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We propose that both anomalies in B meson decays, RD(⇤) and RK might be explained by only
one vector leptoquark weak triplet state. The constraints on the parameter space are obtained by
considering t ! b⌧⌫⌧ data, lepton flavor universality tests in the kaon sector, bounds on the lepton
flavor violating decay B ! Kµ⌧ , and b ! cµ⌫µ decays. The presence of such vector leptoquark
could be exposed in precise measurements of top semitauonic decays to b quark. The model predicts
that LFU ratio RK⇤ in B ! K⇤`+`� decays is larger than RK .

I. INTRODUCTION

Although LHC has not found yet any particles not present in the Standard Model (SM), low-energy precision
experiments in B physics pointed out a few puzzling results. Namely, we are witnessing persistent indications of
disagreement with the SM prediction of lepton flavor universality (LFU) ratio in the ⌧/µ and ⌧/e sector. In the case

of ratio RD(⇤) = �(B!D(⇤)⌧⌫)
�(B!D(⇤)`⌫)

[1–6], the deviation from the SM is at 3.5� level [7] and has attracted a lot of attention

recently [8, 9]. Since the denominator of these ratios are the well measured decay rates with light leptons in the final
states, ` = e, µ, the most obvious interpretation of RD(⇤) results are in terms of new physics a↵ecting semileptonic
b ! c⌧⌫ processes [10].

The second group of observables, testing rare neutral current processes with flavor structure (s̄b)(µ+µ�) also indicate
anomalous behaviour [11–21]. Decay B ! K⇤µ+µ� deviates from the SM in the by-now-famous P 0

5

angular observable
at the confidence level of above 3� [22]. If interpreted in terms of new physics, all analyses point to modifications of
the leptonic vector current, which is also subject to large uncertainties due to nonlocal QCD e↵ects. However, several
studies have shown that even with generous errors assigned to QCD systematic e↵ects, the anomaly is not washed
away [23]. Furthermore, the sizable violation of LFU in the ratio RK = �(B!Kµµ)

�(B!Kee) in the dilepton invariant mass

bin 1 GeV2  q2  6 GeV2, has been established at 2.6�. This ratio is largely free of theoretical uncertainties and
experimental systematics, deviates in the muon channel consistently with the deviation in B ! Kµ+µ�. Strikingly
enough all these disagreements were observed in the B meson decays to the leptons of the second and third generation.
As pointed out in [10] lepton flavour universality has been tested at percent level and are in the case of pion and kaon
in excellent agreement with the SM predictions. It has been already suggested that scalar leptoquark might account
for this anomalous behaviour in many works [7, 12, 14, 24–27].

Many models of New Physics (NP) [1–6, 8, 9, 11–21, 27] have been employed to explain either RK and P 0
5

anomalies
or RD(⇤) . Reference [15] suggested that RK and P 0

5

can be explained if NP couples only to the third generations of
quarks and leptons. Similarly, the authors of [9] suggested that both RD(⇤) and RK anomalies can be correlated if the
e↵ective four-fermion semileptonic operators consist of left-handed doublets. The model of [28] proposed existence
of an additional weak bosonic triplet and falls in the category of weak doublet fermions coupling to the weak triplet
bosons, which then can explain all three B meson anomalies. Among the NP proposals a number of them suggest

that one scalar leptoquark accounts for either R(⇤)
D or RK anomalies. Howerer, in the recent paper [7] both deviations

were addressed by a single scalar leptoquark with quantum numbers (3, 1,�1/3) in such a way that RD(⇤) anomalies
is explained at the tree level, while RK only at loop level. This leptoquark scalar, unfortunately can couple to diquark
state too and therefore it potentially leads to proton decay. One may impose that this dangerous coupling vanishes,
but such a scenario is not easily realised within any GUT approach.

In this paper, we extend the SM by a vector SU(2) triplet leptoquark, which accomplishes both of the above
requirements by generating purely left handed currents with quarks and leptons. Furthermore, the triplet nature
of the state connects the above mentioned anomalies with the rare decay modes of B mesons to a final states with

⇤
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3.9σ	

(angular	distribu>on	func>ons)	3σ	

2.4σ	

charged		current	SM	tree	level	

FCNC	-	SM	loop	process		

B	physics	anomalies:	experimental	results	≠	SM	predic>ons!	

																												



QCD	impact:	knowledge	of	form-factors!	

How	well	do	we	know	all	new/old		form-factors?	Laece	improvements?	

Standard	Model	or	New	Physics?	

π	and	K	physics:		tests	of	LFU	conserva>on	holds	up	to	1	percent	level		for	all	three	
lepton	genera>ons.			Experiment	and	SM	expecta>ons	–	excellent	agreement!	

	Can	flavor	physics	resolves		puzzles	relying	on	the	exis>ng	SM	tools?	

B	physics	puzzles	indicate	lepton	flavor	universality	viola0on	in	semileptonic	
decays	(?)!	

Are	SM	calcula>ons	of	the	exis>ng	observables	precise	enough?		



Motivation HFAG average today
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Charged	current	in		b					c	τυτ	“	RD(*)	puzzle”	



RD(⇤) =
BR(B ! D(⇤)⌧⌫⌧ )

BR(B ! D(⇤)µ⌫µ)
1)	 3.9σ	

charged		current	(SM	tree	level)	

B	physics	anomalies:	experimental	results	≠	SM	predic>ons!	

Motivation

So far no clear signal of NP has been found at the LHC
) unique opportunity for indirect searches (e.g. flavor physics).

A few cracks [⇡ 2� 3�] appeared recently in B meson decays
) Violation of Lepton Flavor Universality (LFU)?

RD(⇤) =
B(B ! D (⇤)⌧ ⌫̄)

B(B ! D (⇤)`⌫̄)

�����
`2{e,µ}

, RK =
B(B+ ! K+µµ)

B(B+ ! K+ee)

�����
q22(1,6)GeV

2
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Momentum transfer distributions, A. Cellis et al,1612.07757   
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FIG. 4. Left-panel: Measured di↵erential distributions in B ! D⌧⌫ by BaBar and Belle as a function of the lepton invariant
mass squared q2. The 1� ranges obtained from the model-independent fit of R(D) and the q2 distribution are shown as solid-red
bands. The result of a SM fit (excluding R(D(⇤))) is shown as solid-grey bands. The prediction for regions of the NP parameter
space allowed by R(D(⇤)), but excluded by the shape information are shown as solid-green bands. Note that the BaBar data-
points have been re-scaled by the relative normalization factor obtained in the fit to have the same scale as the one from Belle.
Right-panel: The q2-binned SM prediction for R(D) and result from the fit including the scalar contribution.

FIG. 5. The caption is the same as in Fig. 4 but for B ! D⇤⌧⌫.

distributions, although the minimal �2 of the combina-
tion is similar to the one with gcb⌧L , only indicating less
tension between di↵erential distributions and R(D(⇤)).

Adding both contributions simultaneously, as we did
above, yields a better result than in both of these two
sub-scenarios. Note that this option has been ignored in
Ref. [14], leading to the incorrect statement that scalar
contributions alone could not explain R(D(⇤)) together
with the measured di↵erential distributions.

Finally, it is worth mentioning that none of the scenar-
ios with NFC improves the description of R(D(⇤)) over
the SM case: the only scenario that could a↵ect these
observables sizably is the Type-II 2HDM, but the con-
straints from R(D) and R(D⇤) contradict each other in

this case.3

2. b ! u⌧⌫

The semitauonic b ! u transitions are less explored
experimentally, given their additional suppression by
|Vub/Vcb|2 ⇠ 1%. We find a mild tension for the ex-
perimental value of R(⌧) with respect to the SM pre-
diction, of about 1.8�, see Table I. The measurement
of B ! ⇡⌧⌫ is not significant yet, and well compatible

3 For this statement to hold strictly the e↵ect on the di↵erential
distributions has to be taken into account; however, the BaBar
analysis [4, 25] indicates that it holds even then.
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– 4-momentum of 𝐵sig is determined by had-tag.
– Two-body hadronic 𝜏 decays are used.
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I. INTRODUCTION

Semitauonic B meson decays with b ! c⌧

�
⌫̄⌧ [1] transitions are sensitive to new physics

(NP) beyond the standard model (SM) involving non-universal coupling to heavy fermions.

One prominent candidate for NP is the Two Higgs Doublet Model (2HDM) [2], which has

an additional Higgs doublet and therefore introduces two neutral and two charged Higgs

bosons in addition to the SM Higgs boson. The charged Higgs bosons may contribute to

the b ! c⌧

�
⌫̄⌧ process, modifying its branching fraction and decay kinematics.

Exclusive semitauonic decays of the type B̄ ! D

(⇤)
⌧

�
⌫̄⌧ have been studied by Belle [3–

6], BaBar [7, 8] and LHCb [9]. The experiments typically measure the ratios of branching

fractions,

R(D(⇤)) ⌘ B(B̄ ! D

(⇤)
⌧

�
⌫̄⌧ )

B(B̄ ! D

(⇤)
`

�
⌫̄`)

(1)

where the denominator is the average for `

� 2 {e�, µ�}. The ratio cancels uncertainties

common to the numerator and the denominator. These include the Cabibbo-Kobayashi-

Maskawa matrix element |Vcb| and many of the theoretical uncertainties on hadronic form

factors and experimental reconstruction e↵ects. The current averages of the three experi-

ments [5, 6, 8, 9] are R(D) = 0.397 ± 0.040 ± 0.028 and R(D⇤) = 0.316 ± 0.016 ± 0.010,

which are within 1.9� and 3.3� [10] of the SM predictions of R(D) = 0.299 ± 0.011 [11]

or 0.300 ± 0.008 [12] and R(D⇤) = 0.252 ± 0.003 [13], respectively. Here, � represents the

standard deviation.

In addition to R(D(⇤)), the polarization of the ⌧ lepton and the D⇤ meson is also sensitive

to NP [14, 15]. The polarization of the ⌧ lepton (P⌧ ) is defined by

P⌧ =
�+ � ��

�+ + �� , (2)

where �± denotes the decay rate of B̄ ! D

(⇤)
⌧

�
⌫̄⌧ with a ⌧ helicity of ±1/2. The SM

predicts P⌧ = 0.325 ± 0.009 for B̄ ! D⌧

�
⌫̄⌧ [14] and P⌧ = �0.497 ± 0.013 for B̄ !

D

⇤
⌧

�
⌫̄⌧ [15, 16]. The ⌧ polarization is accessible in two-body hadronic ⌧ decays with the

following formulae [17]:

1

�

d�

d cos ✓
hel

=
1

2
(1 + ↵P⌧ cos ✓hel), (3)

↵ =

8
><

>:

1 for pseudo-scalar mesons

m2
⌧�2m2

V

m2
⌧+2m2

V
for vector mesons,

(4)
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FIG. 4. Fit result to the signal sample projected onto the cos ✓
hel

axis.

⇡

0, K± and ⇡

±, and is therefore correlated with the e�ciency uncertainty of the ⌧ -daughter

particles containing ⇡

± and ⇡

0. This correlation is taken into account in the total systematic

uncertainties shown in Table II.

VII. RESULT

Figure 3 shows the fits to the signal and the normalization samples. (The figures in the

forward and backward regions are shown in the Appendix .) The cos ✓
hel

distribution is

shown in Fig. 4. The observed signal and normalization yields are summarized in Table III.

The p-values are found to be 15% for the normalization fit and 29% for the signal fit. From

the fit, we obtain

R(D⇤) = 0.276± 0.034(stat.)+0.029
�0.026(syst.), (12)

P⌧ = �0.44± 0.47(stat.)+0.20
�0.17(syst.). (13)

The signal significance is 9.7� (statistical error only) or 7.1� (including the systematic

uncertainty). The significance is taken from
p
2 ln(L

max

/L

0

), where L

max

and L

0

are the

likelihood with the nominal fit and the null hypothesis, respectively.
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⌧� ! ⇡�⌫ , ⇢�⌫

Belle (2016)

Standard Model predictions Current experimental data

Becirevic ́, Tayduganov, Fajfer, Nisandzic, Alonso, Camalich, Westhoff, Datta, Duraisamy, Ghosh  

With Belle II in mind, considerable recent progress on the description 
of the full angular distributions in the presence of generic NP
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There	are	11	observables:		

1.	Differen>al	decay	distribu>on		

2.	Forward-backward	asymmetry	

3.	Lepton	polariza>on	asymmetry	

2. Forward-Backward asymmetry:

AD⇤

FB(q
2) =

Z
1

0

d2�

dq2d cos ✓`
d cos ✓` �

Z
0

�1

d2�

dq2d cos ✓`
d cos ✓`

d�/dq2
=

b✓`(q
2)

d�/dq2

=
G2

F |Vcb|2|q|q2
128⇡3m2

B(d�/dq
2)

✓
1� m2

`

q2

◆
2

⇥

|H

+

|2 � |H�|2 + 2
m2

`

q2
Re[H

0

H⇤
t ]

�
. (41)

3. Lepton-polarization asymmetry: We define the di↵erential decay rates, d�±/dq2, with

the spin of the charged lepton projected along the z-axis and with �` = ±1/2. In other

words,

d��

dq2
(B ! D⇤`⌫`) =

G2

F |Vcb|2|q|q2
96⇡3m2

B

✓
1� m2

`

q2

◆
2

⇥ �|H
+

|2 + |H�|2 + |H
0

|2� ,

d�+

dq2
(B ! D⇤`⌫`) =

G2

F |Vcb|2|q|q2
96⇡3m2

B

✓
1� m2

`

q2

◆
2

m2

`

2q2
⇥ �|H

+

|2 + |H�|2 + |H
0

|2 + 3|Ht|2
�
,

(42)

and the lepton polarization asymmetry reads,

AD⇤

�`
(q2) =

d��/dq2 � d�+/dq2

d�/dq2
= 1� 2

d�+/dq2

d�/dq2
. (43)

4. Partial decay rate according to the polarization of D⇤: Splitting the decay rate accord-

ing to the polarization of the D⇤-meson amounts to,

d�L

dq2
=

2

3

⇥
a✓D(q

2) + c✓D(q
2)
⇤
,

d�T

dq2
=

4

3
a✓D(q

2), (44)

where the functions on the r.h.s. are given in eq. (33). One of these components is

independent, while the other can be obtained from � = �L + �T . To cancel the CKM and

kinematic factors we can define

RL,T =
d�L/dq

2

d�T/dq
2

=
|H

0
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1 Introduction

One of the most intriguing results obtained so far at the Large Hadron Collider (LHC) is
the indication of the lepton flavor universality violation (LFUV). First, from the measured
partial branching fractions of B ! K`

+

`

�, in the window of q2 2 [1, 6] GeV2, the LHCb
Collaboration in Ref. [1] reported

RK =
B(B ! Kµµ)q22[1,6]GeV

2

B(B ! Kee)q22[1,6]GeV

2
= 0.745±0.090

0.074 ±0.036 , (1)

which appears to be 2.4� below the Standard Model (SM) prediction, RSM

K = 1.00(1) [2].
Not many New Physics (NP) models can explain R

exp

K < R

SM

K , yet many attempts have
been reported in the literature [3]. In terms of a generic low energy e↵ective field theory it
was soon realized that the models in which the NP contributions modify the couplings to
muons, rather than to electrons, are more plausible. Furthermore it was understood that
a modification of the couplings (Wilson coe�cients) of muons to the scalar and/or pseu-
doscalar operator cannot generate the observed suppression, whereas a shift in couplings to
the vector and/or axial operator can. Among those latter scenarios the popular are those
that give rise to C

9

= �C

10

, or C 0
9

= �C

0
10

, patterns that are explicitly verified in several
models, including those with an extra Z

0 boson as well as the models which postulate the
existence of low energy leptoquark states.

The hint that the loop induced decays b ! s`` can break lepton flavor universality (1)
was corroborated by the most recent LHCb results [4],

R

low

K⇤ =
B(B ! Kµµ)q22[0.045,1.1]GeV

2

B(B ! Kee)q22[0.045,1.1]GeV

2
= 0.660±0.110

0.070 ±0.024 ,

R

central

K⇤ =
B(B ! Kµµ)q22[1.1,6]GeV

2

B(B ! Kee)q22[1.1,6]GeV

2
= 0.685±0.113

0.069 ±0.047 , (2)

thus again ⇠ 2.2 � 2.4� below the Standard Model (SM) prediction [2]. If confirmed,
that result would exclude the model of Ref. [5], for example, in which the explanation
of Rexp

K < R

SM

K was made by means of a scalar leptoquark with hypercharge Y = 1/6.
That latter model verifies the pattern (Cµµ

9

)0 = � (Cµµ
10

)0, which entails RK < R

SM

K entails
RK⇤

> R

SM

K⇤ .
In this paper we will argue that another model with a low energy scalar leptoquark state

can be explain both R

exp

K < R

SM

K and R

exp

K⇤ < R

SM

K⇤ . In that (R
2

) model the leptoquark state
transforms as (3, 2, 7/6) under the Standard Model gauge group SU(3)⇥SU(2)⇥U(1)Y . A
peculiarity of the model is that the coupling of leptoquark to s and µ is absent and therefore
the shift in C

µµ
9

can be only achieved through loops. The model verifies Cµµ
9

= �C

µµ
10

, so
that both RK and RK⇤ can be smaller than in the Standard Model.

The idea of explaining RK < R

SM

K as a loop e↵ect in a model with a scalar leptoquark
is not new. In Ref. [6] the authors organized the Yukawa couplings in a similar way but
in a model in which the scalar leptoquark is a weak singlet with hypercharge Y = 1/3. It
appeared that the dominant contribution, arising from the top-quark propagating in the
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Effec>ve		Lagrangian	approach	in	RK(*)	

2

order to determine whether RK anomaly is due to NP in electron or/and muon couplings through a combined analysis
of several decay modes, it is very important to have a high precision knowledge of hadronic form factors [16–18], which
can be computed in the region of large q2’s by means of numerical simulations of QCD on the lattice [23–25].

In this study we first use a model independent approach, assuming that NP contributes at low energies to an
operator that is a product of a right-handed quark and a left-handed muon current. In the language of b ! sµµ
e↵ective Hamiltonian such a situation corresponds to a combination of Wilson coe�cients C 0

9 and C 0
10, and that they

obey C 0
9 = �C 0

10. Decays to the final states with electron-positron pair are instead governed by the SM only. This
assumption is motivated by the fact that measured quantities of b ! se+e� processes agree with the SM predictions
better than they do for the b ! sµ+µ� processes [12], which are also more precisely measured than the electronic
modes. We consider simultaneously the constraints posed by B(B ! Kµ+µ�) and B(Bs ! µ+µ�) on such a scenario,
and then predict the RK as well as RK⇤ . We discuss other observables which might serve as additional probes of the
observed lepton-flavor universality violation.

A specific realization of the scenario we discuss in this paper is a model with a light scalar leptoquark � with
quantum numbers of SU(3)c ⇥ SU(2)L ⇥ U(1)Y being (3, 2, 1/6). It indeed verifies the relation, C 0

9 = �C 0
10 [9],

and leads to a consistency with the measured value of RK . The features of this leptoquark state have been already
described in the literature [26]. While there is no theoretical motivation to forbid leptoquark contributing to b ! see
decays, simultaneous presence of both muonic and electronic couplings could be problematic because they would,
together, induce lepton flavor violation in Bs ! eµ and µ ! e� decays. It is interesting that the flavor physics
constraints at low energies agree and are complementary with the constraints obtained from the direct experimental
searches at LHC [27, 28]. Furthermore, the atomic parity violation experiments provided a strong constraint on the
interaction of the down-quark–electron interaction with the leptoquark state [26, 29], while the couplings to muons
appear to be less constrained via B(KL ! µ±e⌥) < 4.7 ⇥ 10�12 [26, 30]. We therefore assume in our analysis that
in the b ! s`+`� processes only the muons can interact with the leptoquark state. A few other leptoquark states
have been discussed in the literature [6, 9, 14, 16] as possible candidates to contribute to the RK anomaly. However,
the leptoquark with quantum numbers (3, 2, 1/6) has a desired feature that it can be light without destabilizing the
proton [31–33]. Notice also that another light leptoquark scalar state, not mediating the proton decay, is (3, 2, 7/6)
and it leads to the relation C9 = C10. That latter scenario, however, cannot explain the RK anomaly as discussed in
Refs. [6, 14].

In Sec. II we remind the reader of the main definitions and give basic expressions for B(Bs ! µ+µ�) and B(B !
Kµ+µ�), which are then used, together with the experimental data in Sec. III, to constraint C 0

10 = �C 0
9 and show the

consistency of our value for RK with the measured one at LHCb. Furthermore, we make a prediction of the similar
ratio in the case of B ! K⇤`+`� decays and discuss other observables that might be of interest for testing the lepton
flavor universality violation. In Sec. IV we discuss a model with scalar leptoquark in which the relation C 0

10 = �C 0
9

holds exactly, and is connected to other similar processes involving the b ! s transitions which we also discuss. We
finally summarize our findings in Sec. V.

II. EFFECTIVE HAMILTONIAN AND BASIC FORMULAS

The processes with flavor structure (s̄b) (µ̄µ) at scale µ = µb = 4.8 GeV are governed by dimension-6 e↵ective
Hamiltonian [34–36]:

He↵ = �4GFp
2
VtbV

⇤
ts

2

4
6X

i=1

Ci(µ)Oi(µ) +
X

i=7,...,10

(Ci(µ)Oi(µ) + C 0
i(µ)O0

i(µ))

3

5 . (3)

The contributions of the charged-current operators O1,2, QCD penguins O3,...,6, and the electromagnetic (chromomag-
netic) dipole operators O7 (O8) will be assumed to be saturated by the SM. On the other hand, operators involving
a quark and a lepton current will contain the SM and potential NP contributions. The basis of operators may be
further extended to account for possible (pseudo)scalar or tensor operators [23], whereas for the purposes of this work
the following operators will su�ce:

O7 =
e

g2
mb(s̄�µ⌫PRb)F

µ⌫ , O8 =
1

g
mb(s̄�µ⌫G

µ⌫PRb) ,

O9 =
e2

g2
(s̄�µPLb)(¯̀�

µ`) , O10 =
e2

g2
(s̄�µPLb)(¯̀�

µ�5`) .

(4)

Here PL/R = (1 ⌥ �5)/2, while e is the electromagnetic and g the color gauge coupling. Fµ⌫ and Gµ⌫ are the
electromagnetic and color field strength tensors, respectively. The basis is further extended by the wrong-chirality
operators, O0

9,10, which are related to O9,10 by replacing PL $ PR in the quark current.
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3

A. B ! Kµ+µ�

In calculating the amplitude for the B ! Kµ+µ� decay it is convenient to group the combinations of Wilson
coe�cients multiplying the same hadronic matrix element. Namely, the operators O1�6 mix at leading order into
O7,8,9 and it is customary to define e↵ective Wilson coe�cients as [37]:

Ce↵
7 (µb) =

4⇡

↵s
C7 �

1

3
C3 �

4

9
C4 �

20

3
C5 � 80

9
C6 ,

Ce↵
9 (µb) =

4⇡

↵s
C9 + Y (q2) ,

Ce↵
10 (µb) =

4⇡

↵s
C10 , C 0e↵

7,8,9,10(µb) =
4⇡

↵s
C 0

7,8,9,10 ,

(5)

where the function Y (q2) at NLL can be found in Ref. [38]. We also incorporate the NNLL mixing of O1 and O2 into
O7 and O9 as calculated in Ref. [39]. The Wilson coe�cients on the right-hand sides are evaluated at µ = µb. For the
sake of readability we will from here on discuss only the e↵ective Wilson coe�cients that will be addressed simply as
“Wilson coe�cients” and denoted without the “e↵” label. The values of the SM Wilson coe�cients at scale µb are
C7 = �0.304, C9 = 4.211, and C10 = �4.103 [37, 38, 40].

The decay spectrum as a function of the invariant mass of the muon pair is given by

d�

dq2
(B ! Kµ+µ�) = 2aµ(q

2) +
2

3
cµ(q

2) , (6)

where q2 = (pµ� + pµ+)2, while functions aµ(q2), cµ(q2) are combinations of Wilson coe�cients and hadronic form
factors and their explicit expressions can be found in Ref. [23] and in the Appendix of the present paper in the limit of
m` ! 0. The rate depends on the sums of the Wilson coe�cients of opposite chiralities, C7+C 0

7, C9+C 0
9, C10+C 0

10,
from what follows that even in principle we cannot determine the chirality of the quark-current in B ! Kµ+µ�.

Definitions of the hadronic form factors are relegated to the Appendix. We employ the form factors calculated in
the unquenched lattice simulation using non-relativistic formulation of the b quark and staggered fermion formulation
for the light quarks [24]. We use the z-expansion to parameterize the form factors and take into account the statistical
errors given by the covariance matrix of the parameters, both given in [24]. However, we neglect additional systematic
errors that should come on top of the ones contained in the covariance matrix. The correlations between form factor
parameters are propagated onto observables of interest, namely we can construct �2 statistic for B(B ! Kµ+µ�)
and RK , that are functions of the form factor parameters, as well as the Wilson coe�cients. Nonlocal contributions
to the decay amplitude due to operators O1,2 are taken into account by leading order in operator product expansion
together with next-to-next-to-leading logarithmic QCD corrections [39]. Higher orders in operator product expansion
have been shown to have small e↵ect in the large q2 region [41]. Since the partial branching ratio that we are interested
in corresponds to an integral over a large region of q2 we rely on the semi-local quark-hadron duality [42]. In the SM
limit the prediction of the branching ratio in the high-q2 bin is

B(B+ ! K+µ+µ�)|SMq22[15,22]GeV2 = (10.2± 0.5)⇥ 10�8 . (7)

The LHCb collaboration measured partial branching fractions below and above the region of charmonium reso-
nances. For the q2 > 15 GeV2 region we can predict the partial branching ratio using form factors determined on the
lattice that are largely free from extrapolation errors and parameterization dependence. Thus we will use [43],

B(B+ ! K+µ+µ�)|q22[15,22]GeV2 = (8.5± 0.3± 0.4)⇥ 10�8 , (8)

as an experimental constraint, where the errors quoted are statistical and systematic, respectively. In our analysis we
will sum the two and treat the observable with a Gaussian �2.

B. Bs ! µ+µ�

This decay receives contributions from operators with axial, scalar, and pseudoscalar lepton currents, and, owing
to the pseudoscalar nature of the Bs meson, the wrong-chirality Wilson coe�cients will a↵ect the decay with opposite
sign. In the absence of (pseudo)scalar operators, the amplitude is proportional to the di↵erence C10 � C 0

10:

P =
2mµ

mBs

(C10 � C 0
10) , (9)
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Effective operator analysis

• Global b→sμμ data prefer: decrease muonic decay rate B → Kμμ,   
possible alternative: increase electronic rate B → Kee 

•  Scalar operators CS=-CP, CS’=CP’ for muons: large sensitivity in 
Br(Bs→ μμ) ✗ 

•  Scalar operators CS=-CP, CS’=CP’ for electrons can decrease RK: in 
conflict with rate of B → Kee ✗ 

• (Axial)vector operators or LEFT chiral vector currents: can affect μ or 
e ✓

O(0)
7 =

e

(4⇡)2
mb(s̄�µ⌫PR(L)b)F

µ⌫

O(0)
9 =

e2

(4⇡)2
(s̄�µPL(R)b)(¯̀�

µ`) O(0)
10 =

e2

(4⇡)2
(s̄�µPL(R)b)(¯̀�

µ�5`)

O(0)
S =

e2

(4⇡)2
(s̄PR(L)b)(¯̀̀ ) O(0)

P =
e2

(4⇡)2
(s̄PR(L)b)(¯̀�5`)

[Hiller, Schmaltz, 1408.1627] 
[Hiller, Schmaltz, 1411.4773]

Destructive interference with SM in 
B → Kμμ and  Bs→ μμCµ

9 = �Cµ
10 ⇠ �[0.5, 1]

(relative to the SM values)
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There	are	many	a�empts	to	understand	each	of	them	separately.	
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To date, the standard model (SM) has been extremely successful in describing
experimental data. There are, however, a few measurements that are in disagreement
with the predictions of the SM. For example, the LHCb Collaboration recently mea-
sured the ratio of decay rates for B+ → K+ℓ+ℓ− (ℓ = e, µ) in the dilepton invariant
mass-squared range 1 GeV2 ≤ q2 ≤ 6 GeV2 [1]. They found

RK ≡
B(B+ → K+µ+µ−)

B(B+ → K+e+e−)
= 0.745+0.090

−0.074 (stat)± 0.036 (syst) , (1)

which is a 2.6σ difference from the SM prediction of RK = 1 ± O(10−4) [2]. As
another example, the BaBar Collaboration with their full data sample has reported
the following measurements [3, 4]:

R(D) ≡
B(B̄ → D+τ−ν̄τ )

B(B̄ → D+ℓ−ν̄ℓ)
= 0.440± 0.058± 0.042 ,

R(D∗) ≡
B(B̄ → D∗+τ−ν̄τ )

B(B̄ → D∗+ℓ−ν̄ℓ)
= 0.332± 0.024± 0.018 , (2)

where ℓ = e, µ. The SM predictions are R(D) = 0.297± 0.017 and R(D∗) = 0.252±
0.003 [3, 5], which deviate from the BaBar measurements by 2σ and 2.7σ, respectively.
(The BaBar Collaboration itself reported a 3.4σ deviation from SM when the two
measurements of Eq. (2) are taken together.) These two measurements of lepton
flavor non-universality, respectively referred to as the RK and R(D(∗)) puzzles, may
be providing a hint of the new physics (NP) believed to exist beyond the SM.

In addition, we note that the three-body decay B0 → K∗µ+µ− by itself offers a
large number of observables in the kinematic and angular distributions of the final-
state particles, and it has been argued that some of these distributions are less affected
by hadronic uncertainties [6]. Interestingly, the measurement of one of these observ-
ables shows a deviation from the SM prediction [7]. However, the situation is not clear
whether this anomaly is truly a first sign of new physics. There are unknown hadronic
uncertainties that must be taken into account before one can draw this conclusion
[8, 9, 10]. We therefore do not discuss this measurement further.

To search for an explanation of RK , in Ref. [11] Hiller and Schmaltz perform a
model-independent analysis of b → sℓ+ℓ−. They consider NP operators of the form
(s̄Ob)(ℓ̄O′ℓ), where O and O′ span all Lorentz structures. They find that the only NP
operator that can reproduce the experimental value of RK is (s̄γµPLb)(ℓ̄γµPLℓ). This
is consistent with the NP explanations for the B → K(∗)µ+µ− angular distributions
measured by LHCb [9].

In Ref. [12], Glashow, Guadagnoli and Lane (GGL) note that lepton flavor non-
universality is necessarily associated with lepton flavor violation (LFV). With this in
mind, they assume that the NP couples preferentially to the third generation, giving
rise to the operator

G(b̄′Lγµb
′
L)(τ̄

′
Lγ

µτ ′L) , (3)

1

where G = O(1)/Λ2
NP ≪ GF , and the primed fields are the fermion eigenstates in

the gauge basis. The gauge eigenstates are related to the physical mass eigenstates
by unitary transformations involving Ud

L and U ℓ
L:

d′L3 ≡ b′L =
3
∑

i=1

Ud
L3idi , ℓ′L3 ≡ τ ′L =

3
∑

i=1

U ℓ
L3iℓi . (4)

With this, Eq. (3) generates an NP operator that contributes to b̄ → s̄µ+µ−:

G
[

Ud
L33U

d∗
L32|U ℓ

L32|2(b̄LγµsL)(µ̄Lγ
µµL) + h.c.

]

. (5)

Because the coefficient of this operator involves elements of the mixing matrices,
which are unknown, one cannot make a precise evaluation of the effect of this operator
on B(B+ → K+µ+µ−), and hence on RK . Still, GGL note that the hierarchy of
the elements of Cabibbo-Kobayashi-Maskawa quark mixing matrix, along with the
apparent preference of the NP for muons over electrons, suggests that |Ud,ℓ

L33| ≃ 1 and
|Ud,ℓ

L31|2 ≪ |Ud,ℓ
L32|2 ≪ 1. Furthermore, there are limits on some ratios of magnitudes

of matrix elements. Taken together, GGL find that the observed value of RK can be
accommodated with the addition of the NP operator in Eq. (5).

In any case, GGL’s main point is not so much to offer Eq. (3) as an explanation of
RK , but rather to stress that the NP responsible for the lepton flavor non-universality
will generally also lead to an enhancement of the rates for lepton-flavor-violating
processes such as B → Kµe,Kµτ and Bs → µe, µτ . In the case of Eq. (3), it is clear
how LFV arises. This operator is written in terms of the fermion fields in the gauge
basis and does not respect lepton-flavor universality. In transforming to the mass
basis, the GIM mechanism [13] is broken, and processes with LFV are generated.

In fact, this behavior is quite general. In writing down effective Lagrangians, it is
usually only required that the operators respect SU(3)C × U(1)em gauge invariance.
However, it was argued in Refs. [11, 14] that if the scale of NP is much larger than the
weak scale, the operators generated when one integrates out the NP must be invariant
under the full SU(3)C×SU(2)L×U(1)Y gauge group. In the same vein, the operators
should be written in terms of the fermion fields in the gauge basis – after all, above
the weak scale, the mass eigenstates do not (yet) exist. If these operators break lepton
universality, lepton-flavor-violating interactions will appear at low energy when one
transforms to the mass basis. (Note, however, that in explicit models one can avoid
lepton flavor non-universality and lepton flavor violation through the imposition of
additional symmetries. One such example can be found in Ref. [15].)

There have been a number of analyses, both model-independent and model-
dependent, examining explanations of the RK puzzle. (Sometimes the data from the
B → K(∗)µ+µ− angular distributions were also included.) In all cases, the low-energy
operators were written in terms of mass eigenstates, and lepton-flavor-violating oper-
ators were not included. However, as argued above, such operators will appear when
lepton universality is broken. Now, the model-independent analyses [9, 11, 14, 16] will
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Revisiting Lepton Flavour Universality in B Decays
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Lepton flavour universality (LFU) in B-decays is revisited by considering a class of semileptonic
operators defined at a scale ⇤ above the electroweak scale v. The importance of quantum e↵ects,
so far neglected in the literature, is emphasised. We construct the low-energy e↵ective Lagrangian
taking into account the running e↵ects from ⇤ down to v through the one-loop renormalization
group equations (RGE) in the limit of exact electroweak symmetry and QED RGEs from v down to
the 1GeV scale. The most important quantum e↵ects turn out to be the modification of the leptonic
couplings of the vector boson Z and the generation of a purely leptonic e↵ective Lagrangian. Large
LFU breaking e↵ects in Z and ⌧ decays and visible lepton flavour violating (LFV) e↵ects in the
processes ⌧ ! µ``, ⌧ ! µ⇢, ⌧ ! µ⇡ and ⌧ ! µ⌘(0) are induced.

Introduction Lepton flavour universality (LFU) tests
are among the most powerful probes of the Standard
Model (SM) and, in turn, of New Physics (NP) e↵ects.
In recent years, experimental data in B physics hinted at
deviations from the SM expectations, both in charged-
current as well as neutral-current transitions. The sta-
tistically most significant data are:

• An overall 3.9� violation from the ⌧/` universality
(` = µ, e) in the charged-current b ! c decays [1–4]:

R⌧/`
D(⇤) =

B(B̄ ! D(⇤)⌧ ⌫̄)
exp

/B(B̄ ! D(⇤)⌧ ⌫̄)SM
B(B̄ ! D(⇤)`⌫̄)

exp

/B(B̄ ! D(⇤)`⌫̄)SM
, (1)

R⌧/`
D = 1.37± 0.17, R⌧/`

D⇤ = 1.28± 0.08 . (2)

• A 2.6� deviation from µ/e universality in the
neutral-current b ! s transition [5]:

Rµ/e
K =

B(B ! Kµ+µ�)
exp

B(B ! Ke+e�)
exp

= 0.745+0.090
�0.074 ± 0.036 , (3)

while (Rµ/e
K )SM = 1 up to few % corrections [6].

As argued in [7–10] by means of global-fit analyses,

the explanation of the Rµ/e
K anomaly favours an e↵ec-

tive 4-fermion operator involving left-handed currents,
(s̄L�µbL)(µ̄L�µµL). This naturally suggests to account
also for the charged-current anomaly through a left-
handed operator (c̄L�µbL)(⌧̄L�µ⌫L) which is related to
(s̄L�µbL)(µ̄L�µµL) by the SU(2)L gauge symmetry [13].
Clearly, this picture might work only provided NP cou-
ples much more strongly to the third generation than to
the first two. Such a requirement can be naturally ac-
complished in two ways: i) assuming that NP is coupled,
in the interaction basis, only to the third generation of
quarks and leptons – couplings to lighter generations are
then generated by the misalignment between the mass
and the interaction bases through small flavour mixing
angles [14] – and ii) if NP couples to di↵erent fermion
generations proportionally to their mass squared [15]. In

the scenario i) LFU violation necessarily implies lepton
flavour violating (LFV) phenomena. The same is not true
in scenario ii) if the lepton family numbers are preserved.

In this work, we revisit the LFU in B-decays focusing
on a class of semileptonic operators defined above the
electroweak scale v and invariant under the full SM
gauge group, along the lines of Refs. [11–17]. The main
new development of our study is the construction of the
low-energy e↵ective Lagrangian taking into account the
running of the Wilson coe�cients of a suitable operator
basis and the matching conditions when mass thresholds
are crossed. The running e↵ects from the NP scale ⇤
down to the electroweak scale are included through the
one-loop renormalization group equations (RGE) in the
limit of exact electroweak symmetry [18]. From the
electroweak scale down to the 1GeV scale we use the
QED RGEs. By explicit calculations, we have checked
that the scale dependence of the RGE contributions
from gauge and top yukawa interactions cancels with
that of the matrix elements in the relevant physical
amplitudes. Such a program has not been carried out in
the literature so far and it has significant implications
on the conclusions of Refs. [11–17]. The most important
quantum e↵ects turn out to be the modification of
the leptonic couplings of the vector boson Z and the
generation of a purely leptonic e↵ective Lagrangian. As
a result, large LFV and LFU breaking e↵ects in Z and
⌧ decays are induced.

E↵ective Lagrangians If the NP contributions origi-
nate at a scale ⇤ � v, in the energy window above v and
below ⇤ the NP e↵ects can be described by an e↵ective
Lagrangian L=L

SM

+L
NP

invariant under the SM gauge
group. Here we assume that NP is dominated by

L
NP

=
C

1

⇤2

(q̄
3L�

µq
3L)

�
¯̀
3L�µ`3L

�
+

C
3

⇤2

(q̄
3L�

µ⌧aq
3L)

�
¯̀
3L�µ⌧

a`
3L

�
. (4)

We move from the interaction to the mass basis through
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the unitary transformations

uL ! VuuL dL ! VddL V †
uVd = V , (5)

⌫L ! Ue⌫L eL ! UeeL , (6)

where V is the CKM matrix and neutrino masses have
been neglected. We get

L
NP

=
1

⇤2

[(C
1

+C
3

)�uij�
e
kl (ūLi�

µuLj)(⌫̄Lk�µ⌫Ll) +

(C
1

�C
3

)�uij�
e
kl (̄uLi�

µuLj)(ēLk�µeLl) +

(C
1

�C
3

)�dij�
e
kl (d̄Li�

µdLj)(⌫̄Lk�µ⌫Ll) +

(C
1

+C
3

)�dij�
e
kl (d̄Li�

µdLj)(ēLk�µeLl) +

2C
3

�
�udij �

e
kl (ūLi�

µdLj)(ēLk�µ⌫Ll)+h.c.
�
], (7)

where

�qij = V ⇤
q3iVq3j �eij = U⇤

e3iUe3j �udij = V ⇤
u3iVd3j , (8)

with q = u, d. These matrices are redundant since they
satisfy the relations �u = V �dV † and �ud = V �d. We
also observe that �f are hermitian rank-1 matrices, sat-
isfying �f�f = �f and tr�f = 1. In summary, the free
parameters of our Lagrangian are the ratios (C

1,3)/⇤2

and the two matrices �d and �e.
Starting from the e↵ective Lagrangian L

NP

at the scale
⇤, at lower energies an e↵ective Lagrangian is induced by
RGE and by integrating out the heavy degrees of free-
dom. We will detail this procedure elsewhere. Here we
summarize our results, obtained in a leading logarithmic
approximation.
The e↵ective Lagrangian describing the semileptonic

processes b ! s`` and b ! s⌫⌫ is [19]

LNC
e↵

=
4GFp

2
�bs

⇣
Cij
⌫ Oij

⌫ + Cij
9

Oij
9

+ Cij
10

Oij
10

⌘
+ h.c. ,

(9)
where �bs=VtbV

⇤
ts and the operators O⌫ and O

9,10 read

Oij
⌫ =

e2

(4⇡)2
(s̄L�µbL)(⌫̄i�

µ(1��
5

)⌫j) , (10)

Oij
9

=
e2

(4⇡)2
(s̄L�µbL)(ēi�

µej) , (11)

Oij
10

=
e2

(4⇡)2
(s̄L�µbL)(ēi�

µ�
5

ej) . (12)

By matching LNC
e↵

with L
NP

, we obtain:

Cij
9

=� Cij
10

=
4⇡2

e2�bs

v2

⇤2

(C
1

+C
3

)�d
23

�eij + · · · , (13)

Cij
⌫ =

4⇡2

e2�bs

v2

⇤2

(C
1

�C
3

)�d
23

�eij + · · · , (14)

where dots stand for RGE induced terms which are al-
ways subdominant, unless C

1

= �C
3

or C
1

= C
3

. The
latter condition, which can be realised in scenarios with

vector leptoquark mediators [17], received a lot of atten-
tion in the literature as it allows to avoid the B!K(⇤)⌫⌫̄
constraint. We point out that such condition is not sta-
ble under quantum corrections. RGE e↵ects driven by
the gauge interactions generate a rather large correction
to c� = C

1

� C
3

at the electroweak scale

�c� ⇡ �0.03C
3

log

✓
⇤

mZ

◆
, (15)

which is of order |�c�| ⇠ 0.1 for C
3

= 1 and ⇤ ⇠ TeV.
The e↵ective Lagrangian relevant for charged-current

processes like b ! c`⌫ is given by

LCC
e↵

=�4GFp
2

Vcb (C
cb
L )ij (c̄L�µbL) (ēLi�

µ⌫Lj)+h.c. , (16)

where the coe�cient (Ccb
L )ij reads

(Ccb
L )ij = �ij � v2

⇤2

�ud
23

Vcb
C

3

�eij . (17)

One of the e↵ects due to L
NP

is the modification of
the leptonic couplings of the vector bosons W and Z.
Focusing on the Z couplings, which are the most tightly
constrained by the experimental data, we find that

LZ =
g
2

cW
ēi
⇣
Z/ gij`LPL + Z/ gij`RPR

⌘
ej +

g
2

cW
⌫̄Li Z/ gij⌫L ⌫Lj ,

(18)
where gfL,R = gSM

fL,R +�gfL,R, cW = cos ✓W and

�gij`L'
v2

⇤2

✓
3y2t c��

u
33

Lt+g2
2

C
3

Lz+
g2
1

3
C

1

Lz

◆
�eij
16⇡2

, (19)
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with Lt = log (⇤/mt), Lz = log (⇤/mZ) and �g`R = 0.
The above expressions provide a good approximation of
the exact results, which will be given elsewhere and which
have been obtained adding to the RGE contributions
from gauge and top yukawa interactions the explicit one-
loop matrix element with the Z four-momentum set on
the mass-shell. The scale dependence of the RGE contri-
bution cancels with that of the matrix element dominated
by a quark loop. Hereafter, we systematically neglect
corrections of order m2

q/(16⇡
2⇤2) when q = u, d, c, s, b.

Quantum e↵ects generate also a purely leptonic e↵ec-
tive Lagrangian, as well as corrections to the semileptonic
interactions. After running the Wilson coe�cients from
⇤ down to the electroweak scale and integrating out the
W , Z and the heavy quarks c, b, and t, we get the leading
terms:

L`
e↵

=�4GFp
2
�eij


(eLi�µeLj)

X
 
 �µ 

�
2gZ
 c

e
t �Q c

e
�

�

+ ccct (eLi�µ⌫Lj)(⌫Lk�
µeLk + uLk�

µVkldLl)+ h.c.

�
, (21)

2

the unitary transformations

uL ! VuuL dL ! VddL V †
uVd = V , (5)

⌫L ! Ue⌫L eL ! UeeL , (6)

where V is the CKM matrix and neutrino masses have
been neglected. We get

L
NP

=
1

⇤2

[(C
1

+C
3

)�uij�
e
kl (ūLi�

µuLj)(⌫̄Lk�µ⌫Ll) +

(C
1

�C
3

)�uij�
e
kl (̄uLi�

µuLj)(ēLk�µeLl) +

(C
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e
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µdLj)(ēLk�µeLl) +
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�
�udij �

e
kl (ūLi�

µdLj)(ēLk�µ⌫Ll)+h.c.
�
], (7)

where

�qij = V ⇤
q3iVq3j �eij = U⇤

e3iUe3j �udij = V ⇤
u3iVd3j , (8)

with q = u, d. These matrices are redundant since they
satisfy the relations �u = V �dV † and �ud = V �d. We
also observe that �f are hermitian rank-1 matrices, sat-
isfying �f�f = �f and tr�f = 1. In summary, the free
parameters of our Lagrangian are the ratios (C

1,3)/⇤2

and the two matrices �d and �e.
Starting from the e↵ective Lagrangian L

NP

at the scale
⇤, at lower energies an e↵ective Lagrangian is induced by
RGE and by integrating out the heavy degrees of free-
dom. We will detail this procedure elsewhere. Here we
summarize our results, obtained in a leading logarithmic
approximation.
The e↵ective Lagrangian describing the semileptonic

processes b ! s`` and b ! s⌫⌫ is [19]
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=
4GFp
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⌫ + Cij
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Oij
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(9)
where �bs=VtbV
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By matching LNC
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with L
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, we obtain:
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where dots stand for RGE induced terms which are al-
ways subdominant, unless C

1

= �C
3

or C
1

= C
3

. The
latter condition, which can be realised in scenarios with

vector leptoquark mediators [17], received a lot of atten-
tion in the literature as it allows to avoid the B!K(⇤)⌫⌫̄
constraint. We point out that such condition is not sta-
ble under quantum corrections. RGE e↵ects driven by
the gauge interactions generate a rather large correction
to c� = C
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� C
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at the electroweak scale

�c� ⇡ �0.03C
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which is of order |�c�| ⇠ 0.1 for C
3

= 1 and ⇤ ⇠ TeV.
The e↵ective Lagrangian relevant for charged-current

processes like b ! c`⌫ is given by
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One of the e↵ects due to L
NP

is the modification of
the leptonic couplings of the vector bosons W and Z.
Focusing on the Z couplings, which are the most tightly
constrained by the experimental data, we find that
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with Lt = log (⇤/mt), Lz = log (⇤/mZ) and �g`R = 0.
The above expressions provide a good approximation of
the exact results, which will be given elsewhere and which
have been obtained adding to the RGE contributions
from gauge and top yukawa interactions the explicit one-
loop matrix element with the Z four-momentum set on
the mass-shell. The scale dependence of the RGE contri-
bution cancels with that of the matrix element dominated
by a quark loop. Hereafter, we systematically neglect
corrections of order m2

q/(16⇡
2⇤2) when q = u, d, c, s, b.

Quantum e↵ects generate also a purely leptonic e↵ec-
tive Lagrangian, as well as corrections to the semileptonic
interactions. After running the Wilson coe�cients from
⇤ down to the electroweak scale and integrating out the
W , Z and the heavy quarks c, b, and t, we get the leading
terms:
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the unitary transformations

uL ! VuuL dL ! VddL V †
uVd = V , (5)

⌫L ! Ue⌫L eL ! UeeL , (6)

where V is the CKM matrix and neutrino masses have
been neglected. We get
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q3iVq3j �eij = U⇤

e3iUe3j �udij = V ⇤
u3iVd3j , (8)

with q = u, d. These matrices are redundant since they
satisfy the relations �u = V �dV † and �ud = V �d. We
also observe that �f are hermitian rank-1 matrices, sat-
isfying �f�f = �f and tr�f = 1. In summary, the free
parameters of our Lagrangian are the ratios (C

1,3)/⇤2

and the two matrices �d and �e.
Starting from the e↵ective Lagrangian L

NP

at the scale
⇤, at lower energies an e↵ective Lagrangian is induced by
RGE and by integrating out the heavy degrees of free-
dom. We will detail this procedure elsewhere. Here we
summarize our results, obtained in a leading logarithmic
approximation.
The e↵ective Lagrangian describing the semileptonic

processes b ! s`` and b ! s⌫⌫ is [19]
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where dots stand for RGE induced terms which are al-
ways subdominant, unless C
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= �C
3

or C
1
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latter condition, which can be realised in scenarios with

vector leptoquark mediators [17], received a lot of atten-
tion in the literature as it allows to avoid the B!K(⇤)⌫⌫̄
constraint. We point out that such condition is not sta-
ble under quantum corrections. RGE e↵ects driven by
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which is of order |�c�| ⇠ 0.1 for C
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= 1 and ⇤ ⇠ TeV.
The e↵ective Lagrangian relevant for charged-current

processes like b ! c`⌫ is given by

LCC
e↵
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Vcb (C
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L )ij (c̄L�µbL) (ēLi�
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where the coe�cient (Ccb
L )ij reads
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One of the e↵ects due to L
NP

is the modification of
the leptonic couplings of the vector bosons W and Z.
Focusing on the Z couplings, which are the most tightly
constrained by the experimental data, we find that

LZ =
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with Lt = log (⇤/mt), Lz = log (⇤/mZ) and �g`R = 0.
The above expressions provide a good approximation of
the exact results, which will be given elsewhere and which
have been obtained adding to the RGE contributions
from gauge and top yukawa interactions the explicit one-
loop matrix element with the Z four-momentum set on
the mass-shell. The scale dependence of the RGE contri-
bution cancels with that of the matrix element dominated
by a quark loop. Hereafter, we systematically neglect
corrections of order m2

q/(16⇡
2⇤2) when q = u, d, c, s, b.

Quantum e↵ects generate also a purely leptonic e↵ec-
tive Lagrangian, as well as corrections to the semileptonic
interactions. After running the Wilson coe�cients from
⇤ down to the electroweak scale and integrating out the
W , Z and the heavy quarks c, b, and t, we get the leading
terms:
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leading to the following numerical estimate

N⌫ ⇡ 3 + 0.008
(c

+

� 0.2C
3

)

⇤2(TeV)
, (34)

to be compared with the experimental result [20]

N⌫ = 2.9840± 0.0082 . (35)

Finally, we have checked that B(Z ! µ±⌧⌥) is always
well below the current experimental bound.
LFU breaking e↵ects in ⌧ ! `⌫̄⌫ (with `

1,2 = e, µ) are
described by the observables

R⌧/`1,2
⌧ =

B(⌧ ! `
2,1⌫⌫̄)exp/B(⌧ ! `

2,1⌫⌫̄)SM
B(µ ! e⌫⌫̄)

exp

/B(µ ! e⌫⌫̄)
SM

, (36)

and are experimentally tested at the few ‰ level [25]

R⌧/µ
⌧ = 1.0022± 0.0030 , R⌧/e

⌧ = 1.0060± 0.0030 . (37)

We find

R⌧/`
⌧ ' 1 + 2 ccct �e

33

⇡ 1 +
0.008C

3

⇤2(TeV)
. (38)

The e↵ective Lagrangian of eq. (21) generates LFV pro-
cesses such as ⌧ ! µ`` and ⌧ ! µP with P = ⇡, ⌘, ⌘0, ⇢,
etc. The most sensitive channels, taking into account
their NP sensitivities and experimental resolutions, are
⌧ ! µ``, ⌧ ! µ⇢ and ⌧ ! µ⇡. For ⌧ ! µ`` we find

B(⌧ ! µ``)

B(⌧ ! µ⌫⌫̄)
= |�e

23

|2
h
(1 + �`µ)(cLR � cet )

2+ c2LR

i
, (39)

where cLR = 2s2W cet + ce� . If c� ⇠ O(1), we obtain

B(⌧ ! 3µ) ⇡ 5⇥ 10�8

c 2

�
⇤4(TeV)

✓
�e
23

0.3

◆
2

, (40)

while the current bound is B(⌧ ! 3µ)  1.2⇥ 10�8 [24].
Setting c�(⇤) = 0 leads to B(⌧ ! 3µ) ⇡ 4 ⇥ 10�9 for
⇤ = 1 TeV, �e

23

= 0.3 and C
1

= C
3

= 1, yet within the
future expected experimental sensitivity. Moreover, it
turns out that 1.5 <⇠ B(⌧!3µ)/B(⌧!µee) <⇠ 2. Finally,
employing the general formulae of ref. [26], we find

B(⌧ ! µ⇢) ⇡ 2 |�e
23

|2 ⇥(2s2W � 1)cet + ce�
⇤
2 B(⌧ ! ⌫⇢)

⇡ 5⇥ 10�8
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3
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✓
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23

0.3

◆
2

, (41)

and

B(⌧ ! µ⇡) ⇡ 2 |�e
23

|2 [cet ]2 B(⌧ ! ⌫⇡)

⇡ 8⇥ 10�8

c2�
⇤4(TeV)

✓
�e
23

0.3

◆
2

, (42)

where the current bounds are B(⌧ ! µ⇢)  1.5 ⇥ 10�8

and B(⌧ ! µ⇡)  2.7⇥ 10�8 [24].

FIG. 1: Upper plot: Rµ/e
K vs. R⌧/`

D(⇤) for C1 = 0, |C3|  3,

|�d
23|  0.04 and |�e

23|  1/2. The allowed regions are coloured
according to the legend. Lower plot: B(B ! K⌧µ) vs. B(⌧ !
3µ) for |�d

23| = 0.01, C1 = C3 (green points) or C1 = 0 (blue

points) imposing all the experimental bounds except R⌧/`

D(⇤) .

We discuss now the necessary conditions to accommo-
date the B-physics anomalies and their phenomenological
implications. Two scenarios are envisaged: i) C

1

= 0
and C

3

6= 0 and ii) C
1

= C
3

. In both cases, the
correct pattern of deviation from the SM expectations is
reproduced for C

3

< 0, |�d
23

/Vcb| < 1 and �d
23

< 0, see
eqs. (24), (26). Moreover, for |C

3

| ⇠ O(1), the upper
bound ⇤ <⇠ 1 TeV and the lower bound |�e

23

| >⇠ 0.1 are
also predicted. The major di↵erences between the two
scenarios concern the impact of the constraints from
Z-pole and ⌧ observables. In particular, from eqs. (30)
and (32) we learn that NP e↵ects in v⌧/ve and a⌧/ae
are uncomfortably large in scenario i) while they are
under control in ii). Similarly, B(⌧ ! 3µ) is one order
of magnitude larger in i) than in ii), see eq. (40) and
following discussion. Most importantly, we find that

R⌧/`
⌧ strongly disfavours an explanation of the R⌧/`

D(⇤)

anomaly based on left-handed e↵ective operators, see
eqs. (26), (38). This is confirmed by the upper plot

from	Feruglio	et	al,	1606.00524	
color	regions	are	allowed	

the	experimental	bounds	on	Z	and	τ	
decays	significantly	constrain	LFU	
breaking	effects	in	B-decays,	
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Leptoquarks	as	a	resolu>on	of	B	anomalies:	

1)	1974	Salam	&	Pa>:	par>al	unifica>on	of	quark	and	leptons	–four	color	charges,		
le�-right	symmetry;	
	
2)	GUT	models	contain	them	as	gauge	bosons		(e.g.	Georgi-Glashow	1974);	
	
3)	Within	GUT	they	can	be	scalars	too;	
	
4)	1997	false	signal	et	DESY	(~200	GeV);	
	
5)	In	recent	years	LQ	might	offer		explana>ons	of	B	physics	anomalies;	
	
6)	LHC	has	bounds	on	the	masses	of	LQ1,LQ2,	LQ3	of	the	order	~	1	TeV.	

Brief	“history”		



SU(3)⇥ SU(2)⇥ U(1) Spin Symbol Type 3B + L
(3,3, 1/3) 0 S3 LL (SL

1 ) �2

(3,2, 7/6) 0 R2 RL (SL
1/2), LR (SR

1/2) 0

(3,2, 1/6) 0 ˜R2 RL (

˜SL
1/2), LR 0

(3,1, 4/3) 0 ˜S1 RR (

˜SR
0 ) �2

(3,1, 1/3) 0 S1 LL (SL
0 ), RR (SR

0 ), RR �2

(3,1,�2/3) 0 ¯S1 RR �2

(3,3, 2/3) 1 U3 LL (V L
1 ) 0

(3,2, 5/6) 1 V2 RL (V L
1/2), LR (V R

1/2) �2

(3,2,�1/6) 1 ˜V2 RL (

˜V L
1/2), LR �2

(3,1, 5/3) 1 ˜U1 RR (

˜V R
0 ) 0

(3,1, 2/3) 1 U1 LL (V L
0 ), RR (V R

0 ), RR 0

(3,1,�1/3) 1 ¯U1 RR 0

Table 1: List of scalar and vector leptoquarks. See text for details.

leptoquark states. The SM fermions are Li
L ⌘ (1,2,�1/2)i = (⌫iL eiL)

T ,
eiR ⌘ (1,1,�1)

i, Qi
L ⌘ (3,2, 1/6)i = (ui

L diL)
T , ui

R ⌘ (3,1, 2/3)i, and
diR ⌘ (3,1,�1/3)i, where the numbers within brackets represent the SM gauge
group SU(3) ⇥ SU(2) ⇥ U(1) transformation properties. For example, a state
denoted as (3,2, 1/6) transforms as triplet (doublet) of SU(3) (SU(2)) with the
U(1) hypercharge of 1/6. Superscript i(= 1, 2, 3) is a flavor index and subscripts
L and R denote left- and right-chiral fermion fields, respectively. Superscript T
will always stand for transposition. It is in the SU(2) group space of the SM
in this particular instance. We take quarks (leptons) to have baryon (lepton)
number B = 1/3 (L = 1) in accordance with the usual convention.

The (hyper)charge normalization is defined through ˆQ = I3 +Y , where ˆQ is
the electric charge operator that yields eigenvalues Q in units of absolute value
of the electron charge, I3 stands for the diagonal generator of SU(2), and Y
represents U(1) hypercharge operator. The electric charge of dR ⌘ (3,1,�1/3)
is, for example, Q = 0 + (�1/3) = �1/3, where dR is right-chiral down-type
quark.

At least two neutrinos are conclusively massive. However, their Dirac and/or
Majorana nature is not yet experimentally ascertained. One might accordingly
add to the SM fermion content one or more electrically neutral fields that could
take on a role of right-chiral neutrinos. We denote these hypothetical fermions
with ⌫R(⌘ (1,1, 0)). If these states are added one could have more LQ states
than there would be in the SM model with purely left-chiral neutrinos. We
include this possibility to insure generality of our considerations.

The list of all possible LQs is given in Table 1. There are, all in all, six
scalar and six vector leptoquark multiplets if one uses transformations under
the SM gauge group as the classification criterion. In the first column we ex-
plicitly specify the SM transformation properties that can be easily understood
on purely group theoretical grounds as follows.
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F=3B	+L		fermion	number;	F=0		no	proton		decay	at	tree	level	

Leptoquarks	in	RK	and			RD(*)		

Q=I3	+Y	color	SU(3),	weak	isospin	SU(2)	,	weak	hypercharge	U(1)	
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Doršner,	SF,	Greljo,	Kamenik		Košnik,	(1603.04993)	
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We can also explain RD if a new ingredient is added to the model
�1/6 = (3, 2)1/6: three light RH neutrinos ⌫R.

LY = YL
ij L̄i

e�(1/6)dRj +YR
ij Q̄i�

(1/6)⌫Rj + h.c.

For b ! c⌧ ⌫̄ ) |M(B ! D (⇤)`⌫)|2 = |M
SM

|2 + |M
NP

|2.

Naturally generates RNP
D(⇤) > RSM

D(⇤) if |Y L
b⌧ | & |Y L

bµ|.
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If	one	wants	to	explain		both		anomalies	at	
tree	level	by	leptoquarks		
	

Explaining	B	anomalies	by	LQ	at	tree	level	



generalization of the effective weak Lagrangian is the following:

LSL
e↵ = �4GFp

2

Vij
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µdjL)(
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k
L)

+ gRij;`k(ū
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k
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k
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k
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i
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j
R)(

¯`R⌫
k
L)

+ gRL
ij;`k(ū

i
Rd

j
L)(

¯`L⌫
k
R)

)

+ h.c..

(23)

In this section we use the following shorthand notation for the mixing matrices
in the quark and lepton sector: V ⌘ VCKM and U ⌘ VPMNS. In Eq. (23) the
indices i, j, `, k refer to the fermion mass eigenstates. In the SM limit only the
term proportional to the PMNS matrix Uk` survives and results in lepton flavor
universal process rates, when these are summed over undetected neutrino flavor
k. Modifications of the left-handed currents, parametrized by gL, are expected
in the presence of leptoquarks that transform either as singlets or triplets under
SU(2). On the other hand, the right-handed currents proportional to gR are dis-
tinct signature of weak singlet LQ states. Further operators involving chirality
flipping currents are possible in the presence of LQ states and are parameter-
ized by couplings gXY

ij;`k, where X and Y refer to chiralities of the up-type quark
and charged lepton, respectively. (The chiralities of the down-type quark and
the neutrino are then determined as being opposite to chiralities of the up-type
quark and charged lepton, respectively. E.g., gRL

ij;`k multiplies an operator that
is composed of right-handed up-type quark and left-handed charged lepton.)
Pair of couplings scalar and tensor couplings (gRR, hRR

) has common origin in
a single scalar operator in the Fierzed basis that is characteristic of scalar LQ
scenarios. Same holds true for pair (gLL, hLL). At the matching scale the two
couplings are related: gRR(LL)

= 4hRR(LL). Finally, effective couplings gLR and
gRL can be non-zero only when a vector LQ state is integrated out.

The tree-level matching procedure is performed for each leptoquark at the
matching scale, which is here taken to be the mass M of the LQ state being
integrated out, and results in a subset of effective couplings which are laid out
in Table 3. The quoted expressions are in accord with the couplings notation
established in Section 1. Derivation of the expressions contained in Table 3 is
straightforward: first one writes down the tree-level leptoquark exchange am-
plitude in the leading order in q2/M2

LQ expansion where q2 is the momentum
flow through the LQ propagator. Leptoquark exchanges lead to effective four-
fermion operators in the operator basis that is Fierzed with respect to (23) and
one has to be careful in the matching procedure to take into account an extra
minus sign that comes from different ordering of fermionic operators acting on
asymptotic states in the LQ model and in the effective theory (23) calculation.
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LQ	in	RD(*)	and	charged	current	processes	at	low	energies		

Effec>ve	Lagrangian	for	charged	current	process:	

running		from	LQ	mass	scale	to	mq	should	be	considered		
for	scalar,		pseudoscalar	and	tensor	Wilson	coefficents.	

c	b	
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Ṽ2 �x̃RL⇤
2 i`

x̃LR

2 jk

U1

(V x

LL

1 U)
ik

x

⇤
j`

2

x

RR

1 ik

x

RR⇤
1 j`

2 �(V xLL

1 U)
ik

xRR⇤
1 j`

�xRR

1 ik

xLL⇤
1 j`

Table 3: Effective LQ charged-current couplings — g(mLQ) and h(mLQ) — defined by
Eq. (25) at the matching scale mLQ. V and U are CKM and PMNS matrices, respectively.
The electroweak vacuum expectation value is v = 246GeV.

universality make these decays very sensitive to LQs. Experimentally these
decays have been well measured for charged pseudoscalars P = ⇡,K,D,Ds,
and B with ` = e, µ and possibly also ⌧ in the case of decaying Ds or B meson.
Measured values of the branching fractions follow the helicity suppression as
predicted in the SM where partial branching fractions to individual lepton flavors
are distributed proportionally to m2

` [14]. This makes the decays of B and D
mesons to light leptons very suppressed and currently only bounded from above,
and these same bounds are restricting the parameter space of the LQ models
that break the helicity suppression. These rare charged-current decays will be
further probed in the forthcoming Belle 2 experiment [128].

On the theory side, the only hadronic input relevant to leptonic decays is a
decay constant, defined via

h0 | ūi�
µ�5dj |P (p)i = ifP p

µ, (28)

where the flavor of the pseudoscalar is P�
(ūidj). The matrix element of pseu-

doscalar density can be expressed, via the equation of motion i /D = m , by
the derivative of the axial current, ū�5d = �i@µ(ū�µ�5d)/(mu + md) and one
can furthermore express h0 | ūi�5dj |P (p)i = � if

P

m2
P

m
u

i

+m
d

j

. The decay amplitude
is then
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31

Important	constraints	from	
P ! l⌫l

⌧ ! P⌫⌧

P ! P 0(V )l⌫l

P = ⇡,K,D,B



LQ di ! dj`�`0+ decays, �q = VqiV ⇤
qj ui ! uj`�`0+ decays, �q = V ⇤

iqVjq

S3 C9 = �C10 = � v2

M2
⇡

↵�q
xi`0x⇤

j` C9 = �C10 = � v2

M2
⇡

↵�q
(V Tx)i`0(V Tx)⇤j`

R2 C9 = C10 =

v2

M2
⇡

2↵�q
y`iy⇤`0j C9 = C10 =

v2

M2
⇡

2↵�q
(yV †

)`i(yV †
)

⇤
`0j

C90 = �C100 =
v2

M2
⇡

2↵�q
xj`0x⇤

i`

CS = CP = � v2

M2
⇡

2↵�q
x⇤
i`(yV

†
)

⇤
`0j

CS0
= �CP 0

= � v2

M2
⇡

2↵�q
xj`0(yV †

)`i

CT = (CS + CS0
)/4

CT5 = (CS � CS0
)/4

˜R2 C90 = �C100 =
v2

M2
⇡

2�q↵
xj`0x⇤

i`

˜S1 C90 = C100 = � v2

M2
⇡

2�q↵
xi`0x⇤

j`

S1 C9 = �C10 = � v2

M2
⇡

2↵�q
(V T v)i`0(V T v)⇤j`

C90 = C100 = � v2

M2
⇡

2↵�q
xi`0x⇤

j`

CS = CP =

v2

M2
⇡

2↵�q
xi`0(V T v)⇤j`

CS0
= �CP 0

=

v2

M2
⇡

2↵�q
(V T v)i`0x⇤

j`

CT = (CS + CS0
)/4

CT5 = (CS � CS0
)/4

U3 C9 = �C10 =

v2

M2
⇡

�q↵
xj`0x⇤

i` C9 = �C10 =

v2

M2
2⇡
�q↵

(V x)j`0(V x)⇤i`
V2 C9 = C10 = � v2

M2
⇡

�q↵
yi`0y⇤j`

C90 = �C100 = � v2

M2
⇡

�q↵
xi`0x⇤

j`

CS = �CP =

v2

M2
⇡

�q↵
xi`0y⇤j`

CS0
= CP 0

=

v2

M2
⇡

�q↵
yi`0x⇤

j`

C9 = C10 = � v2

M2
⇡

�q↵
(V T y)i`0(V T y)⇤j`

˜V2 C90 = �C100 = � v2

M2
⇡

�q↵
xi`0x⇤

j`

˜U1 C90 = C100 =
v2

M2
⇡

�q↵
xj`0x⇤

i`

U1 C9 = �C10 =

v2

M2
⇡

�q↵
xj`0x⇤

i`

C90 = C100 =
v2

M2
⇡

�q↵
yj`0y⇤i`

CS = �CP = � v2

M2
2⇡
�q↵

xj`0y⇤i`

CS0
= CP 0

= � v2

M2
2⇡
�q↵

yj`0x⇤
i`

Table 4: Tree-level Wilson coefficients of leptoquark models in rare semileptonic decays. Val-
ues quoted are valid at the matching scale taken to be the LQ mass M . We have not explicitly
written the lepton flavor indices on the Wilson coefficients, as introduced in the operator basis.
Thus a table entry for e.g., C9, stands for C``0
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Down	quark	sector	has	only	these	modifica>ons	due	to	U(1)Y!	

FCNC	processes	



Generic features and issues in 2HDMs
Charged Higgs possible as explanation of b ! c⌧⌫ data. . .
However, typically expect �R(D⇤) < �R(D)
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B ! K(⇤)⌫⌫̄

B0
s � B̄0

s

⌧ ! µ�

⌧ ! K(⇡)µ(e)

K ! µe
For example, if g/2 <∼ g2 <∼ g, one can have λ >∼ Ud

L32
>∼ λ2. In addition, we can

now combine Eqs. (13) and (21). Since C9 is an O(1) number, this implies that
an O(10−1) value for |U l

L32| is still allowed. A more precise measurement of both
RK and B+ → K+νν̄ will put stricter bounds on both the down-type and lepton
mixing-matrix elements.

Finally, the neutral-current part of O(2)
NP also contributes to the decays t → cℓ+ℓ−,

t → cℓ+ℓ′− and t → cνν̄. The branching ratios for these decays are negligible in the
SM, so any observation would be a clear sign of NP. For decays to charged leptons,
the most promising is t → cτ+τ−. In the mass basis, the contributing NP operator is

G
[

Uu∗

L32 U
u
L33 |U ℓ

L33|2 (c̄LγµtL)(τ̄LγµτL) + h.c.
]

, (22)

which gives a partial width of

g42|Uu
L32|2 |Uu

L33|2 |U ℓ
L33|4

16Λ4
NP

m5
t

48π3
. (23)

Taking g2 ∼ g, |Uu
L33| ≃ |U ℓ

L33| ≃ 1, |Uu
L32| ≃ λ, and ΛNP = 800 GeV, this gives

Γ(t → cτ+τ−) = 1× 10−7 GeV . (24)

The full width of the t quark is 2 GeV, so this corresponds to a branching ratio of
5 × 10−8. This is much larger than the SM branching ratio (O(10−16)), but is still
tiny. The branching ratio for t → cνν̄ takes the same value, while those for all other
t → cℓ+ℓ− and t → cℓ+ℓ′− decays are considerably smaller. Thus, while the branching
ratios for these decays can be enormously enhanced compared to the SM, they are
still probably unmeasurable. (This point is also noted in Ref. [11].)

Another process involving t quarks that could potentially reveal the presence of
NP with LFV is pp → tt̄, followed by the radiation of a τ±µ∓ pair. At the LHC
with a 13 TeV center-of-mass energy, gluon fusion dominates the production of tt̄
pairs. We use MadGraph 5 [21] to calculate the cross section for gg → tt̄τ±µ∓,
taking g2 ∼ g. We find σtt̄τµ ≈ 0.4|U ℓ

L32|2 fb. By contrast, the SM cross section for tt̄
pair production is σtt̄ ≈ 450 pb, so that σtt̄τµ/σtt̄ ≈ 10−6|U ℓ

L32|2, which is extremely
small. With a luminosity of 100 fb−1 /year at the 13 TeV LHC [22], we therefore
expect about 40 events/year for gg → tt̄τ±µ∓ if |U ℓ

L32| ∼ 1, or about two events/year
if |U ℓ

L32| ∼ λ. Thus, even though the final-state signal is striking, pp → tt̄τ±µ∓ is
probably unobservable.

Turning to the charged-current interactions, these contribute to both b and t
semileptonic decays. Even with the enhancement from NP, the decay t → bτ ν̄τ will
still be difficult to observe, as it is swamped by the two-body decay t → bW . On
the other hand, the decay b → cτ ν̄i (i = τ, µ, e) is particularly interesting, since
it contributes to the decay B̄ → D(∗)+τ−ν̄τ and the R(D(∗)) puzzle [Eq. (2)], and
provides a aource of lepton flavor non-universality in such decays.
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(g � 2)µ

µ ! e�

Z ! bb̄

Constraints	from	LFV	

B ! Dµ⌫µ

Oblique	correc>ons	

⌧ ! µµµ
K ! ⇡µ⌫µ

K ! µ⌫µ

B ! Kµe
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Figure 1: Diagramatic representation of s�channel (left-
hand side) and t�channel (right-hand side) resonance ex-
hange (drawn in blue double see-saw lines) contributions to
bb̄ ! ⌧+⌧� process.

III. MODELS

The di↵erent chiral structures being probed by R(D(⇤))
single out a handful of simplified single mediator mod-
els [22]. In the following we consider the representative
cases, where we extend the SM by a single field trans-
forming non-trivially under the SM gauge group.

Color singlet Color triplet

Scalar 2HDM Scalar LQ

Vector W 0 Vector LQ

Table I: A set of simplified models generating b ! c⌧⌫ tran-
sition at tree level, classified according to the mediator spin
and color.

First categorization of single mediators is by color.
While colorless intermediate states can only contribute
to b ! c⌧⌫ transitions in the s ⌘ (pb�pc)2-channel, col-
ored ones can be exchanged in the t ⌘ (pb � p⌧ )2- or
u ⌘ (pb � p⌫)2-channels. The colorless fields thus need
to appear in non-trivial SU(2)L multiplets (doublets or
triplets) where the charged state mediating semileptonic
charged currents is accompanied by one or more neu-
tral states mediating neutral currents. Such models thus
predict ŝ ⌘ (p⌧+ + p⌧�)2-channel resonances in ⌧+⌧�

production (see the left-hand side diagram in Fig. 1). In
addition to the relevant heavy quark and tau-lepton cou-
plings, searches based on the on-shell production of these
resonances depend crucially on the assumed width of the
resonance, as we demonstrate below in Sec. IV. Alter-
natively, colored mediators (leptoquarks) can be SU(2)L
singlets, doublets or triplets, carrying baryon and lep-
ton numbers. Consequently they will again mediate
⌧+⌧� production, this time through t̂ ⌘ (pb � p⌧�)2- or
û ⌘ (pb�p⌧+)2-channel exchange (see the right-hand side
diagram in Fig. 1). In this case a resonant enhancement
of the high-pT signal is absent, however, the searches do
not (crucially) depend on the assumed width (or equiva-
lently possible other decay channels) of the mediators. In
the following we examine the representative models for
both cases summarized in Table I.

A. Vector triplet

A color-neutral real SU(2)L triplet of massive vectors
W 0a ⇠ W 0±, Z 0 can be coupled to the SM fermions via

LW 0 = �1

4
W 0aµ⌫W 0a

µ⌫ +
M2

W 0

2
W 0aµW 0a

µ + W 0a
µ Jaµ

W 0 ,

Jaµ
W 0 ⌘ �q

ijQ̄i�
µ�aQj + �`

ijL̄i�
µ�aLj . (4)

Since the largest e↵ects should involve B-mesons and tau

leptons we assume �
q(`)
ij ' gb(⌧)�i3�j3, consistent with an

U(2) flavor symmetry [15]. Departures from this limit
in the quark sector are constrained by low energy flavor
data, including meson mixing, rare B decays, LFU and
LFV in ⌧ decays and neutrino physics, a detail analysis of
which has been performed in Ref. [15].2 The main impli-
cation is that the LHC phenomenology of heavy vectors
is predominantly determined by their couplings to the
third generation fermions (gb and g⌧ ). The main con-
straint on gb comes from its contribution to CP violation
in D0 mixing yielding gb/MW 0 < 2.2 TeV�1 [25]. On the
other hand lepton flavor mixing e↵ects induced by finite
neutrino masses can be neglected and thus a single lepton
flavor combination written above su�ces without loss of
generality.

In addition, electroweak precision data require W 0 and
Z 0 components of W 0a to be degenerate up to O(%) [26],
with two important implications: (1) it allows to cor-
relate NP in charged currents at low energies and neu-
tral resonance searches at high-pT ; (2) the robust LEP
bounds on pair production of charged bosons decaying to
⌧⌫ final states [27] can be used to constrain the Z 0 mass
from below MZ0 ' MW 0 & 100 GeV. Finally, W 0a cou-

pling to the Higgs current (W 0
aH

†�a
$
Dµ H) needs to be

suppressed [15], and thus irrelevant for the phenomeno-
logical discussions at LHC.

Integrating out heavy W 0a at tree level, generates the
four-fermion operator,

Le↵

W 0 = � 1

2M2

W 0
Jaµ
W 0J

aµ
W 0 , (5)

and after expanding SU(2)L indices,

Le↵
W 0 � �

�q
ij�

`
kl

M2
W 0

(Q̄i�µ�
aQj)(L̄k�

µ�aLl)

� �
gbg⌧

M2
W 0

�
2Vcbc̄L�

µbL⌧̄L�µ⌫L + b̄L�
µbL⌧̄L�µ⌧L

�
. (6)

The resolution of the R(D(⇤)) anomaly requires cQQLL ⌘
�gbg⌧/M

2

W 0 ' �(2.1 ± 0.5) TeV�2, leading at the same

2 Also, Ref. [24] considers leading RGE e↵ects to correlate large
NP contributions in cQQLL with observable LFU violations and
FCNCs in the charged lepton sector. The resulting bounds can
be (partially) relaxed in this model via direct tree level W 0 con-
tributions to the purely leptonic observables.
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Figure 5: ATLAS (13 TeV, 3.2 fb�1) ⌧⌧ search [37] exclusion
limits on bb̄ ! H0 ! ⌧⌧ resonances. The preferred value from
the fit to the R(D(⇤)) anomaly is YbY

⇤
⌧ ⇥v2/M2

H+ = (2.9±0.8).

optimized as we are forced to use a certain fixed number
of bins and their sizes and cannot leverage the full control
of experimental systematics.

3. 2HDM exclusion limits

The cross-sections for A,H0 production from bb̄ an-
nihilation can be estimated at NNLO in QCD using the
Higgs cross-section WG results [45]. While the results are
directly applicable for the CP even state H0, we expect
them to hold as a good approximation also for a heavy
CP-odd A0 due to the restoration of chiral symmetry
when mb/mH0 ⌧ 1 . We have checked explicitly that
di↵erences between scalar and pseudoscalar production
are negligible up to NLO [46] for the interesting mass
region mA0,H0 & 200 GeV. In setting bounds, we there-
fore rescale the LO simulation results to the Higgs cross-
section WG production cross-sections [45] taken at the
lower factorization, renormalization and 68% CL PDF
uncertainty ranges.

Conservatively considering only a single neutral scalar

Figure 6: (Upper plot) 8 TeV [36] (13 TeV [37]) ATLAS
⌧+⌧� search exclusion limits are shown in red (black) and
R(D(⇤)) preferred region in green for the vector leptoquark
model. Projected 13 TeV limits for 300 fb�1 are shown in
grey. (Lower plot) the same search exclusion limits for the
scalar leptoquark model.

resonance contribution (denoted by H 0 meaning either
A0 or H0), we show the resulting 95% CL upper lim-
its on the |YbY⌧ | ⇥ v2/M2

H0 (evaluated at the b-quark
mass scale µR ' 4.3 GeV) after recasting the ATLAS
13 TeV [37] ⌧+⌧� search in Fig. 5. We observe that
even after accounting for the possible O(100 GeV) mass
splitting between the charged and the lightest neutral
state within the scalar H 0 doublet, the R(D(⇤)) preferred
value YbY

⇤
⌧ ⇥ v2/M2

H+ = (2.9± 0.8) cannot be reconciled
with existing ⌧+⌧� resonance searches at the LHC in the
mA,H0 & 200 GeV region.6

6 In case of H0 = H0 (with A0 decoupled), small departures from
the 2HDM alignment limit (i.e. non-zero h � H0 mixing), con-
sistent with existing experimental constraints, in particular on
h ! ⌧+⌧�, bb̄ [47] (see e.g. [48]), can further mildly alleviate
the bound due to somewhat reduced e↵ective Yb,⌧ couplings of

2HDM	cannot	reconcile	ττ	searches	at	LHC		
for		
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Fig. 5 Limits on the Z

0 MFV model from pp ! µ+µ�. See text for
details.

3.2 Model examples

Let us briefly speculate about the UV scenarios capable of
explaining the observed pattern of deviations in the rare B

meson decays. For our EFT approach to be valid, we focus
on models with new resonances beyond the kinematical
reach for threshold production at the LHC. In such mod-
els, the effective operators in Eq. (1) are presumably gener-
ated at the tree level.3 We focus here on the single mediator
models in which the required effect is obtained by integrat-
ing out a single resonance. These include either an extra Z

0

bosons [28,32,37,38,39,40,41,42,43,44,45,46,47,48] or
a leptoquark [49,50,51,52,53,54,27,55,56,57] (for a re-
cent review on leptoquarks see [58]).

We note that a full set of single mediator models with
tree-level matching to the vector triplet (c(3)

Q

i j

L

kl

) or singlet

(c(1)
Q

i j

L

kl

) operators, consists of: color-singlet vectors Z

0
µ ⇠

(1,1,0) and W

0
µ ⇠ (1,3,0), color-triplet scalar S3 ⇠ (3̄,3,1/3),

and vectors U

µ
1 ⇠ (3,1,2/3), U

µ
3 ⇠ (3,3,2/3), in the no-

tation of Ref. [58]. The quantum numbers in brackets indi-
cate color, weak, and hypercharge representations, respec-
tively.

Z

0 and W

0 models: A color-singlet vector resonance
gives rise to an s-channel resonant contribution to the dilep-
ton invariant mass distributions if M

Z

0 is kinematically ac-
cessible. Otherwise, the deviation in the tails is described
well by the dimension-six operators in Eq. (1) with L =
M

V

and

c

(3)
Q

i j

L

kl

=�g

(3),i j

Q

g

(3),kl

L

, c

(1)
Q

i j

L

kl

=�g

(1),i j

Q

g

(1),kl

L

, (17)

3Note that including a loop suppression factor of ⇠ 1
16p2 , the fit of

the flavour anomalies in Eq. (10) points to a scale L ⇡ 2.6+0.2
�0.3 TeV

(see for example models proposed in Refs. [34,35,36]).

obtained after integrating out the heavy vectors with inter-
actions L � Z

0
µ Jµ +W

0a
µ J

a

µ , where

Jµ = g

(1),i j

Q

(Q̄
i

gµ Q

j

)+g

(1),kl

L

(L̄
k
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l

) ,

J
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(3),i j

Q

(Q̄
i

gµ sa

Q

j

)+g
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(L̄
k

gµ sa

L

l

) .
(18)

A quark flavour-violating g

(x),23
Q

coupling and g

(x),22
L

are
required to explain the flavour anomalies, while the limits
from pp ! µ+µ� reported in Table 1, can easily be trans-
lated to the flavour-diagonal couplings and mass combina-
tions.

For example, assuming a singlet Z

0 with g

1,i j

Q

= g

1,i j

L

=

d i j

g⇤ and MFV structure (g(1),23
Q

=V

ts

g⇤) we derive limits
on g⇤ as a function of the mass M

Z

0 , both fitting the data
directly in the full model,4 and in the EFT approach. The
results are shown in Fig. 5. The limits in the full model are
shown with solid-blue while those in the EFT are shown
with dashed-blue. We see that for a mass M

Z

0 & 4�5 TeV
the limits in the two approaches agree well, while for the
lower masses the EFT still provides conservative bounds.5

On top of this, we show with green lines the best fit and 2s
interval which reproduce the b ! sµµ flavour anomalies,
showing how LHC dimuon searches already exclude such
a scenario independently of the Z

0 mass.
Related to the above analysis, let us comment on the

model recently proposed in Ref. [48]. An anomaly-free
horizontal gauge symmetry is introduced, with a correspond-
ing gauge field (Z0

h

) having MFV-like couplings in the quark
sector. Fig. 1 of Ref. [48] shows the preferred region from
DC

µ
9 in the mass versus coupling plane, as well as the con-

straint from the Z

0 resonance search (from the same exper-
imental analysis used here [11]). While the limits from the
resonance search are effective up to ⇠ 4 TeV, we note that
the limits from the tails go even beyond and already probe
the interesting parameter region as shown in our Fig. 4.
Note that this statement is independent of the Z

0 mass (as
long as the EFT is valid).

Leptoquark models: A color-triplet resonance in the
t-channel gives rise to pp ! `+`� at the LHC [59,60].
The relevant interaction Lagrangian for explaining B de-
cay anomalies is,

L � y

LL

3i j

Q̄

c,i
L

is2sa

L

j

L

S

a

3 + x

LL

3i j

Q̄

i

L

gµ sa

L

j

L

U

a

3,µ

+ x

LL

1i j

Q̄

i

L

gµ
L

j

L

U1,µ +h.c. ,
(19)

and the matching to the EFT is provided in Table 4 of
Ref. [58]. The constraints from Table 1 apply again in a
straightforward way. The validity of the expansion has been

4The Z

0 decay width is determined by decays into the SM fermions
u,d,s,c,b, t,µ,nµ via Eq. (18), i.e. G

Z

0/M

Z

0 = 5g

2
⇤/(6p).

5See Ref. [9] for a more detailed discussion on the EFT validity in
high-p

T

dilepton tails.



Two	LQs	solu>on	of	RD(*)	and		RK(*)	

•  One	scalar	LQ	cannot	explain	both	anomalies;	

•  GUT	possible	with	light	scalar	LQs	within	SU(5)	if	there	are		2	LQs	
(Doršner,	SF,	Greljo,	Kamenik,	Košnik	1603.04993)	;	
	
•  	Neutrino	masses	might	be	explained	with	2	light	LQs	within	a	loop	
(Doršner,	SF,	Košnik,	1701.08322);		

Scanario	with	2	light	LQs	used	in	Crivellin,		Müller,	Ota,	1703.09226	
LQs:	(3,1,-1/3)	and	(3,3,1/3),		

-																		-	

Doršner,	SF,		Faroughy,	Košnik,	1705.xxxxx	

	Doršner,	SF,	Košnik,	(1701.08322)		LQ	S3	,	if	accommodated	within	SU(5)	
	does	not	cause	proton	decay.		
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II. MODEL SETUP

The pair of leptoquarks S3(3̄, 3,�1/3) and R2(3, 2, 1/6), interacts with the SM fermions accordingly to their quan-

tum numbers, given in the brackets. The three charge components of S3, S
4/3
3 , S1/3

3 , and S

�2/3
3 , have the following

Yukawa interactions with fermions [39]

LS3 =� yij d̄
C i
L ⌫

j
LS

1/3
3 �

p
2yij d̄

C i
L e

j
LS

4/3
3 +

+
p
2(V ⇤

y)ij ū
C i
L ⌫

j
LS

�2/3
3 � (V ⇤

y)ij ū
C i
L e

j
LS

1/3
3 + h.c.,

(3)

where V is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix. Note that S3 has purely left-handed couplings.
The diquark interactions with the leptoquark S3 are not shown in Eq. (3) since we assume that S3 and its interactions
originate from the GUT construction presented in [40] where the B-violating diquark couplings are forbidden due to
the grand unified symmetry.1 Furthermore, having only one leptoquark with mass at the 1 TeV scale would invalidate
unification of couplings, thus a second light state — R̃2 in our case — is needed for theoretical consistency. The two
charges of the R̃2 state, on the other hand, couples only to the down-quarks:

LR̃2
=� ỹij d̄

i
Re

j
LR̃

2/3
2 + ỹij d̄

i
R⌫

j
LR̃

�1/3
2 + h.c.. (4)

Rotation with the CKM matrix V , left over from the transition to the mass basis of fermions has been assigned
to the uL fields. For the study of flavor phenomenology the neutrinos can be safely considered as massless. Thus,
Lagrangians (3) and (4) are written in the fermion mass basis with the exception of ⌫L whose mass basis is ill-defined.
We use flavor basis for the neutrinos, such that the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix becomes
unity.

The main goal of our study is to simultaneously address the puzzles observed in neutral current LFU tests in the
RK ratio (and related anomalies in b ! sµ

+
µ

�) as well as in charged-current LFU ratios RD(⇤) . Thus we have clear
target observables that we can a↵ect with only a few leptoquark Yukawas. Drawing the analogy with the study of the
vector LQ in [37] we notice that the state S3 can a↵ect all the target observables with a minimal set of parameters,
ysµ, ybµ, and yb⌧ . In this work also ys⌧ will have to have finite value as we explain in the next Section. The respective
Yukawa couplings of the S3 state with d̄L and ūL are

y =
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@
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0 ysµ ys⌧

0 ybµ yb⌧

1
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tbyb⌧

1

A
. (5)

We will assume that all Yukawa couplings are real, unless stated otherwise. It is evident that the up-type quark
couplings are rotated by V and are thus not confined only to sL and bL.

Yukawas between the doublet leptoquark state R̃2 and dR are assumed to be limited to the ⌧ lepton:

ỹ =

0

@
0 0 0
0 0 ỹs⌧

0 0 ỹb⌧

1

A
. (6)

Both leptoquark masses will be in the ballpark of 1.0 TeV.

III. LFU VIOLATING CONTRIBUTIONS

In this Section we focus on how the two light leptoquarks would a↵ect the LFU observables measured in B meson
decays. The main features and Yukawa textures will be sketched. The detailed discussion of additional observables
and their interplay with the LFU anomalies will be presented in the next Section.

A. Charged currents: RD(⇤)

The largest LFU violating e↵ect is in the charged current observables RD(
⇤). For a new physics-induced e↵ective

operator that follows the chirality structure of the SM it has been shown that the dimensionless coupling of ⇠ 0.1

1 Complete set of S3 and R̃2 couplings to fermions is presented in [39].
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We will assume that all Yukawa couplings are real, unless stated otherwise. It is evident that the up-type quark
couplings are rotated by V and are thus not confined only to sL and bL.
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Both leptoquark masses will be in the ballpark of 1.0 TeV.

III. LFU VIOLATING CONTRIBUTIONS

In this Section we focus on how the two light leptoquarks would a↵ect the LFU observables measured in B meson
decays. The main features and Yukawa textures will be sketched. The detailed discussion of additional observables
and their interplay with the LFU anomalies will be presented in the next Section.

A. Charged currents: RD(⇤)

The largest LFU violating e↵ect is in the charged current observables RD(
⇤). For a new physics-induced e↵ective

operator that follows the chirality structure of the SM it has been shown that the dimensionless coupling of ⇠ 0.1

1 Complete set of S3 and R̃2 couplings to fermions is presented in [39].
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is needed, if new particles have mass of ⇤ = 1 TeV and contribute at tree-level [36]. The matched contributions of
S3 contribute to the left handed operator, whereas R̃2 cannot contribute to charged quark currents. In particular in
b ! c`⌫̄ transition the leptoquark S3 leads to the modification of the left-handed current operator already present in
the SM:
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For the lepton flavor diagonal final state `⌫` the LQ term in Eq. (7) reads
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In addition, we have (neutral) lepton flavor violating S3 contributions parameterized by gcb;`k, with their e↵ect being
much smaller since they do not interfere with the SM amplitude. They contribute at subleading order in v
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we neglect. Notice that the form of interaction we imposed in (5) implies that both decay modes B ! D
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⌧⌫⌧ and

B ! D
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µ⌫µ are a↵ected. From the fit to the measured ratio RD(⇤) , performed in Ref. [36] we learn that at 1� we

have the following constraint on the S3 Yukawas [36]:
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The RD(⇤) constraint of Eq. (9) includes e↵ects from ⌧ ⌫̄⌧ and µ⌫̄µ states. It is important to notice definite signs of
contributions proportional to Vcb. Thus, sizable yb⌧ is clearly disfavoured by (9) while large ybµ would imply violations
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µ/e
D(⇤) which are, as will be shown in Section IV, experimentally quite limiting. The remaining possibility

is to pursue a scenario where Cabibbo favored contribution,
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saturates Eq. (9).
Comment on ⌧ polarization measurement.

B. Neutral currents: RK , B ! K(⇤)µ+µ� and related observables

The RK anomaly can be accounted for by the additional contribution of S3 state to the e↵ective four-Fermi operators
that are a product of left-handed quark and lepton currents [39]. The R̃2 state alone can also explain RK via the
quark chirality-flipped four-Fermi operators [41]. Clearly, due to the recent measurement of RK⇤ being significantly
smaller than 1 [CERN Seminar 18th April], the scenario with right handed currents, i.e., R̃2, is disfavoured [25, 41].
If we expand our analysis to a whole family of observables driven by b ! sµ

+
µ

� process the scenario with left-handed
currents, i.e., S3 state, presents a good fit and prefers the following range at 1� [42](see also [43] and updated global
fit in [18]):
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Here v = 246 GeV is the electroweak vacuum expectation value. For a range (11) of Wilson coe�cients we find
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whereas the central value C9 = �C10 = �0.65 of the updated fit [18] corresponds to ybµy
⇤

sµ = 1.0⇥10�3 (mS3/TeV)2.

Contrary to S3, the right-handed quark currents generated by R̃2 do not improve significantly the global agreement
between theory predictions and observables related to the b ! sµ

+
µ

�. We have thus considered couplings ỹsµ and
ỹbµ to be negligible.
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IV. CONSTRAINTS ON LQ COUPLINGS

The introduction of two light LQ states with sizable couplings to explain the LFU observables, as presented above,
inevitably causes some side e↵ects in related observables on which we will focus on in this Section. So far we have
not discussed of what size the R̃2 Yukawas with ⌧ leptons should be. This question will be answered below.

A. LFU in charged currents

Besides measuring RD(⇤) that does not distinguish between e and µ in the final state, Belle collaboration also

reported on the lepton universality ratio in e and µ. Here we will use R

e/µ
D⇤ = 1.04(5)(1) [44] and R

µ/e
D =

0.995(22)(39) [45], both of which are consistent with 1. In our framework the S3 state can potentially contribute to
those ratios by rescaling the overall normalization of B ! D

(⇤)
µ⌫. It follows from Eq. (7) that S3 contributions in

these decays are constrained:
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sµ + y

⇤
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◆
ybµ

�
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µ/e
D(⇤) � 1 = �0.023± 0.043, (14)

where we have averaged over the two Belle results. Due to its smallness the term ysµy
⇤

bµ is irrelevant in the above
equation (see Eq. (13)), albeit the factor ⇠ 20 enhancement due to CKM. What remains then of Eq. (14) is a weak
limit on |ybµ| . 1.5(mS3/TeV). Such weakness is can be understood by considering S3 couplings which have the same
CKM suppression as the SM, however, relative to SM it is suppressed by v

2
/m

2
S3
.

On the other hand, LFU has been tested and confirmed to hold with better precision in semileptonic decays of
charged kaons:

R

K
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⌫̄)
, R

K
⌧/µ =
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�(K� ! µ

�

⌫̄)
. (15)

As pointed out in [37] they enable us to put strong constraints on the corrections arising within models of NP. In the
e/µ sector the experimental result [46] agrees well with the SM prediction [47]:
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K(exp)
e/µ = (2.488± 0.010)⇥ 10�5

, R

K(SM)
e/µ = (2.477± 0.001)⇥ 10�5

. (16)

The agreement of experiment [46] with the SM prediction in the ⌧/µ sector is slightly less precise:

R

K(exp)
⌧/µ = (1.101± 0.016)⇥ 10�2

, R

K(SM)
⌧/µ =

⌧⌧

⌧K

m

3
K(m2

⌧ �m

2
K)2

2m⌧m
2
µ(m

2
K �m

2
µ)

2
= (1.1162± 0.00026)⇥ 10�2

, (17)

where the dominant error of the SM theoretical prediction is due to lifetimes uncertainties. Following [39] inK
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decay the Vus is modified as

|V (µ)
us |2 = |Vus|2


1� v

2

2m2
S3

Re
⇥
|ysµ|2 + (Vub/Vus)y

⇤

bµysµ

⇤�
, (18)

as for the ⌧
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⌫ the relevant CKM element |V (⌧)
us |2 is obtained by setting µ ! ⌧ in Eq. (18). Again, we have

neglected the pure LQ terms. Eqs. (16),(17) can be recast as:
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The first bound can only be saturated by the |ysµ|2 term and is further simplified to |ysµ| . 0.5(mS3/TeV).
In the case of charm mesons the c ! s`⌫` decay width is corrected by
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Using the bounds from kaon LFU observables presented above, the S3 correction to the D ! µ⌫ width is below
1%. The measured experimental branching fraction of Ds ! ⌧⌫ has 4% uncertainty which can accomodate |ys⌧ | .
1.2(mS3/TeV), without even taking into account the uncertainty due to decay constant.
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IV. CONSTRAINTS ON LQ COUPLINGS

The introduction of two light LQ states with sizable couplings to explain the LFU observables, as presented above,
inevitably causes some side e↵ects in related observables on which we will focus on in this Section. So far we have
not discussed of what size the R̃2 Yukawas with ⌧ leptons should be. This question will be answered below.

A. LFU in charged currents

Besides measuring RD(⇤) that does not distinguish between e and µ in the final state, Belle collaboration also

reported on the lepton universality ratio in e and µ. Here we will use R
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D⇤ = 1.04(5)(1) [44] and R

µ/e
D =

0.995(22)(39) [45], both of which are consistent with 1. In our framework the S3 state can potentially contribute to
those ratios by rescaling the overall normalization of B ! D
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these decays are constrained:

� v

2

2m2
S3

Re

✓
Vcs

Vcb
y

⇤

sµ + y

⇤

bµ

◆
ybµ

�
= R

µ/e
D(⇤) � 1 = �0.023± 0.043, (14)

where we have averaged over the two Belle results. Due to its smallness the term ysµy
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bµ is irrelevant in the above
equation (see Eq. (13)), albeit the factor ⇠ 20 enhancement due to CKM. What remains then of Eq. (14) is a weak
limit on |ybµ| . 1.5(mS3/TeV). Such weakness is can be understood by considering S3 couplings which have the same
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On the other hand, LFU has been tested and confirmed to hold with better precision in semileptonic decays of
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Using the bounds from kaon LFU observables presented above, the S3 correction to the D ! µ⌫ width is below
1%. The measured experimental branching fraction of Ds ! ⌧⌫ has 4% uncertainty which can accomodate |ys⌧ | .
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The first bound can only be saturated by the |ysµ|2 term and is further simplified to |ysµ| . 0.5(mS3/TeV).
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Using the bounds from kaon LFU observables presented above, the S3 correction to the D ! µ⌫ width is below
1%. The measured experimental branching fraction of Ds ! ⌧⌫ has 4% uncertainty which can accomodate |ys⌧ | .
1.2(mS3/TeV), without even taking into account the uncertainty due to decay constant.
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where the value of renormalization-group invariant bag parameter is taken from the QCD lattice simulation with

three dynamical quarks [50]: f

2
Bs

B̂

(1)
Bs

= 0.0754(46)(15) GeV2 2. First number in the brackets represents statistical
and systematical error, apart from systematic error due to omission of dynamical charm-quark, which is shown in the
second bracket. The SM prediction is then �m

SM
s = (19.6± 1.6) ps�1. For the LQ contributions in Eq. (23) we use

the values of B(i)
Bs

(µ) from Ref. [50]. For the multiplicative renormalization of coe�cients C

S3
1 and C̃

R̃2
1 we neglect

the running from ⇤ to mt, such that running e↵ect to low scale is the same as in the SM, whereas for CR̃2S3
4,5 we use

the leading order mixing [52] to find C

R̃2S3
4 (µ) = 0.61CR̃2S3

5 (⇤), CR̃2S3
5 (µ) = 0.88CR̃2S3

5 (⇤). For the ratios of bag

parameters we use central values to find B

(5)
Bs

(µ)/B(1)
Bs

(µ) = 0.99, B(4)
Bs

(µ)/B(1)
Bs

(µ) = 1.07 [50]. Note that in this case
the experimental value �m

exp
s = (17.757± 0.021) ps�1 has negligible uncertainty [46].

C. B ! K(⇤)⌫⌫̄

The B ! K

(⇤)
⌫⌫̄ decay o↵ers an excellent probe of the lepton flavour conserving as well as lepton flavour violating

combination of the LQ couplings. Following [37] and with the help of notation in Refs. [41, 53, 54], we write the
e↵ective Lagrangian:

Lb!s⌫̄⌫
e↵ =

GF↵

⇡

p
2
VtbV

⇤

ts

⇣
s̄�µ[C

ij
L PL + C

ij
RPR]b

⌘
(⌫̄i�

µ(1� �5)⌫j). (25)

In the SM we have a contribution for each pair of neutrinos and therefore C

SM,ij
L = C

SM
L �ij where C

SM
L = �6.38 ±

0.06 [53]. The respective contributions of S3 and R̃2 to the left- and right-handed operators are [39]:

C
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2
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tsm
2
R̃2

ỹsj ỹ
⇤

bi. (26)

As discussed in [37] the SM branching ratio for both processes B ! K

(⇤)
⌫⌫̄ is modified by the same factor R⌫⌫ [54, 55],

R⌫⌫ � 1 =
⇡v

2
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S3
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m

2
S3
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2
R̃2

#
.

(27)

Among the possible final states, the strongest bound on R⌫⌫ is due to Belle’s determination of the upper bound
B(B ! K

⇤

⌫⌫̄) < 2.7⇥ 10�5 which translates to R⌫⌫ < 2.7, both at 90% confidence level [56].

D. Muon anomalous magnetic moment

The di↵erence between the experimental value and the one predicted by the SM is �aµ = a

exp
µ � a

SM
µ = (2.8 ±

0.9)⇥ 10�9 []. Following [39] and using the Lagrangian (3), we derive the contribution of S3 to the muon anomalous
magnetic moment:

�a

LQ
µ =

3m2
µ

8⇡2
m

2
S3

"
|ysµ|2 + |ybµ|2 +

1

2
(⌃i=u,c,t(V

⇤

isysµ + V

⇤

ibybµ)(Visy
⇤

sµ + Viby
⇤

bµ))

#
(28)

One can find that this di↵erence allows parameters ysµ and ybµ to be within the region [�2.2, 2.2]. This is however,
larger than allowed by the RK puzzle. Although this contribution is smaller than the current di↵erence, the sign of
the leptoquark contribution agrees with the sign of the observed di↵erence.

2 We prefer to use the results of Ref. [50] that include bag parameters for the whole operator basis. However, for B
(1)
Bs

we have found

good agreement with the FLAG average of 2+1 dynamical simulations, f2
Bs

B̂
(1)
Bs

= 0.0729(86) [51]
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Figure 2. Constraints of parameters gsµ and gb⌧ in units MS3/TeV determined from the bound on the branching ratio R(⇤)
D

and the lower bound on the branching fraction BR(⌧ ! µ�  4⇥ 10�8 .

V. FLAVOR VIOLATING CONSTRAINTS

A. ⌧ ! µ�

Current bound B(⌧ ! µ�)  4.4⇥10�8 has been determined by the BABAR collaboration [57]. The S3 leptoquark

contributes to the ⌧ ! µ� amplitude via b and s quarks and S

4/3
3 in the loop and also via up quarks u, c and t

mediated by the S

�1/3
3 component. Using the loop functions in the limit of small mass of quarks as in Ref. [39] we

determine

L⌧!µ�
e↵ =

e

2
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In Fig. 2 we present combined bounds coming from the bound on LFV BR((⌧ ! µ�)) and the bound on R

(⇤)
D as

given in Eq. (??).
The pink area denotes the region allowed by the bound on BR(⌧ ! µ�), when g

⇤

sµgbµ = 1 ⇥ 10�3 (MS3/TeV)2.

Two pink dashed lines correspond to the two limiting cases g

⇤

sµgbµ = 1.3 ⇥ 10�3 (MS3/TeV)2 and g

⇤

sµgbµ = 0.7 ⇥
10�3 (MS3/TeV)2. We present case for the mass of s3 = 1 TeV. The green area denotes the region of the parameter

space allowed by R

(⇤)
D .

B. B ! Kµ⌧ decay

The lepton number violation can be induced the leptoquark presence at tree level in B

� ! K

�

µ

+
⌧

� and also in
decays of bottomonium to ⌧µ. As noticed in [37] the latter process has been constrained at the level of 10�6 however
these bounds are not competitive with the bound B(B� ! K

�

µ

+
⌧

�) < 2.8 ⇥ 10�5 at 90% CL [58]. Following As
discussed in [37]1 we find |gb⌧gsµ| . 0.09(MS3TeV)2.
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ysµ = 0.026; ybµ = 1.03; ys⌧ = 0.88; yb⌧ = �0.77;

ỹs⌧ = 0.726; ỹb⌧ = �1.037;
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B. Bs � B̄s oscillation frequency

Despite being a loop observable in the LQ scenarios, the Bs meson mixing frequency is one of the most important
constraints in our particular setup where the product of S3 Yukawas yb⌧ys⌧ is large. This product alone would lead to
uncomfortably large e↵ect in the Bs � B̄s oscillation frequency �ms. However, there is an additional box amplitude
due to R̃2 as well as amplitude with S3 and R̃2 propagating in the box, as shown in Fig. 1. Amplitudes that correspond

S
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3

`(⌫)

S
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3
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2

s

b

s

b

Figure 1. Three types of box-diagrams with S3 and R̃2 contributing to �ms.

to the first and second diagram in Fig. 1 can be found in [8, 39] and contribute to operators C1 and C̃1 of the e↵ective
Hamiltonian, respectively:

H�ms = (CSM
1 + C

S3
1 ) (s̄L�

⌫
bL)

2 + C̃

R̃2
1 (s̄R�

⌫
bR)

2 + C

S3R̃2
4 (s̄RbL)(s̄LbR) + C

S3R̃2
5 (s̄↵Rb

�
L)(s̄

�
Lb

↵
R). (21)

The third diagram in Fig. 1 in which both LQs are present, but couple with opposite chirality to the fermions,
contributes to the Wilson coe�cient C5. There the color indices ↵,� are summed across �B = 1 currents. The
box diagrams in Fig. 1 are well approximated using a limit of massless virtual leptons and match onto the e↵ective
Hamiltonian at scale ⇤ = O(mS3) ⇠ 1 TeV:
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Evaluation of hadronic matrix elements for Bs�B̄s mixing is performed at the scale µ = m̄b(m̄b) = 4.2 GeV. Utilizing
parameterization in terms of bag parameters as in [48], we find for the oscillation frequency
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For the SM prediction we use the perturbative QCD renormalization at next-to-leading order whose e↵ect is subsumed
in ⌘2B = 0.55(1) [49]. The non-perturbative parameters and perturbative RG running e↵ects of C1 are combined into
a scale-invariant combination,
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																							oscilla>on	Bs � B̄s

S3	alone	gives	rather	large	contribu>on	due	to	rather	large			 ys⌧yb⌧
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B. Bs � B̄s oscillation frequency

Despite being a loop observable in the LQ scenarios, the Bs meson mixing frequency is one of the most important
constraints in our particular setup where the product of S3 Yukawas yb⌧ys⌧ is large. This product alone would lead to
uncomfortably large e↵ect in the Bs � B̄s oscillation frequency �ms. However, there is an additional box amplitude
due to R̃2 as well as amplitude with S3 and R̃2 propagating in the box, as shown in Fig. 1. Amplitudes that correspond
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Figure 1. Three types of box-diagrams with S3 and R̃2 contributing to �ms.

to the first and second diagram in Fig. 1 can be found in [8, 39] and contribute to operators C1 and C̃1 of the e↵ective
Hamiltonian, respectively:
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The third diagram in Fig. 1 in which both LQs are present, but couple with opposite chirality to the fermions,
contributes to the Wilson coe�cient C5. There the color indices ↵,� are summed across �B = 1 currents. The
box diagrams in Fig. 1 are well approximated using a limit of massless virtual leptons and match onto the e↵ective
Hamiltonian at scale ⇤ = O(mS3) ⇠ 1 TeV:
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Evaluation of hadronic matrix elements for Bs�B̄s mixing is performed at the scale µ = m̄b(m̄b) = 4.2 GeV. Utilizing
parameterization in terms of bag parameters as in [48], we find for the oscillation frequency
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For the SM prediction we use the perturbative QCD renormalization at next-to-leading order whose e↵ect is subsumed
in ⌘2B = 0.55(1) [49]. The non-perturbative parameters and perturbative RG running e↵ects of C1 are combined into
a scale-invariant combination,
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where the value of renormalization-group invariant bag parameter is taken from the QCD lattice simulation with

three dynamical quarks [50]: f

2
Bs

B̂

(1)
Bs

= 0.0754(46)(15) GeV2 2. First number in the brackets represents statistical
and systematical error, apart from systematic error due to omission of dynamical charm-quark, which is shown in the
second bracket. The SM prediction is then �m

SM
s = (19.6± 1.6) ps�1. For the LQ contributions in Eq. (23) we use

the values of B(i)
Bs

(µ) from Ref. [50]. For the multiplicative renormalization of coe�cients C

S3
1 and C̃

R̃2
1 we neglect

the running from ⇤ to mt, such that running e↵ect to low scale is the same as in the SM, whereas for CR̃2S3
4,5 we use

the leading order mixing [52] to find C

R̃2S3
4 (µ) = 0.61CR̃2S3

5 (⇤), CR̃2S3
5 (µ) = 0.88CR̃2S3

5 (⇤). For the ratios of bag

parameters we use central values to find B

(5)
Bs

(µ)/B(1)
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(µ) = 0.99, B(4)
Bs

(µ)/B(1)
Bs

(µ) = 1.07 [50]. Note that in this case
the experimental value �m

exp
s = (17.757± 0.021) ps�1 has negligible uncertainty [46].

C. B ! K(⇤)⌫⌫̄

The B ! K

(⇤)
⌫⌫̄ decay o↵ers an excellent probe of the lepton flavour conserving as well as lepton flavour violating

combination of the LQ couplings. Following [37] and with the help of notation in Refs. [41, 53, 54], we write the
e↵ective Lagrangian:
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In the SM we have a contribution for each pair of neutrinos and therefore C
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As discussed in [37] the SM branching ratio for both processes B ! K
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⌫⌫̄ is modified by the same factor R⌫⌫ [54, 55],
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Among the possible final states, the strongest bound on R⌫⌫ is due to Belle’s determination of the upper bound
B(B ! K

⇤

⌫⌫̄) < 2.7⇥ 10�5 which translates to R⌫⌫ < 2.7, both at 90% confidence level [56].

D. Muon anomalous magnetic moment

The di↵erence between the experimental value and the one predicted by the SM is �aµ = a

exp
µ � a

SM
µ = (2.8 ±

0.9)⇥ 10�9 []. Following [39] and using the Lagrangian (3), we derive the contribution of S3 to the muon anomalous
magnetic moment:
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One can find that this di↵erence allows parameters ysµ and ybµ to be within the region [�2.2, 2.2]. This is however,
larger than allowed by the RK puzzle. Although this contribution is smaller than the current di↵erence, the sign of
the leptoquark contribution agrees with the sign of the observed di↵erence.

2 We prefer to use the results of Ref. [50] that include bag parameters for the whole operator basis. However, for B
(1)
Bs

we have found

good agreement with the FLAG average of 2+1 dynamical simulations, f2
Bs

B̂
(1)
Bs

= 0.0729(86) [51]



6

where the value of renormalization-group invariant bag parameter is taken from the QCD lattice simulation with

three dynamical quarks [50]: f

2
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= 0.0754(46)(15) GeV2 2. First number in the brackets represents statistical
and systematical error, apart from systematic error due to omission of dynamical charm-quark, which is shown in the
second bracket. The SM prediction is then �m

SM
s = (19.6± 1.6) ps�1. For the LQ contributions in Eq. (23) we use

the values of B(i)
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(µ) from Ref. [50]. For the multiplicative renormalization of coe�cients C
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1 and C̃

R̃2
1 we neglect

the running from ⇤ to mt, such that running e↵ect to low scale is the same as in the SM, whereas for CR̃2S3
4,5 we use

the leading order mixing [52] to find C
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4 (µ) = 0.61CR̃2S3

5 (⇤), CR̃2S3
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(µ) = 1.07 [50]. Note that in this case
the experimental value �m

exp
s = (17.757± 0.021) ps�1 has negligible uncertainty [46].
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The B ! K

(⇤)
⌫⌫̄ decay o↵ers an excellent probe of the lepton flavour conserving as well as lepton flavour violating

combination of the LQ couplings. Following [37] and with the help of notation in Refs. [41, 53, 54], we write the
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m

4
R̃2
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Among the possible final states, the strongest bound on R⌫⌫ is due to Belle’s determination of the upper bound
B(B ! K

⇤

⌫⌫̄) < 2.7⇥ 10�5 which translates to R⌫⌫ < 2.7, both at 90% confidence level [56].

D. Muon anomalous magnetic moment

The di↵erence between the experimental value and the one predicted by the SM is �aµ = a

exp
µ � a

SM
µ = (2.8 ±

0.9)⇥ 10�9 []. Following [39] and using the Lagrangian (3), we derive the contribution of S3 to the muon anomalous
magnetic moment:
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One can find that this di↵erence allows parameters ysµ and ybµ to be within the region [�2.2, 2.2]. This is however,
larger than allowed by the RK puzzle. Although this contribution is smaller than the current di↵erence, the sign of
the leptoquark contribution agrees with the sign of the observed di↵erence.

2 We prefer to use the results of Ref. [50] that include bag parameters for the whole operator basis. However, for B
(1)
Bs

we have found

good agreement with the FLAG average of 2+1 dynamical simulations, f2
Bs

B̂
(1)
Bs

= 0.0729(86) [51]
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where the value of renormalization-group invariant bag parameter is taken from the QCD lattice simulation with

three dynamical quarks [50]: f

2
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= 0.0754(46)(15) GeV2 2. First number in the brackets represents statistical
and systematical error, apart from systematic error due to omission of dynamical charm-quark, which is shown in the
second bracket. The SM prediction is then �m

SM
s = (19.6± 1.6) ps�1. For the LQ contributions in Eq. (23) we use

the values of B(i)
Bs

(µ) from Ref. [50]. For the multiplicative renormalization of coe�cients C

S3
1 and C̃

R̃2
1 we neglect

the running from ⇤ to mt, such that running e↵ect to low scale is the same as in the SM, whereas for CR̃2S3
4,5 we use

the leading order mixing [52] to find C

R̃2S3
4 (µ) = 0.61CR̃2S3

5 (⇤), CR̃2S3
5 (µ) = 0.88CR̃2S3

5 (⇤). For the ratios of bag

parameters we use central values to find B
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(µ) = 0.99, B(4)
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(µ) = 1.07 [50]. Note that in this case
the experimental value �m

exp
s = (17.757± 0.021) ps�1 has negligible uncertainty [46].
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combination of the LQ couplings. Following [37] and with the help of notation in Refs. [41, 53, 54], we write the
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As discussed in [37] the SM branching ratio for both processes B ! K
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⌫⌫̄ is modified by the same factor R⌫⌫ [54, 55],
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� (ỹỹ†)sb
m

2
R̃2

#

+
(⇡v2)2

12(↵VtbV
⇤

ts|CSM
L |)2

"
(yy†)bb(yy†)ss

m

4
S3

+
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Among the possible final states, the strongest bound on R⌫⌫ is due to Belle’s determination of the upper bound
B(B ! K

⇤

⌫⌫̄) < 2.7⇥ 10�5 which translates to R⌫⌫ < 2.7, both at 90% confidence level [56].

D. Muon anomalous magnetic moment

The di↵erence between the experimental value and the one predicted by the SM is �aµ = a

exp
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0.9)⇥ 10�9 []. Following [39] and using the Lagrangian (3), we derive the contribution of S3 to the muon anomalous
magnetic moment:

�a

LQ
µ =

3m2
µ

8⇡2
m

2
S3

"
|ysµ|2 + |ybµ|2 +

1

2
(⌃i=u,c,t(V

⇤

isysµ + V

⇤

ibybµ)(Visy
⇤

sµ + Viby
⇤

bµ))

#
(28)

One can find that this di↵erence allows parameters ysµ and ybµ to be within the region [�2.2, 2.2]. This is however,
larger than allowed by the RK puzzle. Although this contribution is smaller than the current di↵erence, the sign of
the leptoquark contribution agrees with the sign of the observed di↵erence.

2 We prefer to use the results of Ref. [50] that include bag parameters for the whole operator basis. However, for B
(1)
Bs

we have found

good agreement with the FLAG average of 2+1 dynamical simulations, f2
Bs

B̂
(1)
Bs

= 0.0729(86) [51]
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where the value of renormalization-group invariant bag parameter is taken from the QCD lattice simulation with

three dynamical quarks [50]: f
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Among the possible final states, the strongest bound on R⌫⌫ is due to Belle’s determination of the upper bound
B(B ! K

⇤

⌫⌫̄) < 2.7⇥ 10�5 which translates to R⌫⌫ < 2.7, both at 90% confidence level [56].
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One can find that this di↵erence allows parameters ysµ and ybµ to be within the region [�2.2, 2.2]. This is however,
larger than allowed by the RK puzzle. Although this contribution is smaller than the current di↵erence, the sign of
the leptoquark contribution agrees with the sign of the observed di↵erence.

2 We prefer to use the results of Ref. [50] that include bag parameters for the whole operator basis. However, for B
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1 Collider constrains

As shown in ??, direct LHC searches for ⌧⌧ resonances can produce stringent bounds on NP
models for the RD(⇤) anomaly. These models will generate neutral currents with large couplings to
third generation fermions that enhance bb̄ ! ⌧+⌧� production at the LHC. With enough integrated
luminosity, the limits from ⌧⌧ searches are sensitive to couplings of order O(1) in the 1 TeV region. In
the leptoquark model proposed here, the fact that both S
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and R̃
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contribute to low-energy processes
implies smaller b� ⌧ Yukawa couplings to each leptoquark. These smaller Yukawas could potentially
evade direct search limits from ?? (the same mechanism has been employed in ??). Nevertheless,
fitting the low-energy anomalies and flavor constrains leeds to non-negligeable s� ⌧ couplings to both
leptoquarks. This will generate a large enhancement of ss̄ ! ⌧+⌧� production at the LHC. Given
that the PDF of the strange quark is enhanced in comparison to the bottom quark by a factor of ⇠ 3,
it is important to reinterpret the limits derived in ?? when both leptoquarks with sizeable s� ⌧ and
b� ⌧ couplings are included. In the following we confront the leptoquark model to existing 13 TeV Z 0

resonance searches in the high-mass tails of inclusive ⌧⌧ production. Besides ⌧⌧ resonance searches,
we have also analyzed direct searches exclusive for third generation leptoquarks, namely leptoquark
pair production from QCD interactions.

Discuss about other constrains such as di-muons and pair production of leptoquarks of second-gen...

1.1 High-mass ⌧⌧ production

Each leptoquark component contributes to pp ! ⌧+⌧� via qq̄ annihilation (q = s, c, b) in a t-channel
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as depicted in Fig.1. First we calculate the leading-order (LO)
fiducial cross-section of pp ! ⌧+⌧� in the leptoquark model defined by the following high-mass cuts:
pT (⌧) > 150 GeV (50 GeV) for the leading (sub-leading) ⌧ -lepton and an invariant mass cut for the
⌧⌧ pair of m⌧⌧ > 300 GeV. The fiducial cross-section is decomposed in the following way:
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As shown in ??, direct LHC searches for ⌧⌧ resonances can produce stringent bounds on NP
models for the RD(⇤) anomaly. These models will generate neutral currents with large couplings to
third generation fermions that enhance bb̄ ! ⌧+⌧� production at the LHC. With enough integrated
luminosity, the limits from ⌧⌧ searches are sensitive to couplings of order O(1) in the 1 TeV region. In
the leptoquark model proposed here, the fact that both S
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contribute to low-energy processes
implies smaller b� ⌧ Yukawa couplings to each leptoquark. These smaller Yukawas could potentially
evade direct search limits from ?? (the same mechanism has been employed in ??). Nevertheless,
fitting the low-energy anomalies and flavor constrains leeds to non-negligeable s� ⌧ couplings to both
leptoquarks. This will generate a large enhancement of ss̄ ! ⌧+⌧� production at the LHC. Given
that the PDF of the strange quark is enhanced in comparison to the bottom quark by a factor of ⇠ 3,
it is important to reinterpret the limits derived in ?? when both leptoquarks with sizeable s� ⌧ and
b� ⌧ couplings are included. In the following we confront the leptoquark model to existing 13 TeV Z 0

resonance searches in the high-mass tails of inclusive ⌧⌧ production. Besides ⌧⌧ resonance searches,
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ỹ2s⌧

⌘

=
↵4

y4s⌧
A(3)

1

+
↵̃4
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As shown in ??, direct LHC searches for ⌧⌧ resonances can produce stringent bounds on NP
models for the RD(⇤) anomaly. These models will generate neutral currents with large couplings to
third generation fermions that enhance bb̄ ! ⌧+⌧� production at the LHC. With enough integrated
luminosity, the limits from ⌧⌧ searches are sensitive to couplings of order O(1) in the 1 TeV region. In
the leptoquark model proposed here, the fact that both S
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implies smaller b� ⌧ Yukawa couplings to each leptoquark. These smaller Yukawas could potentially
evade direct search limits from ?? (the same mechanism has been employed in ??). Nevertheless,
fitting the low-energy anomalies and flavor constrains leeds to non-negligeable s� ⌧ couplings to both
leptoquarks. This will generate a large enhancement of ss̄ ! ⌧+⌧� production at the LHC. Given
that the PDF of the strange quark is enhanced in comparison to the bottom quark by a factor of ⇠ 3,
it is important to reinterpret the limits derived in ?? when both leptoquarks with sizeable s� ⌧ and
b� ⌧ couplings are included. In the following we confront the leptoquark model to existing 13 TeV Z 0

resonance searches in the high-mass tails of inclusive ⌧⌧ production. Besides ⌧⌧ resonance searches,
we have also analyzed direct searches exclusive for third generation leptoquarks, namely leptoquark
pair production from QCD interactions.

Discuss about other constrains such as di-muons and pair production of leptoquarks of second-gen...
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fiducial cross-section of pp ! ⌧+⌧� in the leptoquark model defined by the following high-mass cuts:
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where ↵ ⌘ ys⌧yb⌧ and ↵̃ ⌘ ỹs⌧ ỹb⌧ . In order to keep the analysis simple we assume all Yukawa couplings
to be real and the CKM matrix to be V ⇡ 1. Here �(1), �(2) and �(3) correspond to the fiducial cross-
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1 Collider constrains

As shown in ??, direct LHC searches for ⌧⌧ resonances can produce stringent bounds on NP
models for the RD(⇤) anomaly. These models will generate neutral currents with large couplings to
third generation fermions that enhance bb̄ ! ⌧+⌧� production at the LHC. With enough integrated
luminosity, the limits from ⌧⌧ searches are sensitive to couplings of order O(1) in the 1 TeV region. In
the leptoquark model proposed here, the fact that both S
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contribute to low-energy processes
implies smaller b� ⌧ Yukawa couplings to each leptoquark. These smaller Yukawas could potentially
evade direct search limits from ?? (the same mechanism has been employed in ??). Nevertheless,
fitting the low-energy anomalies and flavor constrains leeds to non-negligeable s� ⌧ couplings to both
leptoquarks. This will generate a large enhancement of ss̄ ! ⌧+⌧� production at the LHC. Given
that the PDF of the strange quark is enhanced in comparison to the bottom quark by a factor of ⇠ 3,
it is important to reinterpret the limits derived in ?? when both leptoquarks with sizeable s� ⌧ and
b� ⌧ couplings are included. In the following we confront the leptoquark model to existing 13 TeV Z 0

resonance searches in the high-mass tails of inclusive ⌧⌧ production. Besides ⌧⌧ resonance searches,
we have also analyzed direct searches exclusive for third generation leptoquarks, namely leptoquark
pair production from QCD interactions.

Discuss about other constrains such as di-muons and pair production of leptoquarks of second-gen...
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as depicted in Fig.1. First we calculate the leading-order (LO)
fiducial cross-section of pp ! ⌧+⌧� in the leptoquark model defined by the following high-mass cuts:
pT (⌧) > 150 GeV (50 GeV) for the leading (sub-leading) ⌧ -lepton and an invariant mass cut for the
⌧⌧ pair of m⌧⌧ > 300 GeV. The fiducial cross-section is decomposed in the following way:
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1 Collider constrains

As shown in ??, direct LHC searches for ⌧⌧ resonances can produce stringent bounds on NP
models for the RD(⇤) anomaly. These models will generate neutral currents with large couplings to
third generation fermions that enhance bb̄ ! ⌧+⌧� production at the LHC. With enough integrated
luminosity, the limits from ⌧⌧ searches are sensitive to couplings of order O(1) in the 1 TeV region. In
the leptoquark model proposed here, the fact that both S
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implies smaller b� ⌧ Yukawa couplings to each leptoquark. These smaller Yukawas could potentially
evade direct search limits from ?? (the same mechanism has been employed in ??). Nevertheless,
fitting the low-energy anomalies and flavor constrains leeds to non-negligeable s� ⌧ couplings to both
leptoquarks. This will generate a large enhancement of ss̄ ! ⌧+⌧� production at the LHC. Given
that the PDF of the strange quark is enhanced in comparison to the bottom quark by a factor of ⇠ 3,
it is important to reinterpret the limits derived in ?? when both leptoquarks with sizeable s� ⌧ and
b� ⌧ couplings are included. In the following we confront the leptoquark model to existing 13 TeV Z 0

resonance searches in the high-mass tails of inclusive ⌧⌧ production. Besides ⌧⌧ resonance searches,
we have also analyzed direct searches exclusive for third generation leptoquarks, namely leptoquark
pair production from QCD interactions.

Discuss about other constrains such as di-muons and pair production of leptoquarks of second-gen...
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where ↵ ⌘ ys⌧yb⌧ and ↵̃ ⌘ ỹs⌧ ỹb⌧ . In order to keep the analysis simple we assume all Yukawa couplings
to be real and the CKM matrix to be V ⇡ 1. Here �(1), �(2) and �(3) correspond to the fiducial cross-
sections of the processes ss̄ (cc̄) ! ⌧+⌧� (Fig.1 a,c), sb̄ (s̄b) ! ⌧+⌧� (Fig.1 b) and bb̄ ! ⌧+⌧� (Fig.1
a), respectively. These can be expressed as the following quartic polynomials in the couplings:

�(1)(y2s⌧ , ỹ
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1 Collider constrains

As shown in ??, direct LHC searches for ⌧⌧ resonances can produce stringent bounds on NP
models for the RD(⇤) anomaly. These models will generate neutral currents with large couplings to
third generation fermions that enhance bb̄ ! ⌧+⌧� production at the LHC. With enough integrated
luminosity, the limits from ⌧⌧ searches are sensitive to couplings of order O(1) in the 1 TeV region. In
the leptoquark model proposed here, the fact that both S
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and R̃
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contribute to low-energy processes
implies smaller b� ⌧ Yukawa couplings to each leptoquark. These smaller Yukawas could potentially
evade direct search limits from ?? (the same mechanism has been employed in ??). Nevertheless,
fitting the low-energy anomalies and flavor constrains leeds to non-negligeable s� ⌧ couplings to both
leptoquarks. This will generate a large enhancement of ss̄ ! ⌧+⌧� production at the LHC. Given
that the PDF of the strange quark is enhanced in comparison to the bottom quark by a factor of ⇠ 3,
it is important to reinterpret the limits derived in ?? when both leptoquarks with sizeable s� ⌧ and
b� ⌧ couplings are included. In the following we confront the leptoquark model to existing 13 TeV Z 0

resonance searches in the high-mass tails of inclusive ⌧⌧ production. Besides ⌧⌧ resonance searches,
we have also analyzed direct searches exclusive for third generation leptoquarks, namely leptoquark
pair production from QCD interactions.

Discuss about other constrains such as di-muons and pair production of leptoquarks of second-gen...

1.1 High-mass ⌧⌧ production

Each leptoquark component contributes to pp ! ⌧+⌧� via qq̄ annihilation (q = s, c, b) in a t-channel

exchange of S4/3
3

, S1/3
3

and R̃2/3
2

as depicted in Fig.1. First we calculate the leading-order (LO)
fiducial cross-section of pp ! ⌧+⌧� in the leptoquark model defined by the following high-mass cuts:
pT (⌧) > 150 GeV (50 GeV) for the leading (sub-leading) ⌧ -lepton and an invariant mass cut for the
⌧⌧ pair of m⌧⌧ > 300 GeV. The fiducial cross-section is decomposed in the following way:

�fid

pp!⌧⌧ (ys⌧ , ỹs⌧ ,↵, ↵̃) = �(1)(y2s⌧ , ỹ
2

s⌧ ) + �(2)(↵, ↵̃) + �(3)

⇣ ↵2

y2s⌧
,
↵̃2

ỹ2s⌧

⌘

(1)

where ↵ ⌘ ys⌧yb⌧ and ↵̃ ⌘ ỹs⌧ ỹb⌧ . In order to keep the analysis simple we assume all Yukawa couplings
to be real and the CKM matrix to be V ⇡ 1. Here �(1), �(2) and �(3) correspond to the fiducial cross-
sections of the processes ss̄ (cc̄) ! ⌧+⌧� (Fig.1 a,c), sb̄ (s̄b) ! ⌧+⌧� (Fig.1 b) and bb̄ ! ⌧+⌧� (Fig.1
a), respectively. These can be expressed as the following quartic polynomials in the couplings:

�(1)(y2s⌧ , ỹ
2

s⌧ ) = y4s⌧ A
(1)

1

+ ỹ4s⌧ A
(1)

2

+ y2s⌧ ỹ
2

s⌧ A
(1)

3

(2)

�(2)(↵, ↵̃) = ↵2A(2)

1

+ ↵̃2A(2)

2

+ ↵↵̃A(2)

3

(3)

�(3)

⇣ ↵2

y2s⌧
,
↵̃2

ỹ2s⌧

⌘

=
↵4

y4s⌧
A(3)

1

+
↵̃4

ỹ4s⌧
A(3)

2

+
↵2↵̃2

y2s⌧ ỹ
2

s⌧
A(3)

3

. (4)

1
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Fixing	these	couplings	one	can	get	full	total	cross-sec>on.		
The	MC	samples	generated	in	MadGraph	were	subsequently		
hadronized	and	showered	in	Pythia6		
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from	the	high-mass	ττ	resonance	search	by	ATLAS.	
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✓3 ⇠ (v5v24)/m2
LQ ⇡ 10

18/1024 = 10

�6, where v5 ⇠ hHi ⇡ 10

2 GeV, v24 ⇠ �3 ⇡ 10

16 GeV, and

m2
11�m2

22 ⇠ m2
LQ ⇡ 10

24 GeV2. The necessary mixing between S1(2 5) and ˜R2(2 15) can be generated

through the contractions of the form 5
i

5
j

15ij and 5
i

5
j

15jk24i
k

. These, again, yield an angle ✓1 that

is comparable in strength to our estimate for ✓3. We can furthermore safely assume that m
b

(⇡ 1GeV)

contribution dominates the sum in Eq. (4). Putting all this together implies that

m
N

⇠ 3✓1, 3
32⇡2

m
b

ln

m2
LQ2

m2
LQ1

(ỹRL

2 yLL1, 3) ⇡
10

�6

10

2
10

9
eV(ỹRL

2 yLL1, 3), (10)

where we suppress flavor indices and assume that the mass splitting between LQs is not substantial, i.e.,

we take that ln(m2
LQ2/m

2
LQ1) ⇡ 1. The approximation of Eq. (10) shows that the entries in the product

(ỹRL

2 yLL1, 3) do not have to be very large to correctly describe the neutrino mass scale. For example, in the

non-degenerate normal hierarchy case for the neutrino masses the largest entry on the left side of Eq. (10)

needs to be at the level of 5 ⇥ 10

�2 eV which would imply that (ỹRL

2 yLL1, 3) ⇠ 5 ⇥ 10

�3.4 The back-of-

the-envelope estimate we present clearly demonstrates viability of this option. Note that there is an upper

bound on the heavier of the two LQs in this set-up if one demands perturbativity of Yukawa coupling entries

in ỹRL

2 and yLL1, 3 matrices. We find it to be roughly at 5 ⇥ 10

13 GeV. This implies that the two LQs must

reside in relatively narrow mass window from 10

12 GeV to 5 ⇥ 10

13 GeV in order to accommodate all the

relevant constraints. One can then infer that ln(m2
LQ2/m

2
LQ1)

<⇠ 5 which is in agreement with our initial

assumption.

S1 S3
SU(5)

5 45 45

5i10jk45
jk
i

5i5j10
jk24i

k

5i10jk45
jk
i

5i10jk45
jk
i

10 5i10lj45
jk
i 24l

k

5i10lj45
jk
i 24l

k
5i10lj45

jk
i 24l

k

5i10ij45
jk
l 24l

k

5i10ij45
jk
l 24l

k
5i10lm45lm

j 24j
i

˜R2 5i10lm45lm
j 24j

i

5i10lm45lm
j 24j

i

45ij
k 15jl45

lk
i

5i5j15
ij 5i15lj45

jk
i 24l

k

45ij
k 15jl45

lk
i

15
5i5j15

jk24i
k 5i15ij45

jk
l 24l

k

5i15lj45
jk
i 24l

k

45ij
k 15jl45

lk
m24m

i

45ij
k 15jl45

lk
m24m

i

TABLE II. SU(5) operators that generate mixing between the 1/3 electric charge scalar LQs if one assumes that the

only VEVs in the theory are the ones proportional to v24, v45, and v5.

4 For a recent analysis of neutrino oscillation data see, for example, Ref. [39].
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TABLE II. SU(5) operators that generate mixing between the 1/3 electric charge scalar LQs if one assumes that the

only VEVs in the theory are the ones proportional to v24, v45, and v5.

4 For a recent analysis of neutrino oscillation data see, for example, Ref. [39].
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• Events with isolated electrons (muons) are vetoed if pT > 10 GeV (pT > 15 GeV).

• Opposite sign ⌧had⌧had with back-to-back topology in the transverse plane, ��(⌧had⌧had) > 2.7.

• Total transverse mass cut of mtot
T > 350 GeV.

Here m

tot
T is the dynamical variable used to reconstruct the invariant mass of the visible part of ⌧had⌧had defined

as (mtot
T )2 ⌘ m

2
T (⌧1, ⌧2) + m

2
T (⌧1, E

miss
T ) + m

2
T (⌧2, E

miss
T ) where E

miss
T is the total missing energy in the event and

m

2
T (A,B) = pT (A)pT (B)(1 � cos��(A,B)) is the squared transverse mass of objects A and B. To get an idea of

the sensitivity of this LHC search to the LQ model we plot in figure VI (right panel) the m

tot
T distribution after final

event selection for the backgrounds extracted from ?? and the signal for two benchmarks values of the couplings
(ys⌧ , ỹs⌧ ) ' (1, 1), (ys⌧ , ỹs⌧ ) ' (2, 2) at mLQ = 1 TeV. Notice that for the luminosity of 3.2 fb�1 used in this analysis
the search is only sensitive to the LQ model if the couplings are very large. Nevertheless, these results can be projected
to an arbitrary integrated luminosites Lint by a naive scaling of signal events with Lint and background events withp
Lint. In order to extract 95% CL bounds, we use the statistical analysis presented in Ref.??.

VII. GUT COMPLETION

One can have LHC accessible scalar fields R̃2 and S3 of the grand unified theory (GUT) origin without a conflict
with stringent limits on matter stability. A viability of this option requires that S3 does not couple to a quark-quark
pair and that both scalars do not mix with any other leptoquark in the model that does. The possibility to meet these
requirements has been explicitly demonstrated in an SU(5) model that comprises 5-, 15-, 24-, and 45-dimensional scalar
representations [40]. The decomposition of the scalar sector of this model is 5 = ( D, T ) = (1,2, 1/2)� (3,1,�1/3),
15 = (�a,�b,�c) = (1,3, 1) � (3,2, 1/6) � (6,1,�2/3), 24 = (⌃8,⌃3,⌃(3,2),⌃(3,2),⌃24) = (8,1, 0) � (1,3, 0) �
(3,2,�5/6)� (3,2, 5/6)� (1,1, 0), and 45 = (�1,�2,�3,�4,�5,�6,�7) = (8,2, 1/2)� (6,1,�1/3)� (3,3,�1/3)�
(3,2,�7/6)� (3,1,�1/3)� (3,1, 4/3)� (1,2, 1/2), where �b and �3 are identified with R̃2 and S

⇤

3 , respectively. We
show next that light R̃2 and S3 are compatible with the viable gauge coupling unification.

We take all scalar fields in the model that mediate proton decay at tree-level to reside at or above 1012 GeV. These
fields are  T , �5, and �6 [40]. We furthermore set the masses of R̃2 and S3 at 1.5TeV and 1TeV, respectively, and
constrain all remaining scalar fields to be at or above one scale we simply denote m that is to be determined through
the requirement that the gauge coupling unification takes place at the one-loop level. Note that ⌃24 does not a↵ect
unification. Also, ⌃(3,2) and ⌃(3,2) are not physical fields since they provide necessary degrees of freedom for the
baryon and lepton number violating gauge bosons X and Y of the SU(5) origin to become massive fields.

The gauge couplings meet at the unification scale mGUT when the following equation is satisfied [59]

B23

B12
=

5

8

sin2 ✓W � ↵/↵S

3/8� sin2 ✓W
= 0.721± 0.004, (39)

where the right-hand side is evaluated using ↵S(mZ) = 0.1193± 0.0016, ↵�1(mZ) = 127.906± 0.019, and sin2 ✓W =
0.23126 ± 0.00005 [60]. The left-hand side depends on the particle content and the mass spectrum of the model.
Namely, coe�cients Bij are Bij =

P
J(b

J
i � b

J
j )rJ , where b

J
i are the well-known �-function coe�cients of particle J

with mass mJ and rJ = (lnmGUT/mJ)/(lnmGUT/mZ). The sum goes through all particles beside the SM ones that
reside between Z boson mass mZ and mGUT. The convention is such that b

J
1 , b

J
2 , and b

J
3 are associated with U(1),

SU(2), and SU(3) of the SM, respectively. We identify mGUT not only with the gauge coupling unification scale but
with the masses of the proton decay mediating gauge boson fields X and Y .

If and when unification takes place for a given m we evaluate mGUT using equation [59]

ln
mGUT

mZ
=

16⇡

5↵

3/8� sin2 ✓W
B12

=
184.8± 0.1

B12
(40)

to check that mGUT � 5⇥1015 GeV in order to satisfy stringent bounds on the X and Y gauge boson mediated proton
decay. To actually set a lower bound on m we fix mGUT = 5 ⇥ 1015 GeV in our analysis and maximise m. We find
that m = 3⇥ 1010 GeV when the masses of R̃2 and S3 at 1.5TeV and 1TeV. The masses of all other scalar particles
in the model are m D = 102 GeV, m T = 1012 GeV, m�a = mGUT, m�c = m, m⌃8 = m , m⌃3 = mGUT, m�1 = m,
m�2 = m, m�4 = 2⇥ 1012 GeV, m�5 = 1012 GeV, and m�6 = 1012 GeV, m�7 = mGUT. Note that the SM Higgs is a
mixture of  T and �7. We accordingly take one state to be light and the mass of the other treat as a free parameter
that is between m and mGUT.

yLL
3 ! y45/

p
2

6

The origin of the term yLL3
¯dC
L

⌫
L

S1/3
3 is unique in SU(5) as can be seen from Table I. Namely, S3

resides in a 45-dimensional representation and the relevant contraction that generates aforementioned cou-

plings is y45
↵�

10
↵

5
�

45. One can thus identify yLL3 with y45/
p
2, where y45 is related to the masses of

the charged fermions and down-type quarks as we show in the next paragraph. The situation with R2

seems more involved since R2 can belong to either 45- or 50-dimensional representation. But, if it origi-

nates from 50-dimensional representation it cannot couple to the left-chiral neutrinos. This then leaves 45-

dimensional representation as the only possible source of R2. The operator yRL

2 ū
R

⌫
L

R2/3
2 thus originates

from y45
↵�

10
↵

5
�

45, where yRL

2 can be identified with �y45. The flavor structure of relevant interactions

of S3 and R2 with the SM fermions in SO(10) depends on whether these states originate from 120- or

126-dimensional representation. In the former (latter) case the relevant couplings to the SM fermions are

antisymmetric (symmetric) in the flavor basis.

To generate viable charged fermion masses the minimal SU(5) scenario needs to include one 5-

dimensional scalar representation beside the 45-dimensional one [23]. We denote VEVs of 5 ⌘ 5i and

45 ⌘ 45ij
k

with h55i = v5/
p
2 and h45151 i = h45252 i = h45353 i = v45/

p
2, where i, j, k = 1, . . . , 5 are the

SU(5) indices. The minimal set of contractions that generates mass matrices of the SM charged fermions

comprises three operators: y45
↵�

10
↵

5
�

45, y5
↵�

10
↵

5
�

5, and ȳ
↵�

10
↵

10
�

5. The 3⇥ 3 mass matrices for the

down-type quarks, charged leptons, and the up-type quarks are

m
D

= �y45v45 � y5v5/2, (7)

mT

E

= 3y45v45 � y5v5/2, (8)

m
U

=

p
2(ȳ + ȳT )v5, (9)

where all the VEVs are taken to be real. The VEV normalization yields v25/2 + 12v245 = v2, where

v(= 246GeV) is the electroweak VEV [24]. The SU(5) symmetry thus dictates that y45 ⌘ p
2yLL3 =

�yRL

2 = (mT

E

� m
D

)/(4v45). The term yLL1
¯dC
L

⌫
L

S1 originates from y5
↵�

10
↵

5
�

5 and y45
↵�

10
↵

5
�

45 for

S1 2 5 and S1 2 45, respectively. In the former (latter) case one can identify yLL1 with �y5/
p
2 (y45/2).

Finally, one needs to provide the mixing term for at least one of the relevant LQ pairs in order to

complete the neutrino mass loop. There are two very different regimes for the scalar LQ masses that we can

envisage with this in mind. First option is that the LQs behind the neutrino mass generation reside at a very

high energy scale. This could provide compliance of the set-up with the experimental bounds on proton

decay. The main issue with this regime could be associated with the size of the relevant lepton-quark-LQ

couplings. Namely, these couplings might need to be unrealistically large in order to (re)produce neutrino

mass scales that are compatible with experimental observations. It turns out that this is not the case and

we accordingly demonstrate in Section II A why and how this particular scenario can be realised within the

2

LEPTOQUARK (SU(3), SU(2), U(1)) SU(5) SO(10)

S3 (3,3, 1/3) 45 120, 126

R2 (3,2, 7/6) 45, 50 120, 126

˜R2 (3,2, 1/6) 10, 15 120, 126

˜S1 (3,1, 4/3) 45 120

S1 (3,1, 1/3) 5, 45, 50 10, 120, 126

TABLE I. Transformation properties of scalar LQs under the SM gauge group. The list of the most relevant SU(5)

(SO(10)) representations that accommodate them is presented in the third (fourth) column. We assume the standard

embedding of U(1) charges in SO(10).

the subject [7–10] or turn to the numerous studies of specific aspects of the LQ related physics [11–17].

The one-loop contributions towards neutrino masses that we study have been considered extensively in the

literature [1, 2, 18–22]. Our intention, in contrast to the existing studies, is to analyse possibilities to have a

more fundamental origin of this mechanism and to provide several realistic examples.

To start, we present an overview of the most salient features of this mechanism. Only then do we proceed

to discuss two distinct implementations of this approach to address the issue of neutrino mass within the

grand unification framework. We list the transformation properties of scalar LQs under the SM gauge

group in Table I. We adopt symbolic notation to represent LQ multiplets [14]. We also denote a given

representation with the associated dimensionality whenever possible. To single out a particular electric

charge eigenstate from a given LQ multiplet we use superscripts [10]. For example, S3 comprises three

electric charge eigenstates that we label S4/3
3 , S1/3

3 , and S�2/3
3 . This fixes the hypercharge normalisation

we use throughout the manuscript.

The mechanism we want to study, in its minimal form, requires the presence of one scalar multiplet that

transforms as ˜R2 and another one that has the transformation properties of either S1 or S3 in addition to the

SM particle content. The following two features are crucial if one is to generate neutrino mass(es) at the

one-loop level. Firstly, ˜R�1/3
2 (S1 and S1/3

3 ) can couple neutrinos to the right-chiral (left-chiral) down-type

quarks. The relevant parts of the Yukawa interactions are

L
Y

�� ỹRL

2
¯d
R

˜Ra

2✏
abLb

L

� yLL1
¯QC a

L

S1✏
abLb

L

� yLL3
¯QC a

L

✏ab(⌧kSk

3 )
bcLc

L

� y
D

¯Qa

L

Had
R

+ h.c., (1)

where ỹRL

2 , yLL1 , yLL3 , and y
D

are 3⇥3 matrices in flavor space.1 H(⌘ (1,2, 1/2)) is the Higgs boson of the

SM, ⌧k, k = 1, 2, 3, are Pauli matrices, and a, b, c = 1, 2 are the SU(2) group space indices. The couplings

of ˜R�1/3
2 , S1, and S1/3

3 with the left-chiral neutrinos are ỹRL

2
¯d
R

⌫
L

˜R�1/3
2 , yLL1

¯dC
L

⌫
L

S1, and yLL3
¯dC
L

⌫
L

S1/3
3 ,

respectively.

1 The chiralities of the quark–lepton pair that the LQ couples to are denoted with the superscript labels of ỹRL
2 , yLL

1 , and yLL
3 .



3

Secondly, ˜R2 can mix with either S1 or S3 through the Higgs boson. In fact, the LQ pairs S1– ˜R�1/3 ⇤
2 or

S1/3
3 – ˜R�1/3 ⇤

2 should mix in order for the mechanism to work. In the latter case the states S�2/3
3 and ˜R2/3 ⇤

2

also mix. The relevant parts of the scalar interactions are

Lscalar � ��1
˜R† a
2 HaS†

1 � �3
˜R† a
2 (⌧kS† k

3 )

abHb

+ h.c., (2)

where �1 and �3 are dimensionful parameters that we take to be real for simplicity. We denote the squared-

masses of the two physical LQs of the 1/3 electric charge with m2
LQ1 and m2

LQ2 regardless of whether

these states originate from the S1– ˜R�1/3 ⇤
2 or S1/3

3 – ˜R�1/3 ⇤
2 combination. The angle that diagonalises 2⇥ 2

squared-mass matrix m2
1 (m2

3) for the S1– ˜R�1/3 ⇤
2 (S1/3

3 – ˜R�1/3 ⇤
2 ) pair is labeled ✓1 (✓3). The squared-mass

matrices m2
1 and m2

3 take the form

m2
1, 3 =

0

@ m2
11 �1, 3hHi

�1, 3hHi m2
22

1

A ,

where hHi represents a vacuum expectation value (VEV) of electrically neutral component of the SM Higgs

field. Here, m2
11 and m2

22 are the squares of would-be masses of S1 and ˜R�1/3 ⇤
2 or S1/3

3 and ˜R�1/3 ⇤
2 if there

was no mixing whatsoever. The angles ✓1 and ✓3 are defined through

tan 2✓1, 3 =
2�1, 3hHi
m2

11 �m2
22
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The mechanism is very economical since the same scalar field H , upon the electroweak symmetry

breaking, provides masses for the SM charged fermions and introduces a mixing term for the LQs. The

particles that propagate in the loop that generates neutrino Majorana mass(es) are the down-type quarks and

scalar LQs of the matching electric charge. The associated one-loop Feynman diagrams are presented in the

left panel of Fig. 1. The effective neutrino mass matrix in the basis of the physical down-type quarks and
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ỹRL
2 yLL

1 , yLL
3

�1,�3

⌫L ⌫L

u

R2/3
2 S�2/3

3

H S

yRL
2 �p

2V ⇤
CKMyLL

3



FIG. 1. The one-loop neutrino mass diagrams for the S1, 3– ˜R2 and S3–R2 scenarios in the left and right panels,

respectively. See text for full details.

Neutrino	masses	(Doršner,	SF,	Košnik,	1701.08322);		
	

one-loop	neutrino	mass	mechanism	within	the	framework	of	GUT		
	

mN ⇠ sin(2✓) y3ỹ2 ln(mLQ1/mLQ2)
2



Summary	

Ø  	Light	scalar	LQs	offer	an	explana>on	of	B	anomalies;	

Ø Many	other	scenarios	of	NP	are	already	ruled	out	by	the	LHC	high	pT	searches;	

Ø  GUT	model	with	2	light	LQs	might	explain	anomalies	not	being	in	conflict	with		
either	flavour	or	LHC	searches.		
	

THANK	YOU!	
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introduction, to obtain both RK < R

SM

K and RK⇤
< R

SM

K⇤ we need a NP contribution to the
vector and axial Wilson coe�cients, and in particular those coupling to the left-handed
quark e↵ective current, i.e. we need C

µµ
9,10 6= 0.

2.2 C

`1`2
9,10(µ) in our R2 Leptoquark Model

Leptoquarks are colored states mediating interactions between quarks and leptons. For a
recent review of their properties see Ref. [12]. In general, a leptoquark can be a scalar or
a vector field and it may come as a SU(2)L-singlet, doublet or triplet [13]. Here we focus
on the so-called R

2

model which involves a doublet of scalar leptoquarks with hypercharge
Y = 7/6. The general Yukawa Lagrangian for this model reads

L
�

(7/6) = (gR)ijQ̄i�
(7/6)

`Rj + (gL)ijūRi
e�(7/6)†

Lj + h.c.,

= (V gR)ijūiPR`j �
(5/3) + (gR)ij d̄iPR`j �

(2/3)

+ (UgL)ijūiPL⌫j �
(2/3) � (gL)ijūiPL`j �

(5/3) + h.c.,

(5)

where gL,R are the matrices of Yukawa couplings, that we take to be

gL =

0

@
0 0 0
0 g

cµ
L g

c⌧
L

0 g

tµ
L g

t⌧
L

1

A
, gR =

0

@
0 0 0
0 0 0
0 0 g

b⌧
R

1

A
, V gR =

0

@
0 0 Vubg

b⌧
R

0 0 Vcbg
b⌧
R

0 0 Vtbg
b⌧
R

1

A
, (6)

which is the main peculiarity of our model. The superscript in �(5/3) and �(2/3) refer to
the electric charge of the two mass degenerate leptoquark states, Q = Y + T

3

, where Y is
the hypercharge and T

3

the third component of weak isospin. Moreover, in Eq. (5) we use
Qi = [(V †

uL)i dLi]T and Li = [(U⌫L)i `Li]T , to denote the quark and lepton doublets, in
which V and U are the Cabibbo-Kobayashi-Maskawa (CKM) and the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrices, respectively. Finally, uL, dL, `L are the fermion mass
eigenstates, whereas ⌫L stand for the massless neutrino flavor eigenstates.

The above choice of Yukawa couplings, and in particular g

s`
R = 0, means that the

contributions of the leptoquark �(7/6) to the transitions b ! s`` can only be a loop e↵ect
and not generated at tree level as it is often the case in the scenario with low energy
leptoquarks. The only diagram contributing (in the unitary gauge) is the one shown in
Fig. 1. We computed the corresponding amplitude, matched it onto the e↵ective theory (3),
and found

C

`1`2
9
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10
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X
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ts

g

u0`1
L

�
g

u`2
L

�⇤ F(xu, xu0) , (7)

where xi = m

2

i /m
2

W , and the loop function reads,

F(xu, xu0) =

p
xuxu0

32⇡↵
em
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Minimal	set-up	R2(3,2,7/6)		RK*	at	loop	level	

Figure 1: The only diagram contributing b ! s`
1

`
2

decay in the LQ scenario considered here. In
a non-unitary gauge there is an extra diagram similar to the one depicted above, with W replaced
by a Goldstone boson.

We checked that the above result is finite and gauge invariant by doing the computation
in both the Feynman and the unitary gauge. The loop function vanishes when sending
the quark mass to zero, and therefore the dominant contributions are those coming from
u = u

0 = t, and the one in which u = t, u0 = c, latter being CKM enhanced. This closes
our discussion of the R

2

model with our particular setup specified by the structure of the
gL,R matrices as given in Eq. (6).

2.3 Constraints on g

q`
L,R

The model described above can induce important contributions to some observables which
have already been accurately measured. In other words, we check which quantity can
be particularly sensitive to our model and then use its measured values to constrain the
non-zero entries in the matrices gL,R (6).

First of all, by switching on the couplings to the leptoquark of the top and to both µ and
⌧ leptons, one necessarily generates an extra term to the ⌧ ! µ� decay amplitude. In order
to comply with the experimentally established upper bound B(⌧ ! µ�) < 4.4⇥ 10�8 [14],
we checked the expression derived in Ref. [12, 15] with which we agree, and write:

B(⌧ ! µ�) = ⌧⌧

↵

em

(m2

⌧ �m

2

µ)
3

4m3

⌧

�
|�L|2 + |�R|2

�
,

�L = 0 ,

�R =
3im⌧

64⇡2

m

2

�

X

q2{c,t}

g

qµ⇤
L


g

q⌧
L +

2

3

mq

m⌧
Vqbg

b⌧
R

✓
1 + 4 log

m

2

t

m

2

�

◆�
. (9)

Since we need a significant value for gtµL and g

cµ
L to describe the exclusive b ! sµµ decay

rates, the above condition proves to be a sever bound on the g

b⌧
R , due to the mt/m⌧

enhancement.
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(Becirevic	and	Sumensary,	1704.05835)	
	


