.187	4.263
⁷⁶ Ge	7.8	2.039
⁸² Se	9.2	2.998
⁹⁶ Zr	2.8	3.348
¹⁰⁰ Mo	9.6	3.035
¹¹⁶ Cd	7.6	2.813
¹³⁰ Te	34.1	2.527
¹³⁶ Xe	8.9	2.459
¹⁵⁰ Nd	5.6	3.371

	34.08%	2527.51
С	0.09%	1714.81
	31.74%	865.87

• Rate master formula

A preferred isotope?
Rate master formula
$$(T_{1/2}^{0\nu})^{-1} = \mathcal{G}^{0\nu} \cdot |\mathcal{M}^{0\nu}|^2 \cdot |\frac{m_{\beta\beta}}{m_e}|^2$$

 \mathcal{G}^{0v} ... phase space factor $\mathcal{M}^{0\nu}$... nuclear matrix element $m_{\beta\beta}$... effective neutrino mass m_e ... electron rest mass

- In principle, isotopes with the best Nuclear Factor of Merit ($\mathcal{G}^{0v*}\mathcal{M}^{0v2}$) should be favoured
- A surprising inverse correlation has been observed between phase space and the square of the nuclear matrix element.
 - dots are the geometric mean of the squared matrix element range limits
 - the phase-space factor is evaluated at $g_A=1$

No preferred isotope ... within a factor 2-3

A.Robertson, Mod. Phys. Lett. A, Vol. 28, No. 8 (2013) 1350021, arXiv 1301.1323

Experimental approach

Two main approaches:

- homogeneous (calorimetric or active source)
- inhomogeneous (external-source or passive source)

Calorimeters

Solid-state devices, bolometers, scintillators, gas detectors

- + Very large M possible (~10kg \rightarrow tons)
- + High efficiency ($\epsilon \sim 1$)
- + Very high energy resolution ($\Delta E \sim 0.015\%$ with Ge-diodes, bolometers)
- + Event topology (in gas/liquid Xe detectors or pixellization)
- + Good background levels
- Constraints on detector choice (except for bolometers)
- No or partial particle id

External-source detectors

Scintillators, gas TPC, gas DC, magnetic field and TOF

- + Event topology allowing "clean bkg" (except $2\nu\beta\beta$)
- + Several ββ candidates can be studied with same detector
- Difficult to get large source M
- Difficult to get high efficiency
- Difficult to get good resolution

₿₂

detector

6

Tellurium experiments

Experiment	Technique	Energy resolution	Status	Laboratory	Main
CUORE	Pure bolometer	High	Running	LNGS	Heat
CUPID	Hybrid bolometer	High	R&D	LNGS	Heat
SNO+	Te loaded scintillator	Low	Construction	SNOLAB	Scint
COBRA	Semiconductor	High	R&D	LNGS	Ionisa

Geochemical experiments: an historical debate

- O.K.Manuel (Rolla, MO, 1991): $T_{1/2}(\beta\beta 2\nu, ^{130}Te) = 8 \times 10^{20} \text{ yr}$
- T.Kirsten (Heidelberg, 1983): $T_{1/2}(\beta\beta 2\nu, ^{130}Te) = (2.55\pm0.20) \times 10^{21} \text{ yr}$

CUORE (Cryogenic Underground Observatory for Rare Events)

Primary goal: search for $0\nu\beta\beta$ decay in ¹³⁰Te

Closely packed array of 988 TeO₂ crystals arranged in 19 towers

¹³⁰Te:

- large transition energy: $Q_{\beta\beta}$ (¹³⁰Te) 2527.5 keV
- highest natural isotopic abundance (33.8%)

CUORE design parameters:

- mass of TeO2: 742 kg (206 kg of ¹³⁰Te)
- low background aim: 10-2 c/(keV · kg · yr)
- energy resolution: **5 keV** FWHM in the Region Of Interest (ROI)
- high granularity
- deep underground location
- strict radio-purity controls on materials and assembly

CUORE projected sensitivity (5 years, 90% C.L.): $T_{1/2} > 9 \times 10^{25} \, yr$

See also C.Brofferio talk

CUORE @ LNGS

1400 m of rock (~3600 m.w.e.) deep

- μ 's: $\sim 3 \times 10^{-8} / (s \cdot cm^2)$
- γ 's: ~0.73 / (s · cm²)
- neutrons: 4×10^{-6} n/(s·cm²) below 10 MeV

The CUORE cryostat

- Designed to cool down ~1 ton detector to ~10 mK
- Mechanically decoupled for extremely low vibrations
- Low background environment

- Cryogen-free cryostat
- Fast Cooling System (⁴He gas) down to ~50K
- 5 pulse tubes cryocooler down to ~4K
- Dilution refrigerator down to operating temperature ~10 mK
- Nominal cooling power: 3 µW @ 10mK
- Cryostat total mass ~30 tons
- Mass to be cooled < 4K: ~15 tons
- Mass to be cooled < 50 mK: \sim 3 tons (Pb, Cu and TeO₂)

10 mK—

600 mK-

50 mK-

Plates:

300 K·

40 K-

4 K-

Roman lead shielding

- Lead is an excellent material for shielding but normally it contains ²¹⁰Pb with 10-1000 Bq/kg (half life ~ 22 y)
- Ingots from a shipwreck found close to Sardinia coast (I sec b.C.)
- Romans extracted the Ag from the Pb (and ²³⁸U with it)
 - ²¹⁰Pb in roman Pb < 4 mBq/kg
- Ancient Roman Pb is extremely precious!
 - agreement with the cultural heritage authorities to preserve the external part of the ingots
 - casting done in N2 atmosphere with a clean SS mould
 - machining with selected tools and liquids
- Shield 6 cm thick (4.5 tonnes of Pb + 1 tonne of Cu)
 - realized in ring sectors with dovetail design to minimize holes
 - rings interleaved with copper foils to improve thermalization
 - mechanically attached to the still plate but thermalized @ 4K

CUORE construction

- June 2016: last steps of the CUORE construction process
 - Installation of the front-end electronics (2nd floor)
 - Installation of the DAQ (2nd floor)
 - Detector installation preparation
- August 2016: detector installation
- September-November 2016:
 - Installation of cryostat interfaces
 Test of readout wires

 - Close-out of the cryostat vessels
 IVC eventually closed in October 2016
- December 2, 2016: system close-out complete
- December 5, 2016: cool-down start

Detector Installation

- The detector installation was the first period in which the detector was exposed to (Rn-free) air
- Custom-made clean room flushed with Rn-free air (Rn concentration <0.1 Bq/m³)
 - Radon Abatement System
- Detector "protective bag" flushed with nitrogen during installation interruptions
- Strict installation protocol

Detector installation completed on August 26, 2016

CUORE cooldown

- Reached a stable base temperature of ~7 mK on Jan 27, 2017
- Cooldown to base T: ~ 3 days
- Lowest temperature reached: 6.7 mK
- 984/988 working detectors
- Excellent performance @ full load
- Stable operation

CUORE operation

- Pre-operation (detector commissioning) started in February 2017
- Gradual transition to operation: alternate science runs to technical measurements aiming to achieve \bullet better performance and to demonstrate improvements towards the ultimate performance

2017:

Feb-Mar: system optimisation Apr-May: science runs Jun-Jul: system optimisation Aug-Sep: science runs Oct-Nov: system optimisation

2018: Science runs

Science runs

• Apr-May 2017 (ds 3018): announced at TAUP 2017 • Aug 2017 (ds 3021): still embargoed

Apr-May 2017 science runs

- Science operations started on April 14, 2017
 - **Dataset 1**: very short (identified issue with the thermistor bias on about 1/3 of the channels)
 - Reoptimization of the detector working point
 - **Dataset 2**: 3 weeks of physics data bracketed by 2 calibration periods (May 4 June 11)
- Operational performance:
 - 984/988 operational channels
 - Excellent data-taking efficiency when in operations
 - Much improved detector stability, compared to Cuoricino/CUORE-0
 - Calibrations/physics ratio data still to be optimized to maximize 0vββ sensitivity

Acquired statistics for 0vDBD decay search:

- natTeO₂ exposure: 38.1 kg yr
- ¹³⁰Te exposure: 10.6 kg yr

Dataset 2 time breakdown

2017

Calibration spectrum

Detector performance: energy resolution

- 899 (90%) best performing channels used for initial analysis; most discarded channels had poor line or pulse shapes, and should be recovered in future runs
- Average ("harmonic mean") energy resolution in calibration runs: 10.6 keV FWHM @ 2615 keV
- Significantly better performance in physics data: (7.9 ± 0.6) keV FWHM @ 2615 keV

Oliviero Cremonesi - Octoper 18, 2017 - UNINE 2017 - Catania, Italy

Calibration resolution at 2615 keV

Background spectrum: y region

Fit in the ROI: unblinded spectrum

- We determined the yield of 0vββ events by performing a simultaneous UEML fit in the energy region 2465-2575 keV
- The fit has 3 components:
 - a posited peak at the Qvalue of ¹³⁰Te
 - a floating peak to account for the ⁶⁰Co sum gamma line (2505 keV)
 - a constant continuum background, attributed to multi scatter Compton events from ²⁰⁸TI and surface alpha events

Fit in the ROI: results

- Profile likelihood
- Integrated on the physical region
- Region of interest: 2465 to 2575 keV
- ROI background index: (9.8–1.5^{+1.7}) × 10⁻³ c/(keV·kg·yr)
- Events in the region of interest: 50
- Best fit for 60Co mean: (2504.8 ± 1.2) keV

Efficiencies

Trigger and energy Anti-coincidence Pulse shape analys **All cuts except co**

0vββ containment

Total 0vββ efficien

- Best fit decay rate: (-0.03_{-0.04}+0.07 (stat.) ± 0.01 (syst.))×10⁻²⁴ / yr
- Decay rate limit (90% CL, including systematics): 0.15×10-24 yr-1
- Half-life limit (90% CL, including systematics): 4.5×10²⁴ yr
- Median expected sensitivity: 3.6×10²⁴ yr (arXiv:1705.10816)

We have also evaluated limits according to "W. Rolke et al., Nucl. Instrum. Meth. A 551, 493-503 (2005)":

- Half-life limit (90% CL, including systematics): 6.1×10²⁴ yr
- Decay rate limit (90% CL, including systematics): 0.11×10⁻²⁴ / yr
- Median expected sensitivity: 3.7×10²⁴ yr

ncy	(55.3 ± 3)%
	(88.345 ± 0.085) %
ntainment	(62.6 ± 3.4) %
sis	(64 ± 3) %
	(99.3 ± 0.3) %
reconstruction	(98.469 ± 0.009) %

Fit in the ROI: statistical significance

Combination with previous results

- We combined the CUORE result with the existing ¹³⁰Te
 - 19.75 kg·yr of Cuoricino
 - 9.8 kg·yr of CUORE-0
- The combined 90% C.L. limit is $T_{0v} > 6.6 \times 10^{24} \text{ yr}$

$m_{\beta\beta}$ < 210–590 meV

NME:

Phys. Rev. C 91, 034304 (2015) Phys. Rev. C 87, 045501 (2013) Phys. Rev. C 91, 024613 (2015) Nucl. Phys. A 818, 139 (2009) Phys. Rev. Lett. 105, 252503 (2010)

Experiments:

¹³⁰Te: 6.5×1024 yr from this analysis ⁷⁶Ge: 5.3×1025 yr from Nature 544, 47–52 (2017) ¹³⁶Xe: 1.1×1026 yr from Phys. Rev. Lett. 117, 082503 (2016) ¹⁰⁰Mo: 1.1×1024 yr from Phys. Rev. D 89, 111101 (2014) CUORE sensitivity: 9.0×10^{25} yr

Combined "Rolke" limit: 8.1×10²⁴ yr

Aug 2017 science run

- Total statistics doubled with respect to June 2017
 - All the available data have been fully reprocessed
 - Adopted the usual blinding procedure
 - Data analysis almost complete
 - Expected release of results: Oct. 23, 2017
- In the meantime

CUPID CUORE Upgrade with Particle IDentification

 Based on the CUORE design inherits CUORE cryogenics and experience 	Plates:
 Tonne-scale detector with a's rejection ¹³⁰TeO₂ : phonons + Cherenkov detector 	300 K
 Aims for zero-background measurement BI <0.02 events / (ton-year) 5 keV FWHM resolution 	600 mK 50 mK 10 mK
 Half-life sensitivity (2-5)×10²⁷ years in 10 years (3σ) m_{BB} sensitivity 6-20 meV (3σ) 	Thermistor Light emitting Reflecting

Oliviero Cremonesi - October 18, 2017 - CNNP 2017 - Catania, Italy

White papers: arXiv:1504.03599, arXiv:1504.03612 Artusa, D.R. et al. Eur.Phys.J. C74 (2014) 10, 3096, arXiv:1404.4469

See also M.Pavan talk

CUORE-0 Background Model

- Sources contributing to background reconstruction are fitted to CUORE-0 data
- Radioactive assay of construction materials: fit prior
- Dominated by surface contaminations of the detector materials (mainly a's)

Oliviero Cremonesi - October 18, 2017 - CNNP 2017 - Catania, Italy

Eur. Phys. J. C (2017) 77: 13

CUPID concept: heat + light

- Pure bolometers can't separate α 's from β/γ 's
- Solution: hybrid detector
 - → Simultaneous detection of heat and light (scintillation/Cherenkov)

Heat signal

TeO₂ bolometers with Cherenkov readout

Advantages:

- well known crystal technology
- radio-purity ($<10^{-14}$ g/g)
- cheap isotopic enrichment
- CUORE experinece
- 0.74 ton natural crystals

Issues:

- MeV electrons produce few photons
- light collection
- complex light detectors
- energy thresholds as low as few tens eV
- Need to develop extremely performing (low temperature) light detectors
 - Neganov-Luke effect
 - Kinetic Inductance Detectors (KID's)
 - Transition Edge Sensors
- Dedicated R&D's
 - Very promising results on TeO₂ detectors
 - Next step: large scale arrays (demonstrators)

Neganov-Luke effect

Signal (phonon) amplification through the acceleration of the charge carriers by an applied electric field

- Si-absorber
- small (1x1x1 cm³) TeO₂ crystal

Neganov-Luke effect

- Ge-absorber
- 92% enriched (36×38×52 mm³) ¹³⁰TeO₂ crystal

Oliviero Cremonesi - October 18, 2017 - CNNP 2017 - Catania, Italy

- Ge-absorber

- See also:

• J. W. Beeman, et al., Astropart. Phys. 35 (2012) 558 • L. Pattavina, et al., J. Low Temp. Phys. 184 (2016) 286 • K. Scha\"ffner, et al., Astropart. Phys. 69 (2012) 30 • M. Willers, et al., JINST 10 (2015) P03003 • N.Casali, et al., Eur. Phys. J. C 75 (12) (2015) 1

The idea: Cooper pairs (cp) in a superconductor act as an inductance (L). Photons or phonons can

KID's

- an inductance (L). Photons or phonons can break cp and change L.
- High quality factor (Q) resonating circuit biased with a microwave (GHz): signal from amplitude and phase shift.

Incident photons convert into athermal phonons

Available results already close to target values

Oliviero Cremonesi - October 18, 2017 - CNNP 2017 - Catania, Italy

4 mm

2 mm

SNO+

- SNO heavy water replaced by 780 tonnes of liquid scintillator
 - Deck with Upgraded DAQ and calibration system
 - Urylon liner: Rn seal
 - Replaced Hold Up Ropes w/ Hold Down Rope Net
 - New Optical Monitoring System
 - Acrylic Vessel: ø 12 m 5 cm thick
 - 780 t Liquid scintillator + 3.9 t Tellurium
 - Water shielding: 1700 t inner 5300 t outer
 - ~9400 PMTs, 50% coverage
 - 2070 m rock overburden @ SNOLAB
 - Stable loading of aqueous Te(OH)₆ in SNO+ scintillator with good optical properties achieved by BNL
- Detector Commissioned: December 2016 April 2017

SI

SNO+ @ SNOLAB

SNO+: LAB Plant

- LAB Advantages:
 - Long attenuation length
 - No inherent optical absorption lines
 - High light yield
 - α - β separation decay time
- Multi-stage distillation
- N₂-Steam stripping: Removes Rn, Kr, Ar and O_2
- Water extraction: Removes Ra, K and Bi
- Metal scavengers: Removes Bi, Pb, Ra, Ac, Th (x 800 in single pass)
- Scintillator recirculation (150 LPM) possible during operation

Commissioning Ongoing

Filling with Scintillator later 2017

SNO+: Te storage, purification and loading

• Concept:

- 780 tonne detector and high ¹³⁰Te isotopic abundance gives large isotope mass
- 0.3 0.5% Te (by weight) in SNO+
 - Phase I is 2.34 3.9 tonnes of Te or 800 1333 kg of ¹³⁰Te
- Percent level loading is feasible
 - 3% Te in SNO+ Phase II would give 8 tonnes of ¹³⁰Te

Purification & Loading

- Telluric Acid (TeA) Underground "cooling" since 2015.
- Purified by multi-pass recrystallization based on solubility of TeA in water based on pH.
- Full scale plant now in construction underground
- Cocktail: LAB + PPO + Te-ButaneDiol
- Initial phase: 0.5% Te (~1300 kg ¹³⁰Te)

SNO+: phase I

- Scintillator runs
- Measure most background
- Verify detector response models
- Verify purification techniques
- LAB + PPO (2g/L) + bisMSB (15mg/L)
- 0.5% nat. Te (1330 kg 130Te)
- FV = 3.5 m (20%)
- > 99.99% rejection 214BiPo
- 98% rejection 212BiPo
- 390 hits/MeV

5 yr sensitivity with 0.5% loading: $T_{1/2} > 2 \times 10^{26} \text{ yr}, 90\% \text{ CL}$

- SNO+ is filled with light water and taking physics data
- Scintillator process plant is under commission
- Tellurium plant is under construction
- ββ0v Decay phase will begin in late 2018

Total background: 13 events/year in the ROI

nd taking physics data er commission ction ate 2018

SNO+: phase II

- •3% loading of Te (already demonstrated)
- Plug-in replacement of SNO+ PMTs with R5912-HQE's
- Additional wavelength-shifter/loading R&D could further improve this
- Containment bag could reduce amount of isotope, improve cleanliness. Can leverage KamLAND-Zen and BOREXINO knowledge
 - T_{1/2} > 7x10²⁶ y (90% CL)

- 3σ detection for $T_{1/2}$ > $4x10^{26}$ y

 $0\nu\beta\beta$ (200 meV) $2\nu\beta\beta$ U Chain Th Chain (α, n) External ⁸B ν ES Cosmogenic

450 pe/MeV x10 isotope

COBRA (CdZnTe Ov Double Beta Research Apparatus)

- Next generation double beta-decay experiment in R&D phase
- Room temperature semiconductor with coplanar-grid (CPG) approach

CdZnTe Advantages

- intrinsic semiconductor at room temperature
- high density and high atomic number
- commercially available (several suppliers)

Challenges

- low mobility lifetime product for holes
- poor availability of large crystals
- Search for $0\nu\beta\beta$ -decay in several isotopes with T $^{0\nu}$ > 10^{26} yr
 - Te-130, Te-128, Zn-70, Cd-114, Cd-116 (two electrons)
 - Zn-64, Cd-106, Cd-108, Te-120 (positron/EC)
- Principle: **detector = source** (high intrinsic detection efficiency)
 - demonstrator at low background facility LNGS built of 4×4×4 1cm side crystals
- Most promising isotopes:
 - ¹¹⁶Cd: Q = 2814 keV \rightarrow above highest prominent γ -line of nat. decay chains (TI-208 \rightarrow E_{γ} = 2614 keV)
 - ¹³⁰Te: $Q = 2527 \text{ keV} \rightarrow \text{high nat. abundance}$ (a = 34.08%)

Underground location: LNGS

- 1400 m rock coverage (3700 m.w.e.)
- 7 cm boron-loaded polyethylene
- EMI box against electromagnetic interference
- Radon shield and dry N₂-flushing

A working demonstrator

- On-site detector layer assembly at LNGS
- Working data acquisition
- Signal reconstruction
 - high energetic ²²⁸Th γ-source provides pair creation within CZT crystal
 - event topology can be used to optimize selection algorithms
- CZT contains nine potential double beta isotopes (several decay modes):
 - recent peak search analysis: focus on five β - β
 - g.s. to g.s. transitions
 - achieved Bayesian limits (90% C.L.) of 10¹⁹-10²¹ yr (world best for ¹¹⁴Cd)

lsotope	Q-value	COBRA'09	COBRA'13	COBRA'15
¹¹⁴ Cd	542.3 keV	2.0×10 ²⁰ yr	1.1×10 ²¹ yr	1.6×10 ²¹ yr
¹²⁸ Te	865.9 keV	1.7×10 ²⁰ yr	1.4×10 ²¹ yr	1.9×10 ²¹ yr
⁷⁰ Zn	998.5 keV	2.2×10 ¹⁷ yr	2.6×10 ¹⁸ yr	6.8×10 ¹⁸ yr
¹³⁰ Te	2527.0 keV	5.9×10 ²⁰ yr	3.9×10 ²¹ yr	6.1×10 ²¹ yr
¹¹⁶ Cd	2813.5 keV	9.4×10 ¹⁹ yr	9.2×10 ²⁰ yr	1.1×10 ²¹ yr

J. Ebert et al., Results of a search for neutrinoless double beta-decay using the COBRA demonstrator, PhysRevC.94:024603, 2016

Identified background features

homogeneously distributed ¹¹³Cd

COBRA prospects

Status

- COBRA is aiming to search for $\beta\beta0\nu$ decay with CZT detectors
- long-term operation of 4×4×4 demonstrator array at LNGS
- identification of background components via PSD
- a-suppression of more than 10³ for instrumented GR detectors

Outlook

- evaluate A/E criterion in terms of efficiency and background rejection capabilities
- ongoing analysis of ¹¹³Cd spectral shape to determine effective g_A inside nucleus
- new detector design:
 - switch to larger crystals (2.0×2.0×1.5) cm³ (36 g per detector)
 - concentrate on quad-CPG approach hybrid of CPG and pixel detector
- XDEM status
 - adapt shielding of existing demonstrator
 - inish detector characterization (50%)
 - upgrade to COBRA XDEM in early 2018

Conclusions

- CUORE is cold and running since february 2017
- With 3 weeks of physics data CUORE accumulated higher exposure than CUORE-0 Cuoricino and surpassed their limit.
- Background rates are consistent with the background model
- CUORE successful operation is a technological breakthrough which paves the road to future bolometric developments at tonne-scale Promising results with low temperature detectors of Cherenkov light make Tellurium a valid
- option for CUPID
- SNO+ is filled with light water and taking physics data
 - Scintillator process plant is under commission and Tellurium plant is under construction
 - ββ0v phase is anticipated in late 2018
- Based on room temperature CZT detectors COBRA is a very modular and easily scalable • A COBRA demonstrator with 64 detectors running at LNGS since Nov. 2013
- Interest for Tellurium is strong and making it a very promising candidate for future $\beta\beta0\nu$ experiments

