Status and perspectives of the JUNO experiment

Gioacchino Ranucci INFN – Milano

On behalf of the JUNO Collaboration

Catania Conference on Neutrino and Nuclear Physics October 17, 2017

- Determination of the neutrino mass hierarchy with a large mass liquid scintillation detector located at medium distance – few tens of km – from a set of high power nuclear reactors
- Precise measurements of oscillation parameters
- Additional astroparticle program
- Requirements, technical features and status of the experiment

JUNO physics summary

The tension between the solar and KamLAND ∆m² has further boosted the importance of the precision Δm_{21}^2 measurement

CNNP 2017 - October 17, 2017

Gioacchino Ranucci - INFN Sez. di Milano

 $(\Delta m^2)_{atm}$

 (Δm^2)

2

A large LS spherical detector

- − LS large volume: → for statistics
- − High Light(PE) → for energy resolution 1200 pe/MeV

Steel Truss Holding PMTs ~20000 x 20" 18000 Inner 2000 veto ~25000 x 3"

Acrylic Sphere filled with 20 kt LS

JUNO has been approved in China in Feb. 2013

Prospective and approved funding from several other countries:

- Belgium
- Czechia
- Finland
- France
- Germany
- Italy
- Russia
- Taiwan
- Chile
- Brasil
- Thailandia
- Pakistan

Updated list of JUNO members

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Tuebingen
Brazil	PUC	China	Tsinghua U.	Italy	INFN Catania
Brazil	UEL	China	UCAS	Italy	INFN di Frascati
Chile	PCUC	China	USTC	Italy	INFN-Ferrara
Chile	UTFSM	China	U. of South China	Italy	INFN-Milano
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano Bicocca
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Padova
China	CAGS	China 🧠	Xi'an JT U.	Italy	INFN-Perugia
China	ChongQing University	China 🦾	Xiamen University	Italy States	INFN-Roma 3
China	CIAE	China	NUDT	Latvia	IECS
China	DGUT	Czech Rep.	Charles U.	Pakistan	PINSTECH (PAEC)
China	ECUST	Finland	University of Oulu	Russia	INR Moscow
China	Guangxi U.	France	APC Paris	Russia	JINR
China	Harbin Institute of Technology	France	CENBG	Russia	MSU
China	IHEP	France	CPPM Marseille	Slovakia	FMPICU
China	Jilin U.	France	IPHC Strasbourg	Taiwan	National Chiao-Tung U.
China	Jinan U.	France	Subatech Nantes	Taiwan	National Taiwan U.
China	Nanjing U.	Germany	Forschungszentrum Julich ZEA2	Taiwan	National United U.
China	Nankai U.	Germany	RWTH Aachen U.	Thailand	NARIT
China	NCEPU	Germany	TUM	Thailand	PPRLCU
China	Pekin U.	Germany	U. Hamburg	Thailand	SUT
China	Shandong U.	Germany	IKP FZJ	USA	UMD1
China	Shanghai JT U.			USA	UMD2

Observers:

= 71 member Institutions

- 1. Department of Physics, Jyvaskyla University, (Finland)
- 2. Department of Physics, University of Malaya (Kuala Lumpur)

CNNP 2017 - October 17, 2017

Location of JUNO

Approach to infer the Mass Hierarchy

The determination of the mass hierarchy relies on the identification on the positron spectrum of the "imprinting" of the anti- v_e survival probability

The time coincidence between the positron and the γ from the capture rejects the uncorrelated background

The "observable" for the mass hierarchy determination is the positron spectrum It results that $E_{vis}(e^+)=E(v)-0.8$ MeV

Method from Petcov and Piai, Physics Letters B 553, 94-106 (2002)

MH and Survival probability

Neutrino & Positron Spectra

Spectrum in term of neutrino energy – no energy resolution
Conditions for the example
Three neutrino framework (no effective Δmee Δmμμ)
Baseline: 50 km
Fiducial Volume: 5 kt
Thermal Power: 20 GW
Exposure Time: 5 years
more pessimistic than the true JUNO values

Positron visible energy

 \Box E(vis) ~ E(v) – 0.8 MeV

□Assuming 3% / sqrt(E) resolution

□Assuming negligible constant term in resolution

Summary of MH Sensitivity

PRD 88, 013008 (2013)	Relative Meas.	$\Delta m^2_{\mu\mu}$ from LBL Expts
Statistics only	4σ	5σ
Realistic case	3σ	4σ

Baseline: 53 km Fiducial Volume: 20 kt Thermal Power: 36 GW Exposure Time: 6 years Proton content 12% en. res. 3%

Precision Measurements

CNNP 2017 - October 17, 2017

Vast physics reach beyond Reactor Neutrinos

- Supernova burst neutrinos
- Diffuse supernova neutrinos
- Solar neutrinos
- Atmospheric neutrinos
- Geo-neutrinos
- Sterile neutrinos
- Nucleon decay
- Indirect dark matter search

Other exotic searches

CNNP 2017 - October 17, 2017 Gioacchino Ranucci - INFN Sez. di Milano

Neutrino Physics with JUNO, J. Phys. G 43, 030401 (2016)

- Ground breaking in Jan. 2015 water during excavation
 - ⇒ 1266 m slope tunnel completed
 - ⇒ 564 m vertical shaft completed
 - ⇒ Overburden between 650-670 m
 - ⇒ New hall location and tunnel arrangement
 - To avoid water underneath
 - To avoid falls and cracks

To explore water on top of the hall

CNNP 2017 - October 17, 2017

Progress and schedule

Impact of water issue? original schedule: Civil preparation: 2013-2014 Civil construction: 2014-2017 Detector component production: 2016-2018 Detector assembly & installation: 2018-2020 Filling & data taking: 2020

Excavation

CNNP 2017 - October 17, 2017

Dimensions and layout of the detector

Central detector distinctive feature: resolution

Very high photocathode density (~78% coverage like SNO) Targeted the largest light level ever detected in LLSD ~1200 pe/MeV (Daya Bay 160 pe/MeV - Borexino 500 pe/MeV - KamLAND 250 pe/MeV)

Considerations on resolution

Central Detector design optimised for Mass Hierarchy: "Precise & Large"

Detector Resolution:
$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + b^2 + \left(\frac{c}{E}\right)^2}$$

JUNO's Double Calorimetry System...

Additional readout system (36000 3" PMTs): 2 independent readouts embedded within same detector (systematics control)

- (high precision calorimetry for $\pm \Delta m^2$) response aid to 20" PMTs for non-stochastic systematics ($\leq 3\%$ @ IMeV)
- (θ₁₂⊕δm²) <u>internal redundancy</u> oscillation parameter measurement: internal cross-check (<1% precision)
- (⁹Li background) enhanced µ-tracking for cosmogenic ion production tagging/vetoing on C (¹²B/⁹Li/⁸He)
- (supernova readout complementarity) double-readout to ensure unbiassed both energy and rate measurement
- (readout⊕trigger complementarity) complementary time resolution, dynamic range & trigger (position) information→ powerful event reconstruction

3" PMT

(several options) •MELZ (RU) •HZC (CH) •ETL (UK) •Hamamatsu(JP)

complementary (θ | 2, δ m²) measurement

CNNP 2017 - October 17, 2017

Photomultiplier production

20-inch Hamamatus PMT	20-inch IHEP MCP-PMT	Lange and	and the second se	NA 6
Dynode	Horizontal MCPs			
Ellipsoidal Glass	Ellipsoidal Glass		688886	
HQE 1#, 2#, 3#	76#, 77#, 78#, 79#	unit	MCP-PMT (IHEP)	R12860 (Hamamatsu)
Finished 20" PMT	Electron Multiplier	-	МСР	Dynode
bidding at end of 2015:	Photocathode mode	-	reflection+ transmission	transmission
15000 MCP-PMT	Quantum Efficiency (400nm)	%	26 (T), 30 (T+R)	30(T)
(NNVI)	Relativity Detection Efficiency	%	~ 110% ~ 100%	
5000 Dynode-Pivi i (Hamamatsu)	P/V of SPE		> 3	> 3
Rid for 3" PMT done	TTS on the top point	ns	~12	~3
in May this year	Rise time/ Fall time	ns	R~2 , F~10	R~7 , F~17
Already delivered	Anode Dark Count	Hz	~30K	~30K
1000 Hamamatsu	After Pulse Time distribution	us	4.5	4, 17
2000 NNVT	After Pulse Rate	%	3	10
Testing in progress	Glass	-	Low-Potassium Glass	HARIO-32 18

Acrylic sphere

Forming panel size: 3m x 8m x 120mm

Acrylic divided into 200+ panels

Prototypes of spherical panels done

The problems of shrinkage and shape variation were resolved. Background evaluated to low acceptable level

Bid among three companies producer selected and production started

JUNO Electronics Overview

Muon Veto Design

Muon Veto: critical to reduce backgrounds

Cosmogenic isotopes rejection:

reconstruction of muon tracks + O(1s) veto surrounding the track

Neutron Rejection:

passive shielding (water) + time coincidence w/ muon + multiple proton recoils

Gamma rejection: passive shielding (water)

Magnetic Field Compensating Coil

Water Cherenkov

20kt ultra-pure water

Water acting as moderator &

pool instrumented to detect Cherenkov light

2000 20" PMTs located as in the picture

Optimized detection efficiency of Cherenkov light

Muon Veto Design

Top Tracker

Using OPERA plastic scintillator (49m²/module) Three layers to ensure good muon tracking Partial coverage due to available modules

- Reject ~50% muons
- Provide tagged muon sample to study reconstruction and background contamination with central detector

Tracker removal at Gran Sasso Transfer to China completed

TT travel

The traveling by boat takes 45 days (40 foreseen) and customs 21 days delivery 1 day

TT travel July 15 Warehouse

Storage/Testing Places: Pan-Asia in Zhongshan

Toward the construction of the core infrastructure beyond the acrylic sphere

- Detector structure design completed with a number of reviews
 - Earthquake fully understood
 - Interface to civil defined
 - Other technical details
- Assembly & Installation process defined after a lot of discussions with manufacturing & installation companies
- Identified 4 different construction packages
 - Stainless steel structure manufacturing and assembly
 - Supporting platform & lifting structure for Acrylic tank construction
 - VETO structure including the earth magnetic field compensation coil
 - PMT module manufacturing and installation
- Contracts will be signed by the end of the year for each of them

Prototyping at Daya Bay for the liquid scintillator purification plants

- Purify 20 ton LAB to test the overall design of purification system at Daya Bay. Replaced the target LS in one detector
- Quantify the effectivities of subsystems Optical : >20m A.L @430nm?
 - Radio-purity: 10^{-15} g/g (U, Th)?
- Determine the choice of sub-systems
 - Al₂O₃ column, distillation, gas striping, water extraction

Distillation and steam stripping system

Installed at Daya Bay

Steam stripping system

Al₂O₃ column pilot plant installed in Dava Bav LS hall

Overall LAB5 view at Daya Bay

Achieved better than 25 m of att. length – Design of the full scale plants in progress

CNNP 2017 - October 17, 2017

Many other ongoing tasks

- PMT potting and anti-implosion shielding
- Calibration:
 - guided source insertion, LED, laser, CCD, ...
- Electronics, cable, box,... for the 3" PMT
- LS filling
- Slow control
 - PMT, water, environmental monitoring & control
- DAQ: crates, server, router, software, ...
- Offline farm, data storage/data center, software, ...
- Radioactivity measurements and material screening
- Development of MC and analysis tools

•

Key element of the realization strategy \rightarrow prepare as much as possible the components of the detector in parallel of the excavation so to progress immediately to the final assembly as soon as the site will be ready \rightarrow mitigation of schedule impact of water issue CNNP 2017 - October 17, 2017 Gioacchino Ranucci - INFN Sez. di Milano 29

Summary

- The collaboration is still increasing with several more collaborators
- A lot of progresses on many hardware fronts
- The civil excavation despite the difficulty of the underground water progresses at reasonable speed
- The design of components and subsystems is well advanced with some already in construction phase (PMTs, acrylic)
- The start up of the preparation and pre-assembly of many subsystems in parallel with the excavation will help mitigate the impact on the schedule