Direct neutrino mass measurement by the HOLMES experiment

Angelo Nucciotti on behalf of the HOLMES collaboration Università di Milano-Bicocca INFN - Sezione di Milano-Bicocca

erc

Direct neutrino mass measurements

kinematics of weak decays with ν emission

- ► low *Q* nuclear beta decays (³H, ¹⁸⁷Re...)
- only energy and momentum conservation
- ► no further assumptions

 $(A,Z) \rightarrow (A,Z+1) + e^{-} + \overline{\nu}_{e}$

 $\boldsymbol{N}(\boldsymbol{E}_{\beta}) \propto \boldsymbol{p}_{\beta} \boldsymbol{E}_{\beta}(\boldsymbol{Q} - \boldsymbol{E}_{\beta}) \sqrt{((\boldsymbol{Q} - \boldsymbol{E}_{\beta}) - \boldsymbol{m}_{\nu}^{2})} \boldsymbol{F}(\boldsymbol{z}, \boldsymbol{E}_{\beta}) \boldsymbol{S}(\boldsymbol{E}_{\beta})$

- 2 approaches with different systematics:
 - **spectrometry** with the β source outside
 - **calorimetry** with the β source inside

KATRIN

large MAC-E filter spectrometer with ³H \rightarrow results from 2018

MARE/ECHO/HOLMES

array of low temperature microcalorimeters with ¹⁸⁷Re or ¹⁶³Ho

≈5 mm

A. Nucciotti, Adv. High Energy Physics, 2016, 915304

Direct v mass measurements: experimental

Spectrometers: source \neq **detector**

β differential or integral spectrometer

 β s from the ³H spectrum are magnetically and/or electrostatically selected in *E* and transported to the counter

Calorimeters: source ⊆ detector

- high statistics
- high energy resolution
- source effects
- decays to excited states

no backscattering

- no energy losses in source
- no decay final state effects
- no solid state excitation
- Iimited statistics
- pile-up background

Rhenium calorimetric experiments

$^{187}_{75}$ Re $\rightarrow ^{187}_{76}$ Os + e⁻ + \overline{v}_e

- $5/2^+ \rightarrow 1/2^-$ unique first forbidden
- end point Q = 2.47 keV
- half-life time $\tau_{1/2} = 43.2 \text{ Gy}$
- natural abundance a.i. = 63%
 - ► 1 mg of Rhenium → ≈1.0 decay/s

*m*_{..} < ≈15 eV

MARE

→ sub-eV *m*, sensitivity

metallic rhenium single crystals

- ▶ superconductor with $T_c = 1.6K$
- NTD thermistors
- MANU experiment (Genova)
- dielectric rhenium compound (AgReO₄) crystals
 - Silicon implanted thermistors
 - MIBETA experiment (Milano)

Electron capture calorimetric experiments / 1

¹⁶³Ho + e⁻ \rightarrow ¹⁶³Dy* + ν_{e}

electron capture from shell ≥ M1

A. De Rújula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- Q = 2.83 keV (measured with Penning trap)
 - end-point rate and v mass sensitivity depend on $Q E_{M1}$
- $\tau_{\frac{1}{2}} \approx 4570$ years $\rightarrow 2 \times 10^{11}$ ¹⁶³Ho nuclei $\leftrightarrow 1$ Bq

Electron capture calorimetric experiments / 2

- calorimetric measurement ↔ detector speed is critical
- accidental coincidences → complex pile-up spectrum
- **A**_{EC} EC activity per detector $> N_{pp}(E) = f_{pp}N_{EC}(E) \otimes N_{EC}(E) \text{ with } f_{pp} \approx A_{EC}\tau_{R}$ **\tau_{\mathbf{b}}** time resolution (\approx rise time) 10 = 2800 eV 10⁻² 10-4 10⁻³ 10⁻⁴ counts [a.u.] N_{EC}(E) 10⁻⁵ 2500 3000 10⁻⁶ 10⁻⁷ 10⁻⁸⊧ N_{pp}(E) 10⁻⁹ 10⁻¹⁰ 1000 4000 2000 3000 energy [eV]

N_{EC}(E) without higher order processes (shake up / shake off) A. Nucciotti, CNNP2017, 15-21 Oct 2017, Monastero dei Benedettini, U. Catania, Catania, Italy Montecarlo simulations: ¹⁶³Ho sensitivity potential

A. Nucciotti, Eur. Phys. J. C (2014) 74:3161

A. Nucciotti, CNNP2017, 15-21 Oct 2017, Monastero dei Benedettini, U. Catania, Catania, Italy

8

goal

- direct neutrino mass measurement: *m*, statistical sensitivity around 1 eV
- prove technique potential and scalability:
 - assess EC spectral shape
 - assess systematic errors

baseline

- TES microcalorimeters
 with implanted ¹⁶³Ho
 - ► 6.5×10¹³ nuclei per pixel
 - $A_{EC} = 300 \text{ c/s/det}$
 - ► $\Delta E \approx 1 \text{ eV}$ and $\tau_R \approx 1 \mu s$
- 1000 channel array
 - 6.5×10^{16 163}Ho nuclei
 → ≈18 µg
 - 3×10¹³ events in 3 years

$A_{\rm FC} = 10 \, \rm c/s/det$ 30 c/s/det 100 c/s/det 300 c/s/det 3.5 3.5 TTTTT statistical sensitivity 90% CL [eV] 3.0 3.0 S HOLMES G G M_v statistical sensitivity 90% CL COS 2.5 2.0 **τ**₀≈10μs <mark>τ</mark>,≈5μs E² 1.5 τ_s≈3μs **τ**.≈1μs 1.04 1.0 10 10 10 $\Delta E_{\text{FWHM}} [\text{eV}]$ ΔE_{FWHM} [eV] ΔE_{FWHM} [eV] ΔE_{FWHM} [eV]

exposure = $1000 \det \times 3 y$

5 years project started on February 1st 2014

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112

A. Nucciotti, CNNP2017, 15-21 Oct 2017, Monastero dei Benedettini, U. Catania, Catania, Italy

erc

10

Univ. Milano-Bicocca INFN Milano-Bicocca

G.Ceruti M.Faverzani E.Ferri A.Giachero A.Nucciotti A.Orlando G.Pessina A.Puiu <u>S.Ragazzi (PI)</u>

INFN Genova

M.Biasotti V.Ceriale G.Gallucci M.De Gerone F.Gatti L.Parodi F.Siccardi

INFN Roma

M.Lusignoli

INFN LNGS

S.Nisi

B.Alpert D.Becker D.Bennett J.Fowler J.Gard J.Hays-Wehle G.Hilton J.Mates C.Reintsema D.Schmidt D.Swetz J.Ullom L.Vale

NIST

PSI

R.Dressler S.Heinitz D.Schumann

CENTRA-IST

M.Ribeiro-Gomes

ILL U.Koester

http://artico.mib.infn.it/holmes

Statistical sensitivity and single pixel activity

high activity \rightarrow robustness against (flat) background $A_{\rm FC}$ =300 Bq \rightarrow *bkg*< \approx 0.1 counts/eV/day/det

- \bullet environmental γ radiation
- γ , X and β from close surroundings
- cosmic rays

- GEANT4 simulation for CR at sea level (only **muons**)
- ▷ Au pixel 200×200×2 µm³ → bkg ≈ 5×10⁻⁵ c/eV/day/det (0 4 keV)

MIBETA experiment: 300×300×150 μm³ AgReO₄ crystals at sea level bkg(2-5keV)≈1.5×10⁻⁴ c/eV/day/det

- internal radionuclides
 - ▷ ^{166m}Ho (β^- , Q = 1.8 MeV, $\tau_{\frac{1}{12}} = 1200$ y, produced along with ¹⁶³Ho)
 - Au pixel 200×200×2 μm³

GEANT4 simulation → **bkg** ≈ 0.5 c/eV/day/det/Bq(^{166m}Ho)

▷ $A(^{163}Ho) = 300Bq/det (\leftrightarrow \approx 6.5 \times 10^{13} \text{ nuclei/det})$

 $bkg(^{166m}Ho) < 0.1 c/eV/day/det \rightarrow A(^{163}Ho)/A(^{166m}Ho) > 1500$

 $\rightarrow N(^{163}\text{Ho})/N(^{166m}\text{Ho}) > 6000$

¹⁶³Ho production by neutron activation

HOLMES needs \approx 200 MBq of ¹⁶³Ho

with reasonable assumptions on the (unknown) global embedding process efficiency...

- ¹⁶²Er irradiation at ILL nuclear reactor (Grenoble, France)
- ► thermal neutron flux at ILL: 1.3×10¹⁵ n/cm²/s
- ► **burn up** ¹⁶³Ho(n, γ)¹⁶⁴Ho: $\sigma_{burn-up} \approx 200b$ (preliminary result from **PSI** analysis)
- ▶ ¹⁶⁵Ho(n, γ) (mostly from ¹⁶⁴Er(n, γ)) → ^{166m}Ho (β , $\tau_{\frac{1}{2}}$ =1200y) → A(¹⁶³Ho)/A(^{166m}Ho)=100~1000
- chemical pre-purification and post-separation at PSI (Villigen, CH)

HOLMES source production

- enriched Er₂O₃ samples irradiated at ILL and pre-/post-processed at PSI
 - ► 25 mg irradiated for 55 days (2014) \rightarrow A(¹⁶³Ho) \approx 5 MBq (A(^{166m}Ho) \approx 10kBq)
 - ► 150 mg irradiated for 50 days (2015) \rightarrow **A(**¹⁶³**Ho)** \approx **38 MBq (A**(^{166m}**Ho**) \approx **37**kBq)
- Ho radiochemical separation with ion-exchange resins in hot-cell at PSI
 - ► efficiency ≥79% (preliminary)
- **540 mg of 25% enriched Er₂O₃** irradiated 50 days at ILL early in 2017
 - ► $A(^{163}Ho)_{theo} \approx 130 \text{ MBq}$ (enough for R&D and 500 pixels) ($A(^{166m}Ho) \approx 180 \text{kBq}$)

HOLMES ion implantation system testing

sputter target -

A. Nucciotti, CNNP2017, 15-21 Oct 2017, Monastero dei Benedettini, U. Catania, Catania, Italy

Ion source sputter target production / 1

- metallic holmium sputter target for implanter ion source
- enriched $Er_2O_3 \rightarrow Ho_2O_3$
- thermoreduction/distillation in furnace
 - ► $Ho_2O_3+2Y(met) \rightarrow 2Ho(met)+Y_2O_3$ at $T>1600^{\circ}C$
- new furnace set-up in 2016
- work in progress to
 - ► optimize the process
 - ► measure efficiency (**≈70%**, preliminary)

18

Ion source sputter target production / 2

- metallic holmium sputter target for implanter ion source
 - ► work is in progress to produce the sputter target
 - ► sintering Ho with other metals

19

- (quasi-)equilibrium thermal detector
- complete energy thermalization
 - calorimetry
- △**T**=**E**/**C** (*C* thermal capacity)
 - ► low **C**
 - \triangleright low T (i.e. T << 1K)
 - dielectrics, superconductors
- Pros and cons
 - high energy resolution
 - large choice of absorber materials
 - true calorimeters
 - only energy and time informations
 - slow time response

Superconducting transition edge sensors (TES)

- superconductor thin films operated inside the phase transition at T_c
 - ▶ metal-superconductor bilayers → tunable T_c (20÷200 mK) : Mo/Cu, Ti/Au, Ir/Au, ...
- high sensitivity $TdR/(RdT) \approx 100) \rightarrow$ high energy resolution
 - ► as thermal sensors $\rightarrow \sigma_{E}^{2} \approx \xi^{2} k_{B} T^{2} C$
- strong electron-phonon coupling → high intrinsic speed
- low impedance → SQUID read-out → multiplexing for large arrays

TES absorber design: stopping EC radiation / 1

Geant4 + LowEnergyEM MC simulation

TES absorber design: stopping EC radiation / 2

Geant4 + LowEnergyEM MC simulation

HOLMES pixel design and test

- optimize design for speed and resolution
 - ▷ specs @3keV : $\Delta E_{_{FWHM}} \approx 1eV$, $\tau_{_{rise}} \approx 10\mu$ s, $\tau_{_{decay}} \approx 100\mu$ s
- 2 μm Au thickness for full electron and photon absorption
 - GEANT4 simulation: 99.99998% / 99.927% full stopping for 2 keV electrons / photons
- **side-car** design to avoid TES proximitation and G engineering for τ_{decav} control

HOLMES array read-out: rf-SQUID

HOLMES array read-out: µwave mux

HOLMES µwave multiplexed TES read-out

chip μMUX17Α

- optimized for HOLMES
- 33 resonances in 500 MHz
 - width 2 MHz
 - ► separation 14 MHz
- squid noise < $\approx 2 \mu \Phi_0 / \sqrt{Hz}$

HOLMES DAQ: Software Defined Radio

- base-band tone generation (0-550MHz)
- up- / down-conversion (base-band \rightarrow 4-8 GHz \rightarrow base-band)
- base-band tone IQ de-modulation (0-550MHz)
- rf-SQUID phase signal de-modulation by Fourier analysis

HOLMES detector design

design mostly driven by **read-out bandwith** requirements

TES microwave multiplexing with rf-SQUID ramp modulation + Software Defined Radio (SDR)

 $\int \frac{1}{2} \int \frac{$

 $f_{samp} \ge \frac{\kappa_d}{\tau_{rin}} \approx \frac{5}{\tau_{rin}}$ detector signal sampling (signal BW)

 $f_{res} \ge 2n_{\Phi_o} f_{samp}$ flux ramp modulated signal BW (resonator BW)

 $f_n \ge g_f f_{res} = \frac{2R_d g_f n_{\Phi_0}}{\tau}$ microwave tones separation ($g_f \ge 10$)

multiplexing factor

$$n_{TES} = \frac{f_{ADC}}{f_n} \le \frac{f_{ADC} \tau_{rise}}{2 R_d g_f n_{\Phi_0}} \approx \frac{f_{ADC} \tau_{rise}}{200}$$

for fixed $f_{ADC} = 550MHz$ and $n_{TES} \approx 30 \leftrightarrow \tau_{rise} \approx 10 \mu s$ with $f_{samp} = 0.5MHz$ \rightarrow check for slew rate, τ_{R} and $\Delta E...$ A. Nucciotti, CNNP2017, 15-21 Oct 2017, Monastero dei Benedettini, U. Catania, Catania, Italy

Cryogenic set-up

refrigerator

detector holder

-20 dB attenuator

TES pixel testing with HOLMES DAQ / 1

ROACH-2 based Software Defined Radio

- ADC (550 MS/s 12bit) / DAC (1 GS/s 16bit)
- discrete components IF circuitry (up- / down- conversion)
- $n_{\phi 0} = 2$, $f_{samp} = 500$ kS/s

- 16 ch firmware from NIST (uses only half of available ADC bandwidth)
- 4 HOLMES prototypes acquired \leftrightarrow limited by available tone power
- goals: check algorithms, noise, ΔE , $\tau_{\rm R}$ and slew rate

TES pixel testing with HOLMES DAQ / 2

34

simple pulse model

resolving time $\tau_{R} \approx$ pulse rise time τ_{rise}

A. Nucciotti, CNNP2017, 15-21 Oct 2017, Monastero dei Benedettini, U. Catania, Catania, Italy

2 pulses with:

- τ_{rise}= 1.5 μs
- τ_{decay} = 10 µs
- $A_2/A_1 = 0.5$

• for subsequent (Δt) events with energy E_1 and E_2 : time resolution $\mathbf{T}_{\mathbf{R}} = \mathbf{T}_{\mathbf{R}}(E_1, E_2)$

$$N_{pp}(E) = A_{EC} \int_{0}^{\infty} \tau_{R}(E, \epsilon) N_{EC}(\epsilon) N_{EC}(E-\epsilon) d\epsilon$$

- Montecarlo pile-up spectrum simulations
 - ▷ event pairs with $E_1 + E_2 \in [2.4 \text{ keV}, 2.9 \text{ keV}]$ (drawn from ¹⁶³Ho spectrum), $\Delta t \in [0, 10 \mu s]$
 - \triangleright pulse shape and noise from NIST TES model, sampled with f_{samp} , record length, and *n* bit
- process with pile-up detection algorithms:
 - Wiener Filter WF or Singular Value Decomposition SVD

HOLMES array design and fabrication

HOLMES 4×16 sub-array for low parasitic L and high implant efficiency

A. Nucciotti, CNNP2017, 15-21 Oct 2017, Monastero dei Benedettini, U. Catania, Catania, Italy

36

Target chamber for absorber fabrication / 1

- ¹⁶³Ho ion beam sputters off Au from absorber
 - ▶ ¹⁶³Ho concentration in absorber saturates
 - compensate by Au co-evaporation
- final 1 μ m Au layer in situ deposition
 - ► to prevent Ho oxidization

Target chamber for absorber fabrication / 2

- system just delivered
- tests are in progress

HOLMES schedule and conclusions

Project Year	2015	2016		2017		2018		2019
Task	S2	S1	S2	S1	S2	S1	S2	S1
Isotope production								
TES pixel design and optimization								
Ion implanter set-up and optimization								
Implanted TES array optimization								
ROACH2 DAQ (HW, FW, SW)								
implanted array measurements								
Final TES array fabrication								
HOLMES measurement								

HOLMES project status

TES array design and DAQ ready
 ion implanter optimization is in progress
 first ¹⁶³Ho implantation coming shortly
 ¹⁶³Ho spectrum measurements will begin in 2018

▶ 32 pixels for 1 month \rightarrow *m* sensitivity ≈10 eV