CNNP2017, Catania Italy, Oct. 15-21, 2017

Neutrino Collective Oscillation & Hierarchy

- Impact of Nucleosynthesis on v-physics

GW 170817 : Binary Neutron Star Merger LIGO and Virgo disobared 1 & rog are ven Solige ardio balegw and light !

Taka KAJINO

Nat'l Astron Observatory of Japan The University of Tokyo Beihang University, Int'l. Res. Cent.

From LIGO Home Page

Last Photon Scatt. 3.8x10⁵ y

Inflation

Cosmic Evolution

Quantum Fluct. of Space-Time

Supernova

Origin & Evolution

Elements, probe of D

la lo

Galaxy formed in 0.1Gy First Stars in a few My

100 My < τ

Galactic Chemo-Dynamical Evolution

Time Scale Problen

Argast, et al., A&A 416 (2004), 997, Wehmeyer et al., MNRAS, 452 (2015), 1970.

Binary merger process, too slow

$\begin{aligned} \mathbf{\hat{t}_{c}} &\simeq 9.83 \times 10^{6} \text{ yr} \left(\frac{P_{b}}{\text{hr}}\right)^{8/3} \\ &\mathbf{x} \left(\frac{m_{1}+m_{2}}{M_{\odot}}\right)^{-2/3} \left(\frac{\mu}{M_{\odot}}\right)^{-1} \left(1-e^{2}\right)^{7/2} \end{aligned}$

Lorimer, Living Rev. Rel. 11(2008), 8.

UNIVERSALITY !

Shibagaki et al., ApJ. 816 (2016),79; Kajino & Mathews, ROPP 80 (2017) 08490.

Early

Galaxy

Solar System r-Process Abundance

Present time: t =

Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso (2016), ApJ 816, 79; ApJ (2017); Kajino & Mathews (2017), ROPP 80, 084901.

Observed Galactic event rates !

Ejected Mass [Msun] x Event Rate [/Galaxy/Century]				
vSN (Weak r)	= 7.4 x 10 ⁻⁴ x (1.9 \pm 1.1) ^a			
MHD Jet SNe	= $0.6 \times 10^{-2} \times ((0.03 \pm 0.02) \times (1.9 \pm 1.1))^{b}$			
Binary NSMs	= (2±1) x 10 ⁻² x (1-28)x10 ^{-3 c}			
Observations	a 1.9±1.1 Diehl, et al., Nature 439, 45 (2006).			
	b 0.03±0.02 Winteler, et al., ApJ 750, L22 (2012).			
Obs. Estimate	c (1-28) x 10 ⁻³ Kalogera, et al., ApJ 614, L137 (2004).			

Event rates including Binary Evolution Kajino & Mathews, Rep. Prog. Phys. **80** (2017) 08490; Mathews & Kajino, (1987).

Time Scale Problem in Neutron Star Mergers

Solar System r-Process Abundance

Present time: t =

Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso (2016), ApJ 816, 79; ApJ (2017); New process, required ? Kajino & Mathews (2017), ROPP 80, 084901.

v-Oscillation and

Proto Neutron Star

Collective v Oscillation — Many-Body Effect

Duan, Fuller, Carlson & Qian, PRL 97 (2006), 241101.
Fogli, Lisi, Marrone & Mirizzi, JCAP 12, (2007) 010.
Balantekin, Pehlivan & Kajino, PR D84, (2011), 065008 PR D90, (2014), 065011.

10⁴⁹ v's with 3-flavors & multi-angles (3 x 3r x 3p /v) !

Mean Field Approx.

Theoretical Method

3 x 3 density matrices

density matrices $\rho(t, \mathbf{p}) \text{ for } \mathbf{v}, \ \bar{\rho}(t, \mathbf{p}) \text{ for } \overline{\mathbf{v}}. \qquad \bar{\rho}(t, \mathbf{p}) = \begin{pmatrix} \bar{\rho}_{ee} & \bar{\rho}_{e\mu} & \bar{\rho}_{e\tau} \\ \bar{\rho}_{\mu e} & \bar{\rho}_{\mu\mu} & \bar{\rho}_{\mu\tau} \\ \bar{\rho}_{\tau e} & \bar{\rho}_{\tau\mu} & \bar{\rho}_{\tau\tau} \end{pmatrix}$

$$egin{aligned} &\langle a^{\dagger}_{lpha}(\mathbf{p})a_{eta}(\mathbf{q})
angle &= (2\pi)^{3}\delta^{(3)}(\mathbf{p}-\mathbf{q})f(t,\mathbf{p})
ho(t,\mathbf{p})_{etalpha}\ &\langle b^{\dagger}_{lpha}(\mathbf{p})b_{eta}(\mathbf{q})
angle &= (2\pi)^{3}\delta^{(3)}(\mathbf{p}-\mathbf{q})g(t,\mathbf{p})ar{
ho}(t,\mathbf{p})_{lphaeta} \end{aligned}$$

 $\operatorname{Tr}\rho(t,\mathbf{p}) = \operatorname{Tr}\bar{\rho}(t,\mathbf{p}) = 1$

G. Sigl and G. Rafflet, Nucl. Phys. B 406, 423, 1993

Diagonal components $\overline{\rho}_{\alpha\alpha}$ represents the probability of finding $\overline{\nu}_{\alpha}$.

Solving dynamical eqs.

$$\begin{aligned} \frac{d}{dt}\rho_{\alpha\beta}(t,\mathbf{p}) &= -i\left[\rho(t,\mathbf{p}),\Omega(\mathbf{p}) + V(t,\mathbf{p})\right]_{\alpha\beta} & \Omega(\mathbf{p}) \quad \dots \text{Vacuum Hamiltonian} \\ \frac{d}{dt}\bar{\rho}_{\alpha\beta}(t,\mathbf{p}) &= -i\left[\bar{\rho}(t,\mathbf{p}),-\Omega(\mathbf{p}) + V(t,\mathbf{p})\right]_{\alpha\beta} & V(t,\mathbf{p}) = V_{\text{MSW}} + V_{\text{self}} \\ \text{Potential in flavor space} \end{aligned}$$

Mean field v-v coherent scattering term

$$V_{\text{self}\,\alpha\beta} = \sqrt{2}G_F \int \frac{\mathrm{d}^3 q}{(2\pi)^3} (1 - \cos\theta_{pq}) \{f(t, \mathbf{q})\rho_{\alpha\beta}(t, \mathbf{q}) - g(t, \mathbf{q})\bar{\rho}_{\alpha\beta}(t, \mathbf{q})\}$$

$$\stackrel{\mathbf{\hat{p}}}{\longrightarrow} \int \frac{\mathrm{d}^3 p}{(2\pi)^3} f(p) = n_{\nu} \qquad \int \frac{\mathrm{d}^3 p}{(2\pi)^3} g(p) = \bar{n}_{\nu}$$

Swapped v Energy Spectra

Sasaki et al. PR **D96** (2017), 043013.

Both Normal & Inverted hierarchy, Observed θ_{13} & Δm^2

Continuous Collective v-Oscillation Effect at 200 km <

Ordinary Vp-process C. Freohlich, et al., PRL **96** (2006), 142502.

Ordinary V**p-process** C. Freohlich, et al., PRL **96** (2006), 142502.

v-lsotopes:¹⁸⁰Ta, ¹³⁸La, ⁹²Nb, ⁹⁸Tc ...

New Method to constrain Mixing Angle θ_{13} & Mass Hierarchy

Yoshida, Kajino et al. 2005, PRL94, 231101; 2006, PRL 96, 091101; 2006, ApJ 649, 319; 2008, ApJ 686, 448.

Mathews, Kajino, Aoki & Fujiya, PR D85, 105023 (2012).

Kajino, Mathews & Hayakawa, J. Phys.G41 (2014), 044007.

Forse Deselone Front MOM12011 SN-grains

Fujiya, FNopé (KODE, A)J 730, Do (2014) CHOOZ Kajin Dayat Bays & Hayakawa, J. Phys. G41, 044007 (2014).

Theoretical Calculation for v-Nucleus Cross Section

ν-BEAM spectro. Exp., still difficult at E<100 MeV. Hadronic CEX, charg. lepton (e μ), photon (γ) !

Similarity between Electro-Magnetic & Weak Interactions

 ${}^{58}\text{Ni}({}^{3}\text{He}, t){}^{58}\text{Cu}$ E = 140 MeV/u

Counts

Y. Fujita et al., EPJ A 13 ('02) 411.Y. Fujita et al., PRC 75 ('07)

Excitation Energy (MeV)

 $\overrightarrow{\text{EM-current} = \vec{V}, \text{ Weak-current} = \vec{V} \cdot \vec{A}}$ $\overrightarrow{V} \approx g_V^{IV} \frac{i}{2m} \vec{\sigma} \times \vec{q} + \frac{g_V}{2m} (\vec{p} + \vec{p}')$ $\vec{A} \approx g_A \vec{\sigma}$

Weak operator in non-relativistic limit

Gamow-Teller operator =

$$ec{\sigma} au_+$$

Spin-Multipole operator = $[\vec{\sigma} \times \mathbf{Y}^{(L)}]^J \mathbf{\tau}_{\pm}$

Cosmology – v mass – $0\nu\beta\beta$

- v mass hierarchy

- Astro Connection

c.f. Ymazaki, Kajino, Mathews & Ichiki, Phys. Rep. 517 (2012), 141; PR D81 (2010), 103519

Conclusion

R-process elements in the early Galaxy are predicted to be dominated by MHDJ- & v-SNe, and NSMs have arrived later in the solar-system.

- Multi-messenger astrophysics has opened.: GW, light, elements & v.
 NSM & MHDJ-SN are relatively free from v, while v-wind SN is not ?
- Nuclear masses and fission-fragment distribution take the keys to NSM r-process as well as β -life,(n, γ) measurements.

 ν -wind SNe are the probe of ν physics and 1st r-process peak. Abundant pnuclei (^{92,94}Mo, ^{96,98}Ru) could be produced in proton-rich ν -wind SNe with collective oscillation, being sensitive to ν -mass hierarchy.

- v-collective oscillation in 3 flavor multi-angle Hamiltonian should be solved EXACTLT to verify this new vnp-process.
- (n,γ) and (n,p) reactions on proton-rich side of nuclei take the keys.

CEX reactions are highly desirable to know weak transitions relevant to SN ν -process in order to determine ν -mass hierarchy.

- v -4He, ¹²C, ⁴⁰Ar, ⁴²Ca, ⁹²Nb, ⁹⁸Tc, ¹³⁸La, ¹⁸⁰Ta

ARIS2014

UNIVERSALITY !

Shibagaki et al., ApJ. 816 (2016),79; Kajino & Mathews, ROPP 80 (2017) 08490.

Early

Galayy

Element Genesis from Nuclear Processes in Cosmos

Challenge of Nucear Physics — Fission & Mass Formula

Mass Formula: FRDM (Moeller & Kratz)

SUPERCOMPUTING of Galactic Chemo-Dynamical **Evolution**

Evolution of Single Dwarf Galaxy

N-Body/SPH Simulation DM + GAS +

Komiya & Shigeyama, ApJ 830, 10 (2016).

Star **Mixing of r-elements between neighboring Dwarf Galaxies is limited to only 0.001-0.1%** forming region. for[Fe/H] < -3.5.

Hirai et al., ApJ 814 (2015), 41; MNRAS 466 (2017) 2474.

Particles with GAS-MIXING in the star

 $M_{tot} = 7 \times 10^8 M_{sun}$, $N_i = 5 \times 10^5$ particles, $M_{\star} = 100 M_{sun}$

Mathews et al., MPL A29 (2014), 1430012-118.

SUPERCOMPUTING of Galactic Chemo-Dynamical Evolution of Dwarf Galaxies

N-Body/SPH Simulation of DM+GAS+Star Particles with GAS MIXING in star forming region.

SNe = Metals ; NSM(τ_c =100My)= r-process elements. (n_H >100 cm⁻³ \rightarrow ~10-100pc)

Without Dynamics & GAS MIXING

With Dynamics & GAS

Meteorite (Terada et al. 2017)

¹³⁶Ba=s-only: In the limit of ¹³⁶Ba \rightarrow 0, pure r-component is extracted.

Isotopic ratios	Wanajo et al et al. (2014)	Giuseppe et al. (2015)	Shibagaki et al. (2016)
	NSM	v–DW	NSM MHD-jet
$137/135 = 1.07 \pm 0.05$	0.218	2.23	1.0 0.2
$138/135=4.33 \pm 0.52$	0.294	3.46	1.1 0.18

<u>Strong</u> Universality in Ultra-Faint Dwarf Ret.

Evidence for r-Process in Neutron Star

Mergers? Macronova (Kilonova)

Tanvir, Levan, Fruchter, et al., Nature 500, 547 (2013)

Dust is hard to form for deficient Carbon and other lighter elements.

Takami, Nozawa & Ioka, ApJ 786, L5 (2014).

Dust formation becomes even more difficult when one includes more complete opacity table for heavy actinide elements.

Deep Sea Sediments & EMPS points DUALITY of SN & NSM

²⁴⁴Pu/⁶⁰Fe in Earth's Deep Sea Sediments NSM/MHDJ: SNe = 1: 100 ___

NSM, MHDJ ²⁴⁴Pu(80.8 My): Wallner et al., Nature Comm. 6 (2015), 1-9; NPA8 (2017) v-DW 60 Fe(2.62 My): Wallner et al. N $_{55}^{60}$ + Etain sedments 14

Actinide Boost EMP Stars needs "Fission-Recycling R-process in

SiC X-Grain including heavy "r-process" elements, HARD to form from NSM Ejecta !

Direct detection of C, Si & r-elements simultaneously !

RIKEN-RIBF : Decay Spectroscopy around A = 100-145

G. Lorusso et al., PRL 114 (2015), 192501.

Skymap of γ -ray line Satellites (COMPTEL &

1.0

INTEGRAL) R. Diehl et al., Nature 439 (2006), 45.

²⁶Al (5+,0.72MeV; 7.4x10⁵ y)

→ ${}^{26}Mg(2^+)$ → ${}^{26}Mg(0^+) + 1.809MeV$

Galactic longitude [deg]

Astrophysical Implication

The total "OBSERVED" ²⁶Al gamma-ray flux in model 3D spatial distribution turns out to be $3.3(\pm 0.4) \times 10^{-4}$ ph cm⁻²s⁻¹.

Equilibrium ${}^{26}Al$ mass = 2.8 ±0.8 Msun

"THEORETICAL" nucleosynthesis yields in core-collapse supernovae and the preceding Wolf-Rayet phase stars:

Rauscher, T., Heger, A., Hoffman, R.D., Woosley S.E., ApJ, 576, 323 (2002) Limongi, M., & Chieffi, A., Nucl.Phys.A, 758, 11c (2005) Palacios, A., Meynet, G., Vuissoz, C., et al., A&A., 429, 613 (2005) Woosley, S. E., Heger, A., Hoffman, R. D., ApJ. (2005)

Average ejected 26 Al/massive star = 1.4 × 10⁻⁴ Msun

"SN Event Rate": Stellar yields + IMF -> independent estimate of the Galactic SFR. IMF; Scalo IMF ($\xi \sim m^{-2.7}$, m=10-120Msun)

Swapped v Energy Spectra

Sasaki et al. PR **D96** (2017), 043013.

Inverted hierarchy($m_1 > m_3$), Observed $\theta_{13} \& \Delta m^2$

r = 10km (v-sphere)

Calculated v Flavor Oscillation

Energy spectra swap!

B²FH, RMP. 29 (1957), 547-650. "Element Genesis in Stars"

Supernova neutrino-process:

Nucleosynthesis Theory

Woosley, Hartmann, Hoffman, & Haxton, ApJ 356 (1990), 272. Heger et al., Phys. Lett. B 606, 258 (2005)

Nucleo-Cosmochronology:

Hayakawa, Shimizu, Kajino, Ogawa, & Nakada, PRC 77 (2008), 065802; 79 (2009) 059802.

Origin of HEAVY Atomic Nuclei (r-elements)?

CC-Supernovae?

v-DW ?Woosley, et al., ApJ 433, 229 (1994). +
Nishimura, et al., ApJ 642, 410 (2006).MHD-JetFujimoto, et al., ApJ 680, 1350 (2008).
Winteler, et al., ApJ 750, L22 (2012).
Nishimura et al., ApJ, 810, 109 (2015)Long-GRBNakamura, et al, A&Ap 582 A34 (2015)

 $\tau = 1 My$ Explosion Condition(Ω , B) !

1st, 2nd, 3rd peaks ?

Binary Neutron-Star Mergers?

Goriely, et al., ApJ 738, L32 (2011). Korobkin, et al., MNRAS 426, 1940 (2012). Rosswog, et al., MNRAS 430, 2585 (2013). Goriely, et al., PRL 111, 242502 (2013), (2015). Piran, et al., MNRAS 430, 2121 (2013). Wanajo, et al., ApJ 789, L39 (2014).

> $100My \le \tau \le 10Ty$ Merging time, too long !

Time Scale Problem ?

Tantalum ¹⁸⁰Ta

Explosive SN nucleosynthesis coupled with quantum transitions can reproduce both ¹⁸⁰Ta and ¹³⁸La simultaneously.

Hayakawa et al. (2010) PRC81, 052801®; (2010) PR C82, 058801.

Overproduction problem, solved!

(¹⁸⁰Ta/¹³⁸La)_{theory}=1

SN v-Process : Origin of 92 Nb !

Hayakawa, Nakamura, Kajino, Chiba, Iwamoto, Cheoun, Mathews, Astrophys. J. Lett. **779** (2013), L1.

★ 92 Nb($\tau_{1/2}$ =3.47x10⁷ y) existed at the s.s. formation (4.56 Gy ago)!

 \star Isotopic anomaly in meteoritic, found;

 92 Zr/ 93 Nb ~ 10⁻³

When did the last nearby SN exploded before the solar sytem formation ?

$$T_{\nu e}$$
 = 3.2 MeV, $T_{\overline{\nu e}}$ = 4.0 MeV,
 $T_{\nu x}$ = 6.0 MeV

Origin of ¹⁸⁰Ta

¹³⁸La = spherical
 ¹⁸⁰Ta = deformed

K.Yokoi, Nature (1983) proposal of s-process origin.

Belic et al., Phys. Rev. Lett. (1999) Wisshak, Phys. Rev. Lett. (2001)

S-process cannot produce both ¹³⁸La & ¹⁸⁰Ta.

Supernova neutrino-process:

Nuclear Experiment & Theory

Goko, Phys. Rev. Lett. (2007) Byelilov, Phys. Rev. Lett. (2007) Cheoun et al., (2010), in preparation.

Nucleosynthesis Theory

Woosley, Hartmann, Hoffman, & Haxton, ApJ 356 (1990), 272. Heger et al., Phys. Lett. B 606, 258 (2005)

Nucleo-Cosmochronology:

Hayakawa, Shimizu, Kajino, Ogawa, & Nakada, PRC 77 (2008), 065802; 79 (2009) 059802.

Impact of CEX Reaction on v-Process

A. Heger, Phys. Lett. B 606, 258 (2005)

Byelikov + Fujita et al., PRL (2007), RCNP measurement of GT strength.

(1) Forbidden transitions + as well as GT contribute! $E_V = 0 \sim 80 \text{ MeV}$

(2) Overproduction of ¹⁸⁰Ta relative to ¹³⁸La!

(1) Neutrino-¹³⁸La, ¹⁸⁰Ta cross section calculations in Quasi-particle Random Phase Approximation

Cheoun, et al., PRC81 (2010), 028501; PRC82 (2010), 035504: J. Phys. G37 (2010), 055101; PRC 83 (2011), 028801: Suzuki, et al., PR C74 (2006), 034307; PR C67, 044302 (2003).

GT and Forbidden Transitions, equally importa

(2) OVEREPRODUCTION of Isomer state ¹⁸⁰Ta

How robust is ¹⁸⁰Ta^m (T_{1/2} > 10¹⁵ y) in SN explosion dynamics at very high temperature?

★ ¹⁸⁰Ta_g and ¹⁸⁰Ta^m can couple with each other through intermediate linking transitions in hot SN explosions.

Measurement of Gamma-Decay Widths of Excited States

Saitoh et al. (NBI group), NPA 1999 + Dracoulis et al. (ANU group), PRC 1998 +

Linking transitions between K = 1 and 9 bands are extremely weak.

Very small total decay width

Result from our v-Nucleosynthesis

T. Hayakawa, P. Mohr, T. Kajino, S. Chiba, and G.J. Mathews, Phys. Rev. C81 (2010), 052801®; Phys. Rev. C82 (2010), 058801.

Formula to calculate time-dept linking transitions

Hayakawa, Kajino, Mohr, Chiba & Mathews, PR C81 (2010), 052801®; PR C82 (2010), 058801

★ General formula (Einstein AB theory) for $kT << \Delta E_{ij}$:

$$\frac{dN_{0}}{dt} = -\sum_{ip} P_{i}^{g} A_{ip} N_{0} + \sum_{ip} P_{i}^{m} \rho B_{pi} (1 - N_{0}), -\sum_{jq} P_{j}^{g} \rho B_{qj} N_{0} + \sum_{jq} P_{j}^{m} A_{jq} (1 - N_{0})$$

$$= -\sum_{ip} P_{0}^{g} \frac{g_{i}}{g_{0}} exp(-(E_{i} - E_{0})/kT) A_{ip} N_{0} + \sum_{ip} P_{1}^{m} \frac{g_{i}}{g_{1}} exp(-(E_{i} - E_{1})/kT) A_{ip} (1 - N_{0}),$$

$$Thermal Equilibrium Internations Thermal Equilibrium Internations Thermal Equilibrium Internations Internations Internations Internations Internations Internations Internation Internation Internations Internation Internation Internations Internation I$$

