Puzzles in $|V_{ub}|$ and $|V_{cb}|$
Towards a solution?

Marcello Rotondo
Laboratori Nazionali fi Frascati
Why $|V_{cb}|$ and $|V_{ub}|$?

$|V_{xb}|$: crucial inputs
To indirect search of New Physics

$|V_{cb}|$ and $|V_{ub}|$
discrepancy between different determinations: 3σ effect

$\Gamma(B \to D(*)\tau\nu_\tau) / \Gamma(B \to D(*)\ell\nu_\ell)$
Enhanced respect to SM Predictions ($\sim 4\sigma$)

Predictions of FCNC processes

$\propto |V_{tb}V_{ts}| \approx |V_{cb}|^2 [1 + O(\lambda^2)]$

Kaon physics $\epsilon_K \approx x|V_{cb}|^2 + ...$

$|V_{ub}|$ opposite to angle β: compare Tree with loops

Semileptonic measurements provide Form-Factors, crucial for SM predictions on $R(D)-R(D^*)$

Study of $B \to D^{**}$ crucial to constrain backgrounds in $|V_{ub}|$ inclusive $|V_{cb}|$ and $R(D)-R(D^*)$ determinations
Exclusive $B \to \pi \ell \nu$

- For massless leptons only one Form Factor

\[\frac{d\mathcal{B}(B \to \pi \ell \nu)}{dq^2} = |V_{ub}|^2 \frac{G_F^2 \tau_B}{24\pi^3 p_\pi^3} f^{B\pi+}_{+}(q^2) \]

- Lattice QCD (UKQCD, FNAL, …)
 - Works at high q^2
 - Unquenched calculations (2+1, 2+1+1)
 - Other mesons (ρ, ω, …) difficult on lattice

- Light Cone Sum Rules
 - Reliable at low q^2
 - Works for both pseudo-scalars and vector decays
Exclusive $B \to \pi \ell \nu$

- **Lattice QCD** (HPQCD, FNAL,...)
 - Works at high q^2
 - Unquenched calculations (2+1, 2+1+1)
 - Other mesons ($\rho, \omega,...$) difficult on lattice
- **Light Cone Sum Rules**
 - Reliable at low q^2
 - Works for both pseudo-scalars and vector decays

- For massless leptons only one Form Factor

\[
\frac{d\mathcal{B}(B \to \pi \ell \nu)}{dq^2} = |V_{ub}|^2 \frac{G_F^2 \tau_B}{24\pi^3} p_{\pi} |f_+^{B\pi}(q^2)|^2
\]

Strategies for $|V_{ub}|$ extraction

- Measure ΔBr in regions where theory is reliable

\[
|V_{ub}|^2 = \frac{\Delta Br}{\tau_B \Delta \tilde{\Gamma}_{theory}}
\]

- Simultaneous fit to data and theory
 - Measure ΔBr in bins of q^2
 - $|V_{ub}|$ and form factor shape from a fit to data and theory
 - Exploiting the recent lattice calculations in many points at high q^2
Untagged $B \to \pi \ell \nu$

- Combined π with a lepton ℓ; the neutrino from the rest of the event

L = 416 fb$^{-1}$
Nsig = 12.5K ± 400

Signal extracted in 12 q^2-bins

L = 605 fb$^{-1}$
Nsig = 21.5K ± 500

Signal extracted in 13 q^2-bins

\[m_{ES} = \sqrt{E_{\text{beam}}^* - p_{\pi \ell \nu}^*} \]
\[\Delta E = E_{\pi \ell \nu}^* - E_{\text{beam}}^* \]

Phys. Rev. D83(2011) 071101
Tagged $B \rightarrow \pi \ell \nu$

- Using the hadronic tag

 $L = 711 \text{ fb}^{-1}$
 $N(B \rightarrow \pi^2 \ell \nu) \sim 500$, $N(B \rightarrow \pi^0 \ell \nu) \sim 200$

- Reduce combinatorial backgrounds
- Improve kinematic resolution
 - Signal B direction determined by B_{tag}

\[B \rightarrow \pi^0 \ell \nu \]

\[B \rightarrow \pi^+ \ell \nu \]

\[B \rightarrow \pi^0 \ell \nu \]

\[B \rightarrow \pi^+ \ell \nu \]
HFLAV average

- Include the most precise measurements
- Partial B_r averaged with a likelihood fit

Theoretical inputs:
- Lattice QCD at high q^2
- HFLAG average of FNAL/MILC + HPQCD
- LCSR ta $q^2=0$
 Bharucha, JHEP 1205 (2012) 092

Form Factor parameterization BCL
Bourrely, Caprini, Lellouch, PRD79, 013008 (2009)

\[f_+(q^2, \bar{b}) = \frac{1}{1 - q^2/m_B^2} \sum_{k=0}^{K} b_k(t_0) z(q^2)^k \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>V_{ub}</td>
</tr>
<tr>
<td>b_1^+</td>
<td>0.421 ± 0.017</td>
</tr>
<tr>
<td>b_2^+</td>
<td>-0.390 ± 0.033</td>
</tr>
<tr>
<td>b_3^+</td>
<td>-0.650 ± 0.126</td>
</tr>
</tbody>
</table>

Tot $\sigma \sim 4\%$!
\(|V_{ub}|\) at LHCb

- B-baryons provide complementary informations to B-mesons
- Copious production of \(\Lambda_b\)
- Kinematic constraints allow the determination of the \(p_{\Lambda_b}\) (modulo 2-fold ambiguity)
- Large background from \(\Lambda_b \rightarrow \Lambda_c \mu\nu\)
- LHCb determines (in the high \(q^2\) region) the ratio

\[
R_{exp} = \frac{\mathcal{B}(\Lambda_b \rightarrow p\mu\nu)}{\mathcal{B}(\Lambda_b \rightarrow \Lambda_c\mu\nu)}
\]

\(-\) Detmold et al PRD92(2015)034503

\(\Lambda_b \rightarrow p\mu\nu\)

\(q^2 > 15\text{ GeV}^2\)

\(\Lambda_b \rightarrow \Lambda_c\mu\nu\)

\(q^2 > 7\text{ GeV}^2\)
$\Lambda_b \rightarrow p\mu\nu$ signal & $|V_{ub}|$

$$M_{corr} = \sqrt{p_{\perp}^2 + M_{p\mu}^2} + p_{\perp}$$

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.080 \pm 0.004_{\text{Exp.}} \pm 0.004_{\text{F.F.}}$$

$\sigma_{\text{tot}} = 7\%$

$N_{\text{sig}} = 17687 \pm 733$

$$R = \frac{B(\Lambda_b \rightarrow p\mu\nu)_{q^2>15 \ GeV^2}}{B(\Lambda_b \rightarrow \Lambda_c\mu\nu)_{q^2>7 \ GeV^2}} = (0.95 \pm 0.04 \pm 0.07) \times 10^{-2}$$

Systematics dominated by $\text{BF}(\Lambda_c \rightarrow pK\pi) = (6.46 \pm 0.24)\%$

HFLAV using BESIII-Belle measurements
$|V_{ub}|$ from inclusive decays

- Large background from $B \to X_c \ell \nu$
- Kinematics to extract the signal: $m_u \ll m_c$
 - Cut limited region of phase space (f_u)
 - Non perturbative shape-function needed
 - Universal only at leading order in Λ/m_b

$E_\ell = \text{lepton energy}$

$q^2 = (P_B - P_X)^2 = (P_\ell - P_\nu)^2$

$M_X = X_u \text{ hadronic mass}$

Experimental resolution leads to “irreducible” $b \to c \ell \nu$ contamination
- partially suppressed
 - With K and D* vetos

$\frac{\Gamma(b \to c\ell\nu)}{\Gamma(b \to u\ell\nu)} \approx 50$
\[|V_{ub}| \text{ from inclusive decays} \]

- Large background from $B \to X_c \ell \nu$

\[\frac{\Gamma(b \to c \ell \nu)}{\Gamma(b \to u \ell \nu)} \approx 50 \]

\[
\begin{align*}
\text{Experimental resolution} & \rightarrow \text{"irreducible" } \\
\text{Experimental resolution} & \cdots \text{contamination} \\
& \cdots \text{partially suppressed} \\
& \text{With K and D* vetos}
\end{align*}
\]

- Kinematics to extract the signal: $m_u \ll m_c$

\[
\text{Non perturbative shape-function needed} \\
\text{Universal only at leading order in } \frac{\Lambda}{m_b}
\]

\[
|V_{ub}| = \sqrt{\frac{\Delta \Gamma}{\tau_B \Delta \Gamma_{\text{theory}}}}
\]

\[
M_X = X_u \text{ hadronic mass}
\]

\[
\begin{align*}
& \text{Small } f_u \\
& \text{Large } f_u
\end{align*}
\]

\[
\begin{align*}
\text{Not to scale!}
\end{align*}
\]

\[
\begin{align*}
\text{DN De Fazio, Neubert JHEP9905,017 (1999)} \\
\text{Claimed in BLNP to be superseeded} \\
\text{GGOU Gambino, Giordano, Ossola, Uraltsev, JHEP908 10, 058 (2007)} \\
\text{DGE Andersen, Gardi, JHEP 0601, 097 (2006)}
\end{align*}
\]

\[
\begin{align*}
\text{ADFR Aglietti, Di Ludovico, Ferrara, Ricciardi EPJC, Vol. 59 (2009)}
\end{align*}
\]

\[
\begin{align*}
\end{align*}
\]

\[
\begin{align*}
\text{Only valid in the } m_X-q^2 \text{ two-dimensions cut}
\end{align*}
\]

\[
\begin{align*}
\text{Only in the } m_X-q^2 \text{ two-dimensions cut}
\end{align*}
\]

\[
\begin{align*}
\text{Not to scale!}
\end{align*}
\]
Fit results in limited regions of phase space

\[B \rightarrow X_u \ell \nu \]

\[B \rightarrow X_c \ell \nu + \text{cascades + fake } \ell \]

\[\frac{\Delta B(X_u \ell \nu)}{B(X \ell \nu)} = \frac{N_{b \rightarrow u}}{N_{X \ell \nu}} \cdot \frac{F}{\epsilon_{sel}} \]
Status of inclusive $|V_{ub}|$

- Consistency between difference acceptance regions
- Calculations agree with each other
- Correlated uncertainties
 - HQE parameters m_b, m_μ^2: from Global Fit for inclusive $|V_{cb}|$
 - Common experimental tools: EvtGen, JETSET X_u hadronisation, $b\rightarrow c\ell\nu$
- $|V_{ub}|$ is calculated from partial rates measured with only one signal model
 (Belle multivariate, adjust the signal model to match the GGOU predictions)

Framework $|V_{ub}|[10^{-3}]$

| Framework | $|V_{ub}|[10^{-3}]$ |
|----------------------------|---------------------|
| BLNP | $4.44 \pm 0.15^{+0.21}_{-0.22}$ |
| DGE | $4.52 \pm 0.16^{+0.15}_{-0.16}$ |
| GGOU | $4.52 \pm 0.15^{+0.11}_{-0.14}$ |
| ADFR | $4.08 \pm 0.13^{+0.18}_{-0.12}$ |
| BL (m_X/q^2 only) | $4.62 \pm 0.20^{+0.29}_{-0.29}$ |

Most recent measurements is dated 2012

- CLEO (E_c): $4.23 \pm 0.49 + 0.22 - 0.31$
- BELLE sim. ann. (m_X, q^2): $4.52 \pm 0.47 + 0.25 - 0.28$
- BELLE (E_c): $4.95 \pm 0.46 + 0.16 - 0.21$
- BABAR (E_c): $4.52 \pm 0.26 + 0.17 - 0.24$
- BELLE multivariate (p^*): $4.62 \pm 0.28 + 0.09 - 0.10$
- BABAR (m_X < 1.55): $4.30 \pm 0.20 + 0.20 - 0.21$
- BABAR (m_X < 1.7): $4.10 \pm 0.23 + 0.16 - 0.17$
- BABAR (m_X < 1.7, q^2 > 8): $4.33 \pm 0.23 + 0.24 - 0.27$
- BABAR ($P^* < 0.66$): $4.25 \pm 0.26 + 0.26 - 0.27$
- BABAR (m_X, q^2 fit, $p^* > 1$GeV): $4.44 \pm 0.24 + 0.09 - 0.10$
- BABAR ($p^* > 1.3$GeV): $4.43 \pm 0.27 + 0.09 - 0.11$

Average +/- exp + theory - theory: $4.52 \pm 0.15 + 0.11 - 0.14$

F_u ~ 90%

- $|V_{ub}|$ is calculated from partial rates measured with only one signal model
- (Belle multivariate, adjust the signal model to match the GGOU predictions)
New inclusive $|V_{ub}|$

- Inclusive electron spectrum measurement

 Fit Strategy
 - Fit simultaneously on-Y(4S) and off-Y(4S)
 - 5 separate $b \rightarrow c$ components
 - Secondary leptons $b \rightarrow c \rightarrow e$
 - $b \rightarrow X_u e \nu$
 - Spectrum range $[p_{\text{min}}, 2.7]$ GeV, p_{min} from 0.8 GeV

 Dataset: 467M Y(4S)

 - Large statistics: $>10^6$ events / 50 MeV bin; statistical uncertainties dominated by continuum subtraction
 - Use 44.4 fb$^{-1}$ taken off resonance

 Signal model obtained mixing known existing exclusive final states with calculations for $b \rightarrow X_u e \nu$ (Hybrid model). Four different calculations considered for $b \rightarrow X_u e \nu$ Inclusive spectrum

 B.Kowalewski@CKM16 Phys.Rev.D 95, 072001 (2017)
B → X_{u}e\nu in Y(4S) frame

- B → X_{u}e\nu electron spectra for p_{e} > 0.8 GeV after continuum, B → X_{c}e\nu and cascade subtraction
Results on total rate and $|V_{ub}|$

- Highest sensitivity to $B \to X_u \text{ev}$ in the wide bin $2.1-2.7$ GeV
- Models make different predictions for the fractional rate in this bin
 - The normalization of the $B \to X_u \text{ev}$ is fixed by this bin!
- This dependence on the signal model could impact any measurement that extends in the $B \to X_u \text{ev}$ region

Results are lower than previous measurement (not for BLNP!)

How existing analyses would be affected by the signal model is difficult to predict without re-analysing old data!

The effect could be smaller than the one observed here!
Results on total rate and $|V_{ub}|$

- Highest sensitivity to $B \rightarrow X_u \text{ev}$ in the wide bin 2.1-2.7 GeV
- Models make different predictions for the fractional rate in this bin
- The normalization of the $B \rightarrow X_u \text{ev}$ is fixed by this bin!
- This dependence on the signal model impact any measurement that extends in the $B \rightarrow X_u \text{ev}$ region

In the future it will be crucial to improve
- Knowledge about $B \rightarrow X_c$ composition and kinematics: rates and FFs for $D/D^*/D^{**}$...
- Constrain the signal model measuring exclusive $B \rightarrow n\pi \text{ev}$: up to now resonant and non-resonant contributions are combined in an ad-hoc procedure
- WA, X_u hadronisation...
HQE is the successful tool to include perturbative and non-perturbative QCD corrections that allow to connect measurements of semileptonic B-meson decays to $|V_{cb}|^2$.

No new experimental results since 2010

Latest fits in Kinetic Scheme:

Gambino, Schwanda
PhysRevD 89,014022 (2014)
Include charm-quark mass from sum-rule results (PRD80,074010 (2009))

Alberti, Gambino, Healey, Nandi
- Includes corrections of $O(\alpha_s^2\Lambda_{QCD}/m_b)$

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Hadron moments $<M^n_X>$</th>
<th>Lepton moments $<E^n>$</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaBar</td>
<td>n=2 $c=0.9,1.1,1.3,1.5$</td>
<td>n=0 $c=0.6,1.2,1.5$</td>
<td>[1] Phys.Rev._D81 (2010) 032003</td>
</tr>
<tr>
<td></td>
<td>n=4 $c=0.8,1.0,1.2,1.4$</td>
<td>n=1 $c=0.6,0.8,1.0,1.2,1.5$</td>
<td>[2] Phys.Rev._D69 (2004) 111104</td>
</tr>
<tr>
<td></td>
<td>n=6 $c=0.9,1.3$</td>
<td>n=2 $c=0.6,1.0,1.5$</td>
<td>[3] Phys.Rev._D75 (2007) 032005</td>
</tr>
<tr>
<td>Belle</td>
<td>n=2 $c=0.7,1.1,1.3,1.5$</td>
<td>n=0 $c=0.6,1.4$</td>
<td>[5] Phys.Rev._D71 (2005) 051103</td>
</tr>
<tr>
<td></td>
<td>n=4 $c=0.7,0.9,1.3$</td>
<td>n=1 $c=1.0,1.4$</td>
<td>[6] Phys.Rev._D70 (2004) 032002</td>
</tr>
<tr>
<td>CDF</td>
<td>n=2 $c=0.7$</td>
<td>n=1 $c=0.0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n=4 $c=0.7$</td>
<td>n=2 $c=0.0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n=6 $c=0.0$</td>
<td></td>
</tr>
<tr>
<td>CLEO</td>
<td>n=2 $c=1.0,1.5$</td>
<td>n=1 $c=0.0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n=4 $c=1.0,1.5$</td>
<td>n=2 $c=0.0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n=6 $c=0.0$</td>
<td></td>
</tr>
<tr>
<td>DELPHI</td>
<td>n=2 $c=0.0$</td>
<td>n=1 $c=0.0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n=4 $c=0.0$</td>
<td>n=2 $c=0.0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n=6 $c=0.0$</td>
<td>n=3 $c=0.0$</td>
<td></td>
</tr>
</tbody>
</table>

HFLAV
Exclusive $|V_{cb}|$ and Form Factors

- $B \to D \ell \nu$ and $B \to D^* \ell \nu$ provide a clean way to extract $|V_{cb}|$

\[B \to D^* \ell \nu \quad \frac{d\Gamma}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (m_B - m_{D^*})^2 \sqrt{w^2 - 1} \chi(w) F^2(w) |V_{cb}|^2 \]

\[B \to D \ell \nu \quad \frac{d\Gamma}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} G^2(w) |V_{cb}|^2 \]

Assuming $m_\ell = 0$

\[w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D} \]

$w = 0 \quad w_{\text{max}}$

Form Factor Parameterizations

\[f_i(z) = \frac{1}{P_i(z) \phi_i(z)} \sum_{n=0}^{N} a_{i,n} z^n, \quad z(w) = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}} \]

Coefficient $a_{i,n}$ free parameters

The analyticity of the OPE assures bounds on the sum of the $a_{i,n}^2$

$B \to D^* \ell \nu$

\[h_{A_1}(w) = h_{A_1}(1) \left[1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right], \]

\[R_1(w) = R_1(1) - 0.12(w-1) + 0.05(w-1)^2 \]

Higher order coefficient connected with the slope ρ^2
Exclusive $|V_{cb}|$ and Form Factors

$B \rightarrow D^* \ell \nu$

Unquenched lattice FF calculation available only at zero-recoil
$F(1) = 0.906 \pm 0.013$

Quenched calculation extends to $w=1.1$

LCSR at w_{max}

$B \rightarrow D \ell \nu$

Unquenched lattice FF calculation also at moderately large recoil

Assuming $m_\ell = 0$

$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_Bm_D}$$

$w=0$$$

$w_{\text{max}}$$$

$B \rightarrow D^* \ell \nu$

Coefficient $a_{i,n}$ free parameters

The analyticity of the OPE assures bounds on the sum of the $a_{i,n}^2$

$B \rightarrow D^* \ell \nu$

$h_{A_1}(1)\left[1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3\right]$

$R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2$

$R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2$
B → Dℓν

- State of the art performed by BaBar and Belle with hadronic B tagging: improve kinematic resolution and reduce combinatorial backgrounds
- Use both B → D⁰ℓν ↔ K^+ B → D^±ℓν
- Signal extract in 10 bins of w from M_{miss}²
- Largest background
 - B → D^*ℓν

BaBar used 460M B̄B
Fit ~3200 signal events

Belle used 771M B̄B
Improved Hadronic B Tag based on NeuroBayes
Fit ~17000 signal events
$G(1)|V_{cb}|$: results at B-Factories

<table>
<thead>
<tr>
<th></th>
<th>$B^- \to D^0 \ell^- \bar{\nu}_\ell$</th>
<th>$\bar{B}^0 \to D^+ \ell^- \bar{\nu}_\ell$</th>
<th>$\bar{B} \to D \ell^- \bar{\nu}_\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G(1)</td>
<td>V_{cb}</td>
<td>\cdot 10^3$</td>
<td>$41.7\pm2.1 \pm 1.3$</td>
</tr>
<tr>
<td>ρ^2</td>
<td>$1.14\pm0.11 \pm 0.04$</td>
<td>$1.29\pm0.14 \pm 0.05$</td>
<td>$1.20\pm0.09 \pm 0.04$</td>
</tr>
<tr>
<td>ρ_{corr}</td>
<td>0.943</td>
<td>0.950</td>
<td>0.952</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>3.4/8</td>
<td>5.6/8</td>
<td>9.9/18</td>
</tr>
<tr>
<td>Signal Yield</td>
<td>2147 ± 69</td>
<td>1108 ± 45</td>
<td>-</td>
</tr>
<tr>
<td>Recon. efficiency</td>
<td>$(1.99 \pm 0.02) \times 10^{-4}$</td>
<td>$(1.09 \pm 0.02) \times 10^{-4}$</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>$(2.31\pm0.08 \pm 0.09)%$</td>
<td>$(2.23\pm0.11 \pm 0.11)%$</td>
<td>$(2.17\pm0.06 \pm 0.09)%$</td>
</tr>
</tbody>
</table>

$G(1)|V_{cb}|$ Values

<table>
<thead>
<tr>
<th></th>
<th>$B^+ \to D^0 e^+ \nu_e$</th>
<th>$\bar{B}^+ \to \bar{D}^0 \mu^+ \nu_\mu$</th>
<th>$B^0 \to D^- e^+ \nu_e$</th>
<th>$B^0 \to D^- \mu^+ \nu_\mu$</th>
<th>$B \to D \ell^- \bar{\nu}_\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_{EW}G(1)</td>
<td>V_{cb}</td>
<td>[10^{-3}]$</td>
<td>42.31 ± 1.94</td>
<td>45.48 ± 1.96</td>
<td>41.84 ± 2.14</td>
</tr>
<tr>
<td>ρ^2</td>
<td>1.05 ± 0.08</td>
<td>1.22 ± 0.07</td>
<td>1.01 ± 0.10</td>
<td>1.08 ± 0.10</td>
<td>1.09 ± 0.05</td>
</tr>
<tr>
<td>Correlation</td>
<td>0.81</td>
<td>0.77</td>
<td>0.85</td>
<td>0.84</td>
<td>0.69</td>
</tr>
<tr>
<td>$\eta_{EW}</td>
<td>V_{cb}</td>
<td>[10^{-3}]$</td>
<td>40.14 ± 1.86</td>
<td>43.15 ± 1.89</td>
<td>39.69 ± 2.05</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>2.19/8</td>
<td>2.71/8</td>
<td>9.65/8</td>
<td>4.36/8</td>
<td>4.57/8</td>
</tr>
<tr>
<td>Prob.</td>
<td>0.97</td>
<td>0.95</td>
<td>0.29</td>
<td>0.82</td>
<td>0.80</td>
</tr>
</tbody>
</table>
$G(1)|V_{cb}|$: effect of the parameterization

- Combined fit with Lattice data beyond zero-recoil using BGL parameterization

 Series truncated at $n=3$

| Lattice data | $\eta_{EW}|V_{cb}| [10^{-3}]$ | χ^2/n_{df} | Prob. |
|-----------------------|---------------------------------|-----------------|-------|
| FNAL/MILC [15] | 40.96 ± 1.23 | 6.01/10 | 0.81 |
| HPQCD [32] | 41.14 ± 1.88 | 4.83/10 | 0.90 |
| FNAL/MILC & HPQCD [15, 32] | 41.10 ± 1.14 | 11.35/16 | 0.79 |

With the most recent FF normalization FNAL/MILC'15
$G(1)=1.0541 \pm 0.0083$

CLN fit: $|V_{cb}| = (39.86 +/- 1.33) \times 10^{-3}$
BGL fit: $|V_{cb}| = (40.83 +/- 1.13) \times 10^{-3}$

Critical discussion on the FF parameterizations, using both Belle and BaBar data reported in Bigi, Gambino Phys.Rev.D 94,094008(2016)

<table>
<thead>
<tr>
<th></th>
<th>$B^+ \rightarrow D^0 e^+ \nu_e$</th>
<th>$B^+ \rightarrow D^0 \mu^+ \nu_\mu$</th>
<th>$B^0 \rightarrow D^- e^+ \nu_e$</th>
<th>$B^0 \rightarrow D^- \mu^+ \nu_\mu$</th>
<th>$B \rightarrow D \ell \nu_\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_{EW}G(1)</td>
<td>V_{cb}</td>
<td>[10^{-3}]$</td>
<td>42.31 \pm 1.94</td>
<td>45.48 \pm 1.96</td>
<td>41.84 \pm 2.14</td>
</tr>
<tr>
<td>ρ^2</td>
<td>1.05 \pm 0.08</td>
<td>1.22 \pm 0.07</td>
<td>1.01 \pm 0.10</td>
<td>1.08 \pm 0.10</td>
<td>1.09 \pm 0.05</td>
</tr>
<tr>
<td>Correlation</td>
<td>0.81</td>
<td>0.77</td>
<td>0.85</td>
<td>0.84</td>
<td>0.69</td>
</tr>
<tr>
<td>$\eta_{EW}</td>
<td>V_{cb}</td>
<td>[10^{-3}]$</td>
<td>40.14 \pm 1.86</td>
<td>43.15 \pm 1.89</td>
<td>39.69 \pm 2.05</td>
</tr>
<tr>
<td>χ^2/n_{df}</td>
<td>2.19/8</td>
<td>2.71/8</td>
<td>9.65/8</td>
<td>4.36/8</td>
<td>4.57/8</td>
</tr>
<tr>
<td>Prob.</td>
<td>0.97</td>
<td>0.95</td>
<td>0.29</td>
<td>0.82</td>
<td>0.80</td>
</tr>
</tbody>
</table>
\[\eta_{EW} \mathcal{F}(1) |V_{cb}| = (35.61 \pm 0.43) \times 10^{-3} \]
\[\rho^2 = 1.205 \pm 0.026 \]
\[R_1(1) = 1.404 \pm 0.032 \]
\[R_2(1) = 0.854 \pm 0.020 \]

Only published unquenched calculation available is at zero-recoil from FANL/MILC

Unfortunately these old data cannot be re-analysed with a different parameterization
B → D*ℓν: news from Belle

- With the hadronic tag, similar to B → D
- Signal extracted from the missing mass distribution by a unbinned maximum likelihood fit
- Yields extracted in 4x10 bins of w and 3 angular variables: statistical correlations determined with bootstrapping technique
- For the first time published the Unfolded distributions
$B \rightarrow D^* \ell \nu$: news from Belle

- With the hadronic tag, similar to $B \rightarrow D$
- Signal extracted from the missing mass distribution by a unbinned maximum likelihood fit
- Yields extracted in 4×10 bins of w and 3 angular variables: statistical correlations determined with bootstrapping technique
- For the first time published the Unfolded distributions

Belle fit with CLN parameterization consistent with world average
- Bigi, Gambino, Schacht Phys.Lett B 769 (2017) 441: Critical analysis of parameterization with the Belle data

<table>
<thead>
<tr>
<th></th>
<th>CLN Fit: Data + lattice</th>
<th>CLN Fit: Data + lattice + LCSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2/dof</td>
<td>34.3/36</td>
<td>34.8/39</td>
</tr>
<tr>
<td>$</td>
<td>V_{cb}</td>
<td>$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BGL Fit: Data + lattice</th>
<th>BGL Fit: Data + lattice + LCSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2/dof</td>
<td>27.9/32</td>
<td>31.4/35</td>
</tr>
<tr>
<td>$</td>
<td>V_{cb}</td>
<td>$</td>
</tr>
</tbody>
</table>

- This result points to a systematic difference between CLN and a model-independent parameterization
- Similar analysis in Grinstein, Kobach arXiv.1703.0817, who claimed
 - “strong possibility that the tension between inclusive and exclusive $|V_{cb}|$ is due to the use of the CLN parameterization...”
New global picture?

$B \rightarrow D \ell \nu$

$B \rightarrow D^* \ell \nu$

Belle BGL

Inclusive

$|V_{cb}|$, global fit in KS

$|V_{ub}|$, HFLAV GGOU

${\text{UTFit}}$

$B \rightarrow \pi^+ \ell \nu$

$\Lambda_b \rightarrow p \mu \nu$

$|V_{ub}| [10^{-3}]$

$|V_{cb}| [10^{-3}]$
Remarks

- CLN can be affected by underestimated uncertainties
 - An uncertainty of “better than 2%” on the FF quoted in CLN paper, with the increasing precision, cannot be neglected anymore
- It is crucial to move to a model-independent parameterization, CLN is too constrained
 - Unfortunately existing HFLAV average uses measurements based on CLN
- But the difference BGL-CLN of about ~8% on $|V_{cb}|$ from the recent Belle data, cannot be considered the only systematic missed in the existing average that fill the gap with the inclusive: CLN fit well old precise data!

Remarks

- CLN can be affected by underestimated uncertainties
 - An uncertainty of “better than 2%” on the FF quoted in CLN paper, with the increasing precision, cannot be neglected anymore
- It is crucial to move to a model-independent parameterization, CLN is too constrained
 - Unfortunately existing HFLAV average uses measurements based on CLN
- But the difference BGL-CLN of about ~8% on $|V_{cb}|$ from the recent Belle data, cannot be considered the only systematic missed in the existing average that fill the gap with the inclusive: CLN fit well old precise data!

- We should not neglect that there is only one lattice calculation for F(1)
- Recently HPQCD F(1)=0.862(35) C.Davie at CKM2016
 - Lower than FNAL/MILC!
 - HQSum-Rule, F(1) = 0.86(2)
- Calculations at non-zero recoil could be desirable
Conclusione

- **Exclusive Vub**
 - huge progressed on lattice
 - LHCb is a new player: opened the route to $B_s \rightarrow K \ell \nu$ (cleanest on Lattice!)

- **Inclusive Vub**
 - It is still a puzzle: internally consistent but above CKM fit and exclusive
 - Partial rates that include the $b \rightarrow c$ region depends on the signal model: crucial to consider this and use the same model for both signal extraction and $|V_{ub}|$
 - Theory/parameters uncertainties dominate: need to constrain the SF (global fit V_{cb}-like from spectra measurements: SIMBA, NNVUB)

- **Inclusive Vcb**
 - Everything consistent and it gives inputs to V_{ub}/SF: it would be desirable an update of the 1S scheme framework

- **Exclusive Vcb**
 - General agreement to move to model independent FF parameterizations
 - New Lattice-FF calculation for $B \rightarrow D^*$ (even a non-zero recoil) are on the way from MILC/FNAL and HPQCD
Semileptonic Decays

- **Inclusive decays** $B \rightarrow X_u \ell \nu$:
 - QCD corrections to parton level decay rate
 - Operator Production Expansion in α_s and Λ/m_b

- **Exclusive decays** $B \rightarrow \pi/\rho \ell \nu$:
 - QCD correction parameterized in the Form Factors
 - Lattice-QCD, LCSR
Experiments: B-Factories

B-Factories: hermetic detectors, low background, access (mainly) at B^{0/+}

@ KEK Japan: 1999-2009

@ SLAC: 1999-2008

About \((771 + 467) \times 10^6\) e^+e^- → Y(4S) → BB events in the Belle+Babar data

Belle-II aims to collect 50ab^{-1} by 2024

Belle and KEK is being upgraded
LHCb: forward spectrometer for flavor physics
Excellent tracking and vertexing capabilities.
Excellent PID performances
Access to all hadrons with b- and c-quarks

Collected 3.0 fb\(^{-1}\) in 2011-2012
The gap problem

<table>
<thead>
<tr>
<th>charm state X_c</th>
<th>$B(B \to X_c \ell \bar{\nu})$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2.29 ± 0.09</td>
</tr>
<tr>
<td>D^*</td>
<td>5.43 ± 0.17</td>
</tr>
<tr>
<td>$\sum D^{(*)}$</td>
<td>7.71 ± 0.19</td>
</tr>
<tr>
<td>$D_0^{*} \to D \pi$</td>
<td>0.41 ± 0.08</td>
</tr>
<tr>
<td>$D_1^{} \to D^{} \pi$</td>
<td>0.45 ± 0.09</td>
</tr>
<tr>
<td>$D_1 \to D^{*} \pi$</td>
<td>0.43 ± 0.03</td>
</tr>
<tr>
<td>$D_2^{} \to D^{()} \pi$</td>
<td>0.41 ± 0.03</td>
</tr>
<tr>
<td>$\sum D^{**} \to D^{(*)} \pi$</td>
<td>1.70 ± 0.12</td>
</tr>
<tr>
<td>$D_s^{(*)^-} K^+$</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>D^{π}</td>
<td>0.66 ± 0.08</td>
</tr>
<tr>
<td>$D^{*} \pi$</td>
<td>0.87 ± 0.10</td>
</tr>
<tr>
<td>$\sum D^{(*)} \pi$</td>
<td>1.53 ± 0.13</td>
</tr>
<tr>
<td>$\sum D^{()} + \sum D^{**} \to D^{()} \pi + D_s^{(*)^-} K^+$</td>
<td>9.47 ± 0.22</td>
</tr>
<tr>
<td>$\sum D^{()} + \sum D^{()} \pi + D_s^{(*)^-} K^+$</td>
<td>9.30 ± 0.23</td>
</tr>
</tbody>
</table>

Inclusive – Σexclusive = (1.51 ± 0.26) %

From T.Lueck @EPS2015
Status of the “gap”

\[
\Delta BF = BF_{\text{incl}} - \sum \left[BF(\overline{B} \to D^{(*)}(\pi)K \ell \nu) + BF(\overline{B} \to D_s^{(*)}(K)\ell \nu) \right]
\]

Extrapolation to $\pi\pi$ with implicit isospin assumptions

\[
\Delta BF \rightarrow
\]

gap reduced from $\approx 7\sigma$ to $\approx 3\sigma$

extrapolation to full B assumed $\Gamma(D^{(*)}\pi^+\pi^-\ell\nu)/\Gamma(D^{(*)}\pi\pi\ell\nu) = 0.50 \pm 0.17$

From T. Lueck
@EPS2015