

Exploring nuclear structure by double charge exchange reactions in Japan

CNNP2017, Catania, Oct17

Ken Yako CNS, Unversity of Tokyo

Studies of Nuclei via Direct reactions

- Size/p-distribution
 - Skin/Halo
- Shell Structure
 - New magic #
 - Isospin / Deformation
- New modes
 - IVE1
 - ISEO, ISE1
- etc.

 $\Delta T; q, \omega, \dots$

• Size/*p*-distribution

- q_{r} elastic scat.
- Shell Structure
 - Mass / S_n, S_{2n}
 - Inelastic scatt.
 - Low lying states
 - Knockout /Transfer
- New modes
 - Coulex
 - Inelastic scatt.
 - CEX
 - etc.

"Hit and analyze the sound"

Single Charge Exchange reactions

Table 3.1 Fermi and Gamow-Teller strengths, B(F) and B(GT), for several (p, n)-like and (n, p)-like reactions obtained from experimental β -decay log ft values (CHO93). The relative values $B(GT)_{rel}$ are normalized to the (p, n) and (n, p) reactions. Adapted from (ANN99).

			$J^\pi_i o J^\pi_f$	$B(\mathrm{F})$	$B(\mathrm{GT})$	$B(\mathrm{GT})_{rel}$
R-	whole	(p, n)-like reactions				
Ρ		(\mathbf{p},\mathbf{n})	$1/2^+ \rightarrow 1/2^+$	1.00	3.008 ± 0.014	100%
		$(^{3}\text{He,t})$	$1/2^+ \to 1/2^+$	1.00	2.685 ± 0.009	89%
		(⁶ Li, ⁶ He)	$1^+ \rightarrow 0^+$		1.576 ± 0.005	52%
	surface	$(^{12}C, ^{12}B)$	$0^+ \rightarrow 1^+$		0.991 ± 0.011	33%
B^+		(n, p)-like reactions				
Ρ		(n, p)	$1/2^+ \rightarrow 1/2^+$	1.00	3.008 ± 0.014	100%
		$(d,^2He)^a$	$1^+ ightarrow 0^+$		≈ 3	$\sim \! 100\%$
		$(t, {}^{3}He)$	$1/2^+ \rightarrow 1/2^+$	1.00	2.685 ± 0.009	89%
		(⁶ He, ⁶ Li)	$0^+ \rightarrow 1^+$		4.727 ± 0.014	157%
		$(^{7}\text{Li}, ^{7}\text{Be}_{\sigma,s})$	$3/2^- \rightarrow 3/2^-$	1.00	1.300 ± 0.004	43%
		$(^{7}\text{Li}, ^{7}\text{Be}\gamma)$	$3/2^- \rightarrow 1/2^-$		1.122 ± 0.007	37%
		$(^{12}C, ^{12}N)$	$0^+ \rightarrow 1^+$		0.877 ± 0.006	29%
		(¹³ C, ¹³ N)	$1/2^- \rightarrow 1/2^-$	1.00	0.194 ± 0.004	6%

M. Harakeh & A. van der Woude, "Giant Resonances"

"Proportionality" in Single Charge-X reaction

Double Charge Exchange reactions

Factorized form of cross section:

Cappuzzello et al. EPJ A(2015)51: 145

Reaction	Туре	B _{P,DGT}	Q-valueP	Comments
(11B,11Li)	β-β-	?	-32 MeV	lightest, no exctd bound state in ¹¹ Li
(¹⁸ O, ¹⁸ Ne)	β+β+	3	-6 MeV	large B _{P,GT} , between mirror nuclei
(¹² C, ¹² Be(0 ⁺ ₂))	β-β-	0.2	-27 MeV	good id of final state
(⁸ He, ⁸ Be)	β-β-	(large)	+28 MeV	exothermic, RI beam

- 1. Search for Double GT Resonance by the ${}^{48}Ca({}^{12}C, {}^{12}Be(0{}^+_2)){}^{48}Ti$ reaction at 100 A MeV at RCNP Takaki, Uesaka et al.
- 2. Search for tetra-neutron bound state in the ⁴He(⁸He,⁸Be)4n reaction 190 A MeV at RIBF - SHARAQ Kisamori, Shimoura et al. PRL 116(2016)052501

Reaction	Туре	B _{P,DGT}	Q-valueP	Comments
(11B,11Li)	β-β-	?	-32 MeV	lightest, no exctd bound state in ¹¹ Li
(¹⁸ O, ¹⁸ Ne)	$\beta + \beta +$	3	-6 MeV	large B _{P,GT} , between mirror nuclei
(¹² C, ¹² Be(0 ⁺ ₂))	β-β-	0.2	-27 MeV	good id of final state
(⁸ He, ⁸ Be)	β-β-	(large)	+28 MeV	exothermic, RI beam

NS

1. Double Gamow-Teller Resonance

Motivation

Experimental information on nuclear double GT / double spin-dipole (SD) responses is limited.

Lifetimes of 2vßß nuclei

→ limited to low lying states (mostly ground sates) for ~10 species.

Single GT / SD responses

→ rich data, constrains structure models.
 Relationship to double GT/SD responses is not direct.

 $Exp \rightarrow B(GT), B(SD)$

not the matrix element with sign.

Existing data: lifetimes of 2vββ decay nuclei

Isotope	$T_{1/2}^{2\nu}(y)$	References	$M_{ m GT}^{2\nu}$ (Me	V ⁻¹)
⁴⁸ Ca	$(4.2 \pm 1.2) \times 10^{19}$	(55, 56)	0.05	
⁷⁶ Ge	$(1.3 \pm 0.1) \times 10^{21}$	(57-59)	0.15	
⁸² Se	$(9.2 \pm 1.0) \times 10^{19}$	(60, 61)	0.10	
$^{96}Zr^{\dagger}$	$(1.4^{+3.5}_{-0.5}) \times 10^{19}$	(62-64)	0.12	< 10-3 - C
¹⁰⁰ Mo	$(8.0 \pm 0.6) \times 10^{18}$	(65-70), (71) [†]	0.22	< 10 ⁻³ 0I
116Cd	$(3.2 \pm 0.3) \times 10^{19}$	(72-74)	0.12	sum rule values
128 Teb	$(7.2 \pm 0.3) \times 10^{24}$	(75, 76)	0.025	
¹³⁰ Te ^c	$(2.7 \pm 0.1) \times 10^{21}$	(75)	0.017	gmmas.ar.zur.av.av.av.av.av.av.av.av.av.av.av.av.av.
¹³⁶ Xe	>8.1 × 10 ²⁰ (90% CL)	(77)	<0.03	>99.9%:
¹⁵⁰ Nd [†]	$7.0^{+11.8}_{-0.3} \times 10^{18}$	(68, 78)	0.07	unobcorved
238 Ud	$(2.0 \pm 0.6) \times 10^{21}$	(79)	0.05	unonserven

TABLE 1 Summary of experimentally measured $\beta\beta(2\nu)$ half-lives and matrix elements^a

Elliot & Vogel (2002)

Our understanding of **Double GT response**

Double GT Giant Resonance GT resonance built on a GT resonance ... exhausts a major part of the (GT)² strength $\Leftrightarrow 2\nu\beta\beta$ decay Auerbach, Zamick, Zheng, Ann. Phys. **192**, 77 (1989). double Gamow-Teller resonance $B(GT^2) \sim 100$ Gamow-Teller resonance AZ+1

lecay

 A_{7+2}

B(**GT**²) ~ 0.1

AZ.

Issues on DGT responses

 Extending DGT study to to wider range of excitation energy (with no Q-value restriction) on any nuclei (not limited to $\beta\beta$ nuclei) Nature of DGTGR ...simple superposition of single GTGRs? $E_{\text{DGTGR}} = 2E_{\text{GTGR}}$?? $\Gamma_{\text{DGTGR}} = \sqrt{2} \Gamma_{\text{GTGR}} ??$...Quenching of the GT² strength ? exp. sum rule value?

 \sim Previous attempt of DChX: (π^+ , π^-)

χ

(π^+,π^-) @ 292 MeV LAMPF S. Mordechai et al., PRL 60, 408 (1988). π^- ... clean id of final state Double IAS & Double GDR \bigcirc

Double GT

Previous attempts: (18O, 18Ne)

(π⁺,π⁻) @ 292 MeV LAMPF no spin-flip resonances

S. Mordechai et al., PRL 60, 408 (1988).

(18O,18Ne) @76MeV/A MSU, GANIL J. Blomgren et al., PLB 362, 34 (1995). (18O,18Ne): $\beta+\beta+type$ 24Mg -> 24Ne: no strong DGT transition probe is ineffective to study DGTR

Previous attempts: (11B, 11Li)

(π⁺,π⁻) @ 292 MeV LAMPF no spin-flip resonances

S. Mordechai et al., PRL 60, 408 (1988).

Experiment @ Grand Raiden (RCNP) Takaki et al.

Excitation energy spectra in ⁴⁸Ti

Comparison with (π⁺,π⁻**) spectrum**

analysis is ongoing...

Double Gamow-Teller Resonances

will open research opportunity on GT \times GT excitations can serve as a test case for nuclear models of ov $\beta\beta$

Experimental access has been quite limited.

New idea: (¹²C, ¹²Be(o⁺₂)) reaction

Strong transition in the projectile (¹²C→¹²Be(o₂⁺)) Event identification capability via delayed-γ tagging

The first physics case : ⁴⁸Ca

Structures at 17.4 MeV, 30 MeV and higher excitation energies.

Candidate of DGTR

-Applications to other $\beta\beta$ -decay nuclei

Future experiment @RI Beam Factory, RIKEN

2. Tetra-neutron

~ DCX with RI beam ...exothermic reaction ~

Tetra-neutron system produced by exothermic double-charge exchange reaction

S.C. Pieper et al., PRL 90, 252501 (2003)

Exp

He

⁶He ⁶Li

Level diagrams

RI Beam Factory at RIKEN

SHARAQ spectrometer

T. Uesaka et al.,

NIMB B **266** (2008) 4218. PTEP 2012, 03C007 (2012)

Maximum rigidity	6.8 Tm
Momentum resolution	dp/p = 1/14700
Angular resolution	~ 1 mrad
Momentum acceptance	±1%
Angular acceptance	~ 5 msr

ŃŠ

A possible resonance at 0.83 \pm 0.65(stat.) \pm 1.25(sys.) MeV with width < 2.6 MeV. Integ. cross section θ_{cm} < 5.4deg: 3.8 +2.9 -1.8 nb

Strong attractive 3-body force in T=3/2 system?: Lazauskas PTEP 2017, 073D03

Summary of part2

- ⁴He(⁸He,⁸Be)4n was measured at 190 A MeV at RIBF-SHARAQ.
- Missing mass spectrum with few background
- Although statistics is low (27 evs), spectrum looks two components (continuum + peak).
- Continuum is consistent with direct breakup process from (Os)²(Op)² wave packet.
- Four events just above 4n threshold is statistically beyond prediction of continuum + background (4.9 σ significance)

 \rightarrow candidate of 4n resonance

at 0.83 \pm 0.65(stat.) \pm 1.25(sys.) MeV; \varGamma < 2.6 $\,$ MeV

• New experiment was done in June 2016.

NS

Final words

- Double charge exchange reactions give us new opportunities to study nuclear structure.
- Two examples from Japan were introduced: - ⁴⁸Ca(¹²C,¹²Be(0⁺₂)) -> seeing *something* ... candidate of DGTGR?

– ⁴He(⁸He,⁸Be)4n -> candidate of 4n resonance

 Reaction mechanism is considerably more complicated than single chargeX

 > help from theorists is important.
 Data for establishing proportionality?