## Probing Pairing Correlations with 2–Proton Transfer Reactions

Grégory Potel Aguilar (MSU/LLNL) Andrea Idini (University of Surrey) Ricardo A. Broglia (Università degli Studi di Milano/ Niels Bohr Institute Copenhagen)

Catania, October 16th, 2017

### Introduction and Outline

We present a study of two–proton transfer reactions as a sensitive probe of proton pairing correlations.

#### Outline:

- Two-nucleon transfer as a well established tool to probe pairing correlations: the two-neutron transfer case.
- Introducing the two–proton transfer case: the  $^{128}\text{Te}(^{3}\text{He},n)^{130}\text{Xe}$  at TUNL.
- Obtaining the absolute values of the differential cross sections as an interplay between the structure and reaction description.

### Two-Nucleon Transfer



- Reaction  $A + a (\equiv b + 2) \longrightarrow a + B (\equiv A + 2)$ .
- Measure of the pairing correlations between the transferred nucleons.
- Need to correctly account for the correlated wavefunction.

4 D > 4 B > 4 B > 4 B > 9 Q C

### Delocalization of the pair transfer process











slide 5/28

### Contributions to the <sup>112</sup>Sn(p,t)<sup>110</sup> total cross section



Essentially a successive process!

### Probing pairing with 2-transfer: <sup>112</sup>Sn(p,t)<sup>110</sup>Sn @ 26 MeV



enhancement factor with respect to the transfer of uncorrelated neutrons:  $\varepsilon=20.6$ 

Experimental data and shell model wavefunction from Guazzoni *et al.* PRC **74** 054605 (2006)

experiment very well reproduced with mean field (BCS) wavefunctions

### Examples of calculations





good results obtained for halo nuclei, population of excited states, superfluid nuclei, normal nuclei (pairing vibrations), heavy ion reactions...

# Charge–exchange and 2–nucleon transfer to constrain $\beta\beta 0\nu$ nuclear matrix elements



• 2-proton, 2-neutron, transfer reactions and double charge exchange reactions can constrain nuclear matrix elements of isotopes relevant for  $\beta\beta0\nu$ .

## $^{128}\text{Te}(^{3}\text{He},n)^{130}\text{Xe}$ at TUNL (North Carolina, USA)



Experimental results strongly suggest a two–proton pairing phonon structure of  $^{130}\mathrm{Xe}$ 

## <sup>130</sup>Xe structure in RPA



Structure calculations by R. A. Broglia and A. Idini.

## <sup>130</sup>Xe structure in RPA



Structure calculations by R. A. Broglia and A. Idini.

### Individual $j^2(0)$ contributions



As a result of spatial quantization, the absolute value of the cross section will delicately depend on the relative occupation of "hot" and "cold" orbitals.

### Tuning the $d_{5/2}$ orbital



Results are very sensitive to the (non-observable) energy of the "bare"  $d_{5/2}$  orbital.

## $^{128}\text{Te}(^{3}\text{He},n)^{130}\text{Xe}$ , results of the calculations



- Howell and Combs TUNL data at 0° are very well reproduced.
- Ground state correlations are important, specially for the very coherent ground state.
- Angular shapes still not completely understood.

### Conclusions

Interplay of the right structure (spontaneous breaking of gauge symmetry) and reactions (successive transfer) physics can account for observed cross sections.

Two-nucleon transfer cross sections are very sensitive to the specific nature of pairing correlations.

#### main message

Two–nucleon transfer reactions are a promising tool to probe structure relevant for the calculation of  $0\beta\beta$  nuclear matrix elements.

## Thank You!