## The Role of Theory Input for Exclusive $V_{cb}$ Determinations and the Prediction of $R(D^*)$

Stefan Schacht
Università di Torino & INFN Sezione di Torino





XIIth Meeting on B Physics: Tensions in Flavour measurements May 2017, Napoli, Italy

based on work in progress with Dante Bigi and Paolo Gambino and Phys.Lett. B769 (2017) 441-445 [1703.06124]

## Inclusive vs. Exclusive $V_{cb}$

| Status: HFAG $V_{cb}$ averages Dec. 2016                                      |      | [HFAG, 1612.07233] |
|-------------------------------------------------------------------------------|------|--------------------|
| $ V_{cb}  = (42.19 \pm 0.78) \cdot 10^{-3}$                                   | from | $B \to X_c l \nu$  |
| $ V_{cb}  = (38.71 \pm 0.47_{\text{exp}} \pm 0.59_{\text{th}}) \cdot 10^{-3}$ | from | $B \to D^* l \nu$  |
| $ V_{cb}  = (39.18 \pm 0.94_{\text{exp}} \pm 0.31_{\text{th}}) \cdot 10^{-3}$ | from | $B \to Dl\nu$      |

Stefan Schacht Napoli May 2017 2 / 21

## Belle has new (preliminary) data

- First time *w* and angular deconvoluted distributions independent of parametrization.
  - Possible to use different parametrizations.



$$w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}, q^2 = (p_B - p_{D^*})^2$$

## Model independent form factor parametrization

[Boyd Grinstein Lebed (BGL), hep-ph/9412324, hep-ph/9504235, hep-ph/9705252]

4/21

#### Boyd Grinstein Lebed parametrization

$$f_i(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^{\infty} a_n^i z^n,$$

$$z = \frac{\sqrt{1+w} - \sqrt{2}}{\sqrt{1+w} + \sqrt{2}}, \qquad w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}.$$

- 0 < z < 0.056 for  $B \to D^* l \nu \Rightarrow$  truncation at N = 2 enough,  $z^3 \sim 10^{-4}$ .
- $P_i(z)$ : "Blaschke factor": removes poles.
- $\phi_i(z)$ : phase space factors.
- Limit of massless leptons:
   3 form factors g (vector), f and F<sub>1</sub> (axial vector).
- Massive lepton  $m_{\tau} \neq 0$ : additional form factor  $\mathcal{F}_2$  (pseudoscalar).

Stefan Schacht Napoli May 2017

## **Unitarity Constraints**

#### Use basic properties of QCD:

Unitarity, crossing symmetry, analyticity, dispersion relations.

#### (Weak) Unitarity Conditions

Vector current:

$$\sum_{i=0}^{\infty} \left( a_n^g \right)^2 \le 1.$$

Axial vector current:

$$\sum_{i=0}^{\infty} \left( \left( a_n^f \right)^2 + \left( a_n^{\mathcal{F}_1} \right)^2 \right) \le 1.$$

Stefan Schacht Napoli May 2017

## Strong Unitarity Constraints and HQET Input

• Use information about further  $b \rightarrow c$  channels:

$$B \to D, B^* \to D, B^* \to D^*$$

Unitarity bounds get stronger:

[BGL, hep-ph/9705252]

6/21

$$\sum_{i=1}^{H} \sum_{n=0}^{\infty} b_{in}^{2} \le 1.$$

• Coefficients of other channels can be related to  $B \to D^*$  by Heavy Quark Effective Theory (HQET). [Caprini Lellouch Neubert (CLN), hep-ph/9712417]

### Caprini Lellouch Neubert: Use HQET relations between form factors

• Less parameters, slope of form factor ratios  $R_i$  fixed.

$$h_{A_1}(w) = h_{A_1}(1) \left( 1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right),$$
  
 $R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2,$  HQET:  $R_1(1) = 1.27$   
 $R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2$  HQET:  $R_2(1) = 0.80$ 

Uncertainties on fixed parameters never included in exp. analyses.

Stefan Schacht
Napoli May 2017

#### Different results for $V_{ch}$

[Bigi Gambino Schacht, 1703.06124, agreeing with Grinstein Kobach, 1703.08170]

| BGL Fit:            | Data + lattice                                    | Data + lattice + LCSR                             |
|---------------------|---------------------------------------------------|---------------------------------------------------|
| $\chi^2/\text{dof}$ | 27.9/32                                           | 31.4/35                                           |
| $ V_{cb} $          | $0.0417 \begin{pmatrix} +20 \\ -21 \end{pmatrix}$ | $0.0404 \begin{pmatrix} +16 \\ -17 \end{pmatrix}$ |

| CLN Fit:            | Data + lattice | Data + lattice + LCSR |
|---------------------|----------------|-----------------------|
| $\chi^2/\text{dof}$ | 34.3/36        | 34.8/39               |
| $ V_{cb} $          | 0.0382 (15)    | 0.0382 (14)           |

- $|V_{cb}|$  central values deviate by 9% and 6% (with LCSR).
- LCSR: Light Cone Sum Rule results [Faller, Khodjamirian, Klein, Mannel 0809.0222]  $h_{A_1}(w_{\text{max}}) = 0.65(18), \quad R_1(w_{\text{max}}) = 1.32(4), \quad R_2(w_{\text{max}}) = 0.91(17).$
- Lattice:  $h_{A_1}(1) = 0.906 \pm 0.013$ .

[FNAL/MILC 1403.0635]

#### Fit results for $B \to D^* l \nu$



- CLN fit has limited flexibility of slope.
  - CLN band underestimates all three low recoil points.
- Extrapolation near w = 1 crucial: Lattice input for  $V_{cb}$  extraction.
- CLN fit with free floating  $R_{1.2}$  slopes (wo LCSR):  $|V_{cb}| = 0.0415(19)$ .
- Intrinsic uncertainties of CLN fit can no longer be neglected.

Stefan Schacht Napoli May 2017

## **Angular Dependence**





- Angular bins have little sensitivity to low recoil region.
- Dilute information of first bins in w spectrum.
- CLN fit without angular bins:  $|V_{cb}| = 0.0409^{+16}_{-17}$ .

## Comparison to HQET



• BGL fit compatible with HQET within uncertainties.

Stefan Schacht Napoli May 2017

## Future Scenario of Lattice Input

| Future lattice fits | $\chi^2/\text{dof}$ | $ V_{cb} $  |
|---------------------|---------------------|-------------|
| CLN                 | 56.4/37             | 0.0407 (12) |
| CLN+LCSR            | 59.3/40             | 0.0406(12)  |
| BGL                 | 28.2/33             | 0.0409 (15) |
| BGL+LCSR            | 31.4/36             | 0.0404 (13) |

Fits including a hypothetical future lattice calculation giving

slope information at 5%: 
$$\frac{\partial \mathcal{F}}{\partial w}\Big|_{w=1} = -1.44 \pm 0.07.$$

Additional theory input stabilizes the results.

## Lepton Flavor Nonuniversality (LNU)

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} l \nu)}$$

- Combined discrepancy with SM prediction from literature  $4.0\sigma$ .
- ullet Possible New Physics scenario: New Scalars, Leptoquarks,  $W', \ldots$
- Possible connection of LNU in  $b \to c$  and  $b \to s$  transitions.

#### Status of $R(D^*)$

- HFAG average (BaBar, Belle, LHCb):  $0.310 \pm 0.015 \pm 0.008$  . [1612.07233]
- SM predictions:
  - Based on CLN HQET input:  $0.252 \pm 0.003$ . [Fajfer Kamenik Nisandzic, 1203.2654]
  - HQET update:  $0.257 \pm 0.003$ . [Bernlochner Ligeti Papucci Robinson (BLPR), 1703.05330]

12 / 21

Stefan Schacht Napoli May 2017

Anatomy of 
$$R(D^*) \equiv \frac{\int_1^{w_{\tau, \max}} dw \, d\Gamma_{\tau}/dw}{\int_1^{w_{\max}} dw \, d\Gamma/dw}$$

#### Differential decay rate for $B \to D^* \tau \nu_{\tau}$

[BGL, hep-ph/9705252]

13 / 21

$$\begin{split} \frac{d\Gamma_{\tau}}{dw} &= \frac{d\Gamma_{\tau,1}}{dw} + \frac{d\Gamma_{\tau,2}}{dw} \\ \frac{d\Gamma_{\tau,1}}{dw} &= \left(1 - m_{\tau}^2/q^2\right)^2 \left(1 + m_{\tau}^2/(2q^2)\right) \frac{d\Gamma}{dw} \\ \frac{d\Gamma_{\tau,2}}{dw} &= |V_{cb}|^2 m_{\tau}^2 \times \text{kinematics} \times \mathcal{F}_2(z)^2 \end{split}$$

- $d\Gamma/dw$ : Measured differential decay rate of  $B \to D^*lv$  with  $m_l = 0$ , depends on axial vector form factors f,  $\mathcal{F}_1$  and vector form factor g.
- $\mathcal{F}_2$ : Additional unconstrained pseudoscalar form factor.
- $d\Gamma_{\tau,2}/dw$  contributes ~ 10% to  $R(D^*)$ .
- Common normalization/notation:

$$R_0 = \frac{P_1}{A_1} = m_{D^*} \left( \frac{1+w}{1+r} \right) \frac{\mathcal{F}_2}{f}, \qquad r = m_{D^*}/m_B$$

Stefan Schacht Napoli May 2017

## Calculating $R_0(w)$

#### Heavy quark limit

[BGL, hep-ph/9705252]

$$R_0(w) = 1 \quad \forall w.$$

#### HQET at $O(\Lambda/m_{c,b})$

[recent update: Bernlochner Ligeti Papucci Robinson (BLPR),1703.05330,

Neubert, Phys. Lett. B264 (1991) 455; hep-ph/9408290, hep-ph/9306320]

$$R_0(w) = R_0(1) + R'_0(1)(w - 1),$$

$$R_0(1) = 1.09 + 0.25\eta(1),$$

$$\left. \frac{R_0'(1)}{dw} = \left. \frac{d}{dw} R_0(w) \right|_{w=1} = -0.18 + 0.87 \hat{\chi}_2(1) + 0.06 \eta(1) + 0.25 \eta'(1) \,,$$

#### Sum rule parameters

$$n(1) = 0.62 \pm 0.02$$

$$n'(1) = 0 \pm 0.2$$

$$\hat{\chi}_2(1) = -0.06 \pm 0.02$$

# How large could higher order corrections to $R_0(w)$ beyond $O(\Lambda/m_{c,b}, \alpha_s)$ be?

#### Rough dimensional analysis of higher order corrections

$$\Lambda^2/m_c^2\sim (0.3)^2\simeq 10\%$$

$$\alpha_s(m_c)^2 \sim (0.4)^2 \simeq 16\%$$

$$\alpha_s(m_c) \times \Lambda/m_c \sim 0.3 \times 0.4 \simeq 12\%$$

Stefan Schacht Napoli May 2017

## Direct Comparison of HQET and Lattice QCD Results

## $A_1/V_1$ at w = 1: Central values deviate by up to 12%.

Lattice QCD: 
$$\frac{A_1(w=1)}{V_1(w=1)}\Big|_{\text{FNAL/MILC}} = 0.859(14)$$
 [obtained from 1403.0635, 1503.07237] HQET:  $\frac{A_1(w=1)}{V_1(w=1)}\Big|_{\text{CLN}} = 0.948$  [hep-ph/9712417]

HQET: 
$$\frac{A_1(w=1)}{V_1(w=1)}\Big|_{\text{BLPR}}$$
 = 0.966(30) [obtained from 1703.05330]

$$f_0/f_+$$
 at  $w = 1$ : Central values deviate by 3%.

Lattice QCD: 
$$\frac{f_0(w=1)}{f_+(w=1)}\Big|_{\text{FNAL/MILC}} = 0.753(3)$$
 [obtained from 1503.07237]

HQET: 
$$\frac{f_0(w=1)}{f_+(w=1)}\Big|_{\text{CLN}} = 0.775$$
 [obtained from hep-ph/9712417]

HPQCD: Less precise but generally consistent results for the form factors.  $A_1/V_1$ : only marginally consistent with FNAL, but even lower result.

Stefan Schacht Napoli May 2017

## Direct Comparison of HQET and Lattice QCD Results

## Slope of $f_0/f_+$ at w=1: Central values deviate by 20%

Lattice QCD: 
$$\left. \frac{d}{dw} \left( \frac{f_0}{f_+} \right) \right|_{w=1,\text{FNAL/MILC}} = 0.457(35)$$
 [obtained from 1503.07237]

HQET:  $\left. \frac{d}{dw} \left( \frac{f_0}{f_+} \right) \right|_{w=1,\text{CLN}} = 0.382$  [obtained from hep-ph/9712417]

Higher order corrections can be sizable.

Stefan Schacht Napoli May 2017 17 / 21

## Implications of Dimensional Analysis and Comparison HQET ⇔ Lattice QCD results

#### Possible size of higher order corrections of HQET results

- Corrections could modify form factor ratios by ~ 12%.
  - For prediction of  $R(D^*)$  vary  $R_0(w)$  in a band of 12%.

Take this into account by variation of additional parameter:

$$R_0(w, E) = E(R_0(1) + R'_0(1))(w - 1)$$
  
vary  $E = 1.0 \pm 0.12$ 

Stefan Schacht Napoli May 2017

## Overview on Sources of Uncertainty

preliminary results

- Our analysis leads to a central value  $R(D^*) = 0.258$ .
  - Very good agreement to [BLPR, 1703.05330].

#### Error due to experimental error of measurement of $B \to D^* l \nu$ .

$$\delta R(D^*) = 0.005$$

#### Theory error due to sum rule parameters.

- Scan:  $\delta R(D^*) = 0.003$
- Gaussian:  $\delta R(D^*) = 0.002$

#### Theory error due to higher order effects.

• Scan/Gaussian:  $\delta R(D^*) = {}^{+0.007}_{-0.006}$ 

### Total Uncertainties for $R(D^*)$

preliminary results

20 / 21

#### **BGL** fit

| Higher orders | Sum rule parameters | Prediction for $R(D^*)$ |
|---------------|---------------------|-------------------------|
| Scan          | Scan                | $0.258^{+15}_{-13}$     |
| Scan          | Gaussian            | $0.258^{+12}_{-11}$     |
| Gaussian      | Gaussian            | $0.258^{+9}_{-8}$       |

#### **CLN fit**

| Higher orders | Sum rule parameters | Prediction for $R(D^*)$ |
|---------------|---------------------|-------------------------|
| Scan          | Scan                | $0.257^{+15}_{-13}$     |
| Scan          | Gaussian            | $0.257^{+12}_{-11}$     |
| Gaussian      | Gaussian            | $0.257^{+9}_{-8}$       |

Experiment:  $0.310 \pm 0.015 \pm 0.008$  (HFAG average [1612.07233])

#### **Conclusions**

- Belle has new data: Deconvoluted, independent of parametrization.
- Different parametrizations give different results for  $|V_{cb}|$ .
- HQET input still useful, but carries non-negligible uncertainty.
- $R(D^*)$  depends to an amount of  $\sim 10\%$  on the unconstrained form factor  $\mathcal{F}_2$ , which has to be estimated by theory.
  - No lattice calculation available, use HQET input from BLPR.
- Our central value 0.258 agrees well with the literature.
- We find a larger uncertainty, coming from three sources:
  - Experimental error in  $B \to D^* l \nu$ : 0.005.
  - Sum rule parameters: 0.003 (scan), 0.002 (gaussian).
  - Higher order HQET corrections: +0.007/1006 (scan/gaussian).
- The anomaly is persistent.

[numbers: preliminary results]