\mathbf{0}\nu\beta\beta: the CUPID-0 experiment

M. Pavan for the CUPID-0 Collaboration

Università di Milano Bicocca - INFN sez- di Milano Bicocca

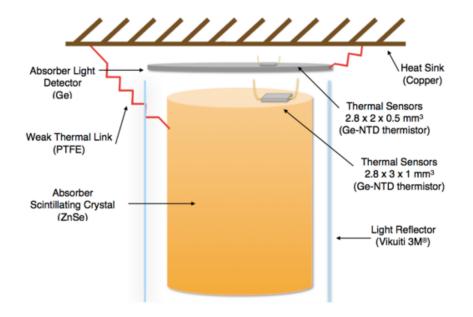
October 19, 2017

INFN – Laboratori Nazionali del Gran Sasso

CUPD-0 the first \$6000 experiment using double-read out bolometers an array of 26 ZnSe scintillating bolometer presently running at LNGS

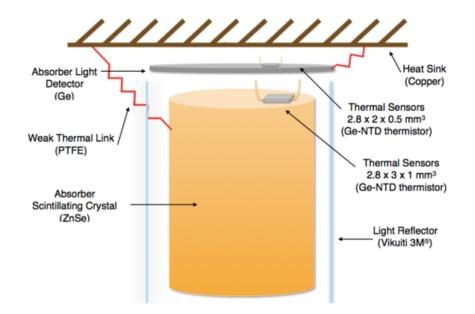
INFN – Laboratori Nazionali del Gran Sasso

CUPLD-0 the first ββ0ν experiment using double-read out bolometers an array of 26 ZnSe scintillating bolometer presently running at LNGS


CUPID

CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle IDentification

CUPID is a proposed future tonne-scale bolometric neutrinoless double beta decay $(0\nu\beta\beta)$ experiment to probe the Majorana nature of neutrinos and discover Lepton Number Violation in the so-called inverted hierarchy region of the neutrino mass. CUPID will be built on experience, expertise and lessons learned in CUORE, and will exploit the current CUORE infrastructure as much as possible. In order to achieve its ambitious science goals, CUPID aims to increase the source mass and dramatically reduce the backgrounds in the region of interest. This requires isotopic en-


CUPID-0 Detectors: ZnSe scintillating bolometer

HEAT signal \rightarrow phonons produced by energy deposition in the ZnSe crystal (with ⁸²Se being the source of $\beta\beta0\nu$ decay)

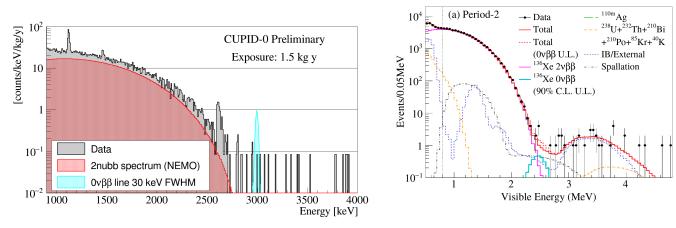
CUPID-0 Detectors: ZnSe scintillating bolometer

HEAT signal \rightarrow phonons produced by energy deposition in the ZnSe crystal (with ⁸²Se being the source of $\beta\beta0\nu$ decay)

LIGHT signal \rightarrow scintillation photons emitted by ZnSe and collected with a Ge bolometer (Light Detector LD)

HEAT signal (bolometers) ightarrow a clear etaeta 0
u signature

HEAT signal (bolometers) \rightarrow a clear $\beta\beta$ 0 ν signature


insensitive to particle type

HEAT signal (bolometers) ightarrow a clear etaeta 0
u signature

- ► insensitive to particle type
- high resolution to disentangle the $\beta\beta0\nu$ signal from radioactive background and $\beta\beta2\nu$ events

HEAT signal (bolometers) ightarrow a clear etaeta 0
u signature

- insensitive to particle type
- high resolution to disentangle the $\beta\beta0\nu$ signal from radioactive background and $\beta\beta2\nu$ events

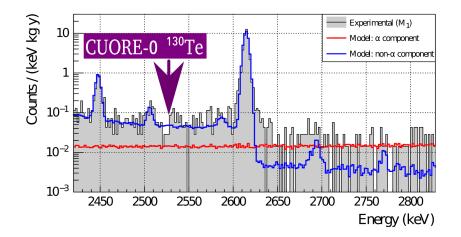
Figure 1: CUPID-0 (FWHM \sim 30 keV): $\beta\beta2\nu$ is well separated from $\beta\beta0\nu$

Figure 2: KamLand-ZEN (FWHM $\sim 250 \text{ keV}$): $\beta\beta0\nu$ and $\beta\beta0\nu$ mix (arXiv:1605.02889)

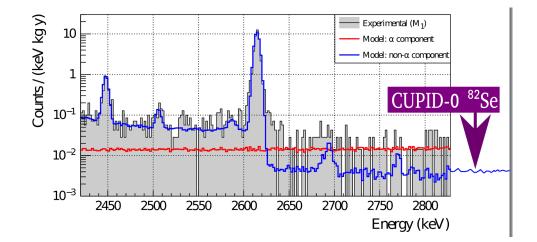

LIGHT signal (scintillation) \rightarrow active background rejection

LIGHT signal (scintillation) \rightarrow active background rejection

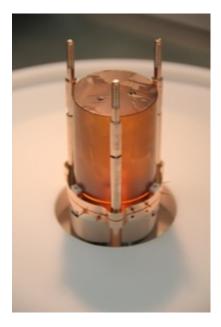
moderate energy resolution


LIGHT signal (scintillation) \rightarrow active background rejection

- moderate energy resolution
- \blacktriangleright particle identification \rightarrow separates β/γ from α


Figure 3: Particle identification in a ZnSe scintillating bolometer: LIGHT shape vs HEAT amplitude (EPJ C 76:364 (2016))

HEAT+LIGHT allow particle discrimination. Due to their fully active surface, bolometers show a large background component ascribed to **energy degraded** α **particles** In CUORE-0 and CUORE α background is sizeable and sums to the 2615 keV (²⁰⁸Tl) multi-Compton.


Figure 4: CUORE-0 reconstructed background shows a clear component coming from degraded α particles Eur. Phys. J. C 77 (2017) 77:13

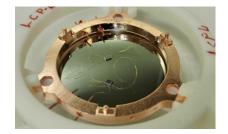
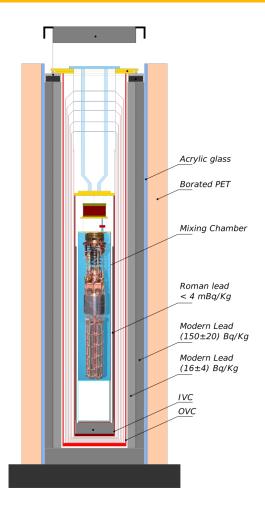

CUPID-0 use a higher $Q_{\beta\beta}$ isotope and rejects α signals using the scintillation LIGHT

Figure 4: CUORE-0 reconstructed background shows a clear component coming from degraded α EPJ C 77 (2017) 77:13

The Detectors

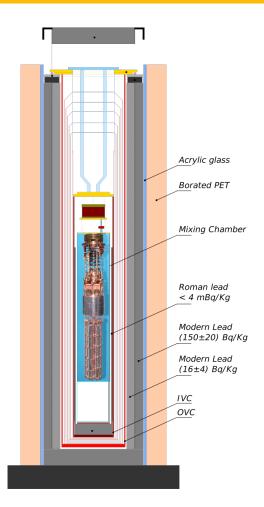
24 Zn⁸²Se CRYSTALS

 $\begin{array}{l} \text{Mass}=9.65 \text{ kg} \\ \text{Se enrichment in } ^{82}\text{Se at } 96\% \\ ^{82}\text{Se } \text{Mass}=5.17 \text{ kg } \text{N}_{\beta\beta}=3.8 \ 10^{25} \end{array}$


2 ZnSe CRYSTALS

 $\begin{array}{l} {\sf Mass}=0.85 \ {\sf kg} \\ {\sf Se \ natural} \ {}^{82}{\sf Se \ at} \ 8.7\% \end{array}$

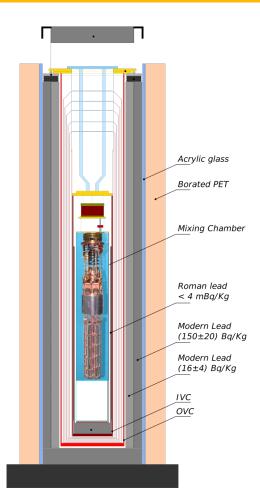
31 Ge LIGHT DETECTORS


hyperpure Ge wafers diameter = 44.5 mm (\simeq ZnSe crystals) thickness = 0.17 mm

The array

Detectors arranged in 5 columns held by a Cu+PTFE structure. Mounted in the dilution refrigerator formerly used for CUORE-0.

The array

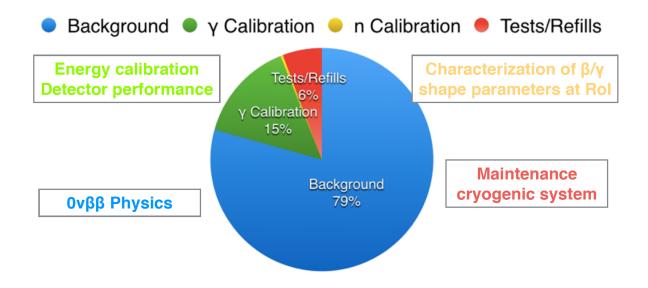


Detectors arranged in 5 columns held by a Cu+PTFE structure. Mounted in the dilution refrigerator formerly used for CUORE-0.

Light collection is optimized with:

- a reflecting foil (VIKUITI 3M) surrounding each crystal
- a SiO anti-reflective coating (60 nm) on one face of LD

The array

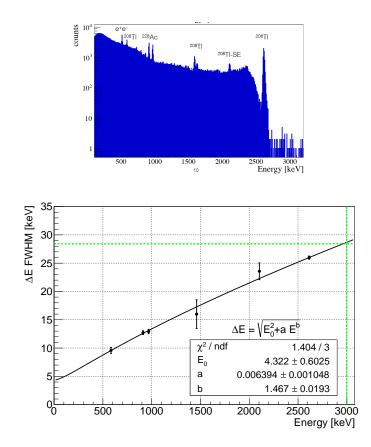

Detectors arranged in 5 columns held by a Cu+PTFE structure. Mounted in the dilution refrigerator formerly used for CUORE-0.

Light collection is optimized with:

- a reflecting foil (VIKUITI 3M) surrounding each crystal
- a SiO anti-reflective coating (60 nm) on one face of LD

Materials and surface treatments as far as possible similar to those adopted for CUORE.

Data Taking: started on March 17, 2017



Science Runs (SR)

SR1+SR2+SR3+SR4 collected exposure \rightarrow 2.4 $kg(ZnSe) \cdot y$ SR1+SR2 analysed, preliminary results \rightarrow 1.5 $kg(ZnSe) \cdot y$

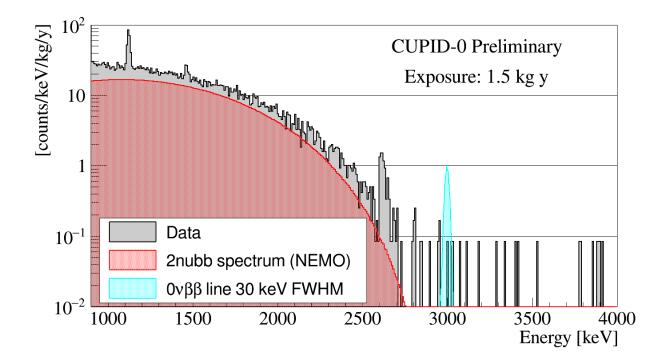
Performances: HEAT Signale ²³²**Th calibration**

sum calibration spectrum

<FWHM>

 $\begin{array}{l} {\sf noise} \rightarrow \sim 0.4 \ \textit{keV} \\ {\sf 2615} \ \textit{keV} \rightarrow \sim {\sf 25} \ \textit{keV} \end{array}$

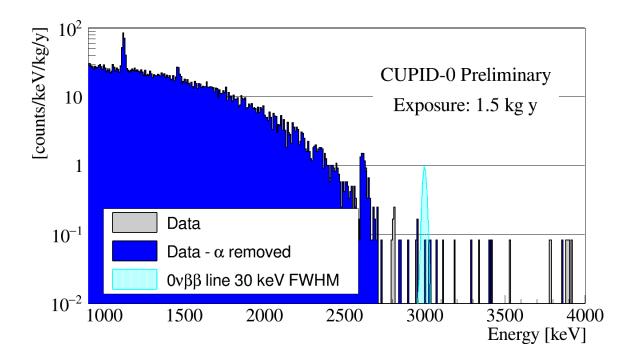
major contribution from crystal quality


at ⁸²Se $Q_{\beta\beta} = 2998 \ keV$ resolution is extrapolated

<FWHM> at $Q_{\beta\beta}$

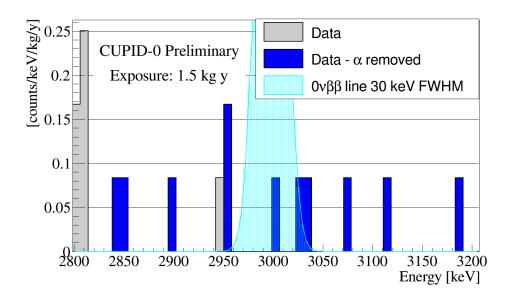
 $\begin{array}{l} \mathsf{SR1} \rightarrow \mathsf{29.2} \, \pm \, \mathsf{2.0} \, \textit{ keV} \\ \mathsf{SR2} \rightarrow \mathsf{27.0} \, \pm \, \mathsf{1.0} \, \textit{ keV} \end{array}$

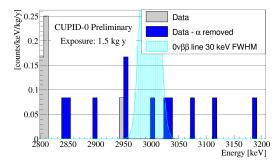
1.5 kg · y **EXPOSURE**


- ▶ M1 (only single hit events) + PSA on HEAT
- $\beta\beta2\nu$ spectrum normalized to NEMO ¹

¹NEMO measurement of ⁸²Se $\beta\beta2\nu$ half-life (arXiv:1105.2435 [hep-ex])

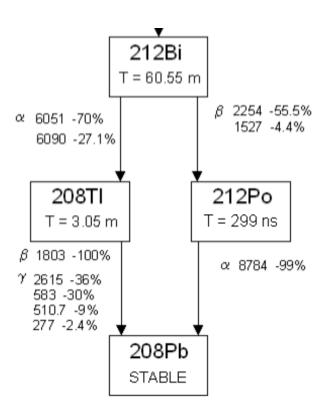
1.5 kg \cdot y **EXPOSURE** - α **REMOVED**


- ▶ M1 + PSA on HEAT signal (removes pile-up, noisy events ...)
- ... + α removed (PSA on LIGHT)

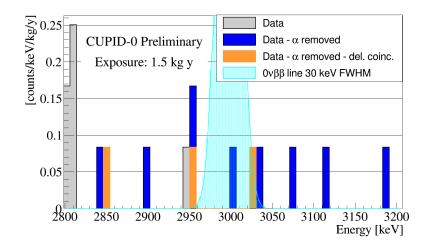

1.5 kg \cdot y **EXPOSURE** - α **REMOVED** - **ROI**

Same plot in the [2800-3200] keV Region of Interest.

- M1 + PSA on HEAT signal (removes pile-up, noisy events ...) $\rightarrow (30 \pm 7) 10^{-3} c/(keV y kg)$
- ... + α removed (PSA on LIGHT) $\rightarrow (18 \pm 6) \, 10^{-3} c / (keV y \, kg)$



Residual background



sizable β/γ residual rate likely due to ²³²*Th* ZnSe crystal contaminations

 \rightarrow can be reduced applying a Delayed Coincidence cut

ALL CUTS + DELAYED COINCIDENCES - ROI

only 3 events survive !!! (the ROI is \simeq 13 FWHM)

CUTS summary

M1 (single hit cut) PSA on HEAT PSA on LIGHT (remove α) Delayed Coinc.

ROI = [2800, 3200] keV

N. of Events = 3 [2.2-8.6] $\cdot 10^{-3}c/(keV y kg)$ $\epsilon_{0\nu\beta\beta} \sim 80\%$ $\epsilon_{cuts} > 85\%$ CUPID-0 is running, all the results here presented are preliminary, the analysis procedure is still to be finalized.

Science: final goal is to improve by more than 1 order magnitude the present $\beta\beta 0\nu$ limit on ⁸²Se half-life $\tau_{1/2} = 3.2 \cdot 10^{23} y^2$ (requires about 1y data)

- With particle identification we will be able to have a better insight in background sources.
- First publication on $\beta\beta$ 0 ν result and background model will come soon.

²NEMO measurement of ⁸²Se $\beta\beta2\nu$ half-life (arXiv:1105.2435 [hep-ex])

Technique: operation of a medium size array, where bolometers are instrumented with light detector, is successful.

 an important milestone for the 1-ton Cuore Upgrade with Particle IDentification