Leptoquarks in $R_{D(*)}$ and $R_{K(*)}$

Physics Department, University of Ljubljana and Institute J. Stefan, Ljubljana, Slovenia

• Motivation

• Charged current $b \rightarrow c \tau U_{\tau} : R_{D(*)}$ puzzle

• FCNC transition $b \rightarrow s l^+ l^- : R_{K(*)} puzzle$

• Sign of LFU violation?

• Leptoquarks in $R_{D(*)}$, $R_{K(*)}$

B physics anomalies: experimental results ≠ SM predictions!

charged current SM tree level

1)
$$R_{D^{(*)}} = \frac{BR(B \to D^{(*)} \tau \nu_{\tau})}{BR(B \to D^{(*)} \mu \nu_{\mu})}$$
 3.90

FCNC - SM loop process

2) P₅' in $B \to K^* \mu^+ \mu^-$ (angular distribution functions) 3σ

³⁾ $R_{K^{(*)}} = rac{\Gamma(B \to K^{(*)} \mu^+ \mu^-)}{\Gamma(B \to K^{(*)} e^+ e^-)}$ in the dilepton invariant mass bin 1 GeV² $\leq q^2 \leq 6$ GeV² 2.4 σ

Can flavor physics resolves puzzles relying on the existing SM tools?

QCD impact: knowledge of form-factors!

How well do we know all new/old form-factors? Lattice improvements?

Are SM calculations of the existing observables precise enough?

B physics puzzles indicate **lepton flavor universality violation** in semileptonic decays (?)!

 π and K physics: tests of LFU conservation holds up to 1 percent level for all three lepton generations. Experiment and SM expectations – excellent agreement!

Charged current in $b \rightarrow c \tau \upsilon_{\tau} " R_{D(*)} puzzle"$

B physics anomalies: experimental results ≠ SM predictions!

charged current (SM tree level)

1)
$$R_{D^{(*)}} = \frac{BR(B \to D^{(*)} \tau \nu_{\tau})}{BR(B \to D^{(*)} \mu \nu_{\mu})}$$
 3.90

Momentum transfer distributions, A. Cellis et al, 1612.07757

1608.06931

Belle, Sato@ICHEP2016

 $B \to D^* \tau \nu_{\tau}$

There are 11 observables:

- 1. Differential decay distribution
- 2. Forward-backward asymmetry
- 3. Lepton polarization asymmetry
- 4. Partial decay rate according to the polarization of D*

S.F., J.F.Kamenik, Nišandžić, 1203.2654 S.F. J.F. Kamenik, I. Nišandžić, J. Zupan, 1206.1872 Körner& Schuller, ZPC 38 (1988) 511, Kosnik, Becirevic, Tayduganov, 1206.4977 D. Becirevic, S.F. I. Nisandzic, A. Tayduganov, 1602.03030, Fretsis et al, 1506.08896, S. Faller et al., 1105.3679, Sakai&Tanaka, 1205.4908. Biancofiore , Collangelo, DeFazio 1302.1042, R.Alonso et al, 1602.0767,Bardhan et al., 1610.03038

 $R_{L,T} = \frac{d\Gamma_L/dq^2}{d\Gamma_T/dq^2}$

Effective Lagrangian approach for $b
ightarrow c au
u_{ au}$ decay

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{cb} \bar{c} \,\gamma_\mu P_L \, b \,, \bar{\nu} \,\gamma^\mu P_L \,\tau + \frac{1}{\Lambda} \Sigma_i c_i O_i$$

$$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$$
$$(\bar{c}\gamma_{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$$
$$(\bar{c}P_{R}b)(\bar{\tau}P_{L}\nu)$$
$$(\bar{c}P_{L}b)(\bar{\tau}P_{L}\nu)$$
$$(\bar{c}\sigma^{\mu\nu}P_{L}b)(\bar{\tau}\sigma_{\mu\nu}P_{L}\nu)$$

If NP scale is above electroweak scale, NP effective operators have to respect SU(3) x SU(2)_L x U(1)_Y

no u_R

Freytsis, Ligeti, Ruderman1506.08896

FCNC - SM loop process

2) P_{5}' in $B \to K^{*} \mu^{+} \mu^{-}$ (angular distribution functions) 3σ

3)

$$R_{K} = \frac{\mathcal{B}(B \to K\mu\mu)_{q^{2} \in [1,6] \text{GeV}^{2}}}{\mathcal{B}(B \to Kee)_{q^{2} \in [1,6] \text{GeV}^{2}}} = 0.745 \pm \frac{0.090}{0.074} \pm 0.036$$

$$R_{K^{*}}^{\text{low}} = \frac{\mathcal{B}(B \to K\mu\mu)_{q^{2} \in [0.045, 1.1] \text{GeV}^{2}}}{\mathcal{B}(B \to Kee)_{q^{2} \in [0.045, 1.1] \text{GeV}^{2}}} = 0.660 \pm \frac{0.110}{0.070} \pm 0.024$$

$$R_{K^{*}}^{\text{central}} = \frac{\mathcal{B}(B \to K\mu\mu)_{q^{2} \in [1.1,6] \text{GeV}^{2}}}{\mathcal{B}(B \to Kee)_{q^{2} \in [1.1,6] \text{GeV}^{2}}} = 0.685 \pm \frac{0.113}{0.069} \pm 0.047,$$

$$2.2 \,\sigma - 2.4 \sigma$$

	$\log -q^2$	central- q^2	
$\mathcal{R}_{K^{st 0}}$	$0.660 {}^{+}_{-} {}^{0.110}_{0.070} \pm 0.024$	$0.685 \ ^{+}_{-} \ ^{0.113}_{0.069} \pm 0.047$	
$95\%~{ m CL}$	0.517 – 0.891	0.530 – 0.935	
$99.7\%~\mathrm{CL}$	$0.454 extrm{}1.042$	0.462 – 1.100	

Altmannshofer et al., 1703.09189

- the $B \rightarrow K^* \mu^+ \mu^-$ angular analysis by LHCb alone leads to a pull of 3.3 σ ,
- the new B → K^{*}µ⁺µ⁻ angular analysis by CMS reduces the pull, but the new ATLAS measurement increases it.

From Joel Butler, LHCP 2017 Shanghai, China May 15, 2017

R_{κ^*} references a ay after LHCb seminar April 18th 2017

B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias, and J. Virto,, arXiv:1704.05340 [hep-ph].

W. Altmannshofer, P. Stangl, and D. M. Straub,, arXiv:1704.05435 [hep-ph].

G. D'Amico, M. Nardecchia, P. Panci, F. Sannino, A. Strumia, R. Torre, and A. Urbano, 1704.05438 [hep-ph]. G. Hiller and I. Nisandzic, (2017), arXiv:1704.05444[hep-ph].

[L.-S. Geng, B. Grinstein, S. Jager, J. Martin Camalich, X.-L. Ren, and R.-X. Shi, (2017), arXiv:1704.05446 [hep-ph].

M. Ciuchini, A. M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini, and M. Valli, arXiv:1704.05447 [hep-ph].

A. Celis, J. Fuentes-Martin, A. Vicente, and J. Virto, arXiv:1704.05672 [hep-ph].

D. Becirevic and O. Sumensari, arXiv:1704.05835 [hep-ph].] Y. Cai, J. Gargalionis, M. A. Schmidt, and R. R. Volkas, arXiv:1704.05849 [hep-ph].

J. F. Kamenik, Y. Soreq, and J. Zupan, arXiv:1704.06005 [hep-ph].

F. Sala and D. M. Straub, arXiv:1704.06188 [hep-ph].

D. Ghosh, (2017), arXiv:1704.06240 [hep-ph].

S. Di Chiara, A. Fowlie, S. Fraser, C. Marzo, L. Marzola, M. Raidal, and C. Spethmann, arXiv:1704.06200[hep-ph].

A. K. Alok, D. Kumar, J. Kumar, and R. Sharma, arXiv:1704.07347 [hep-ph]. A. K. Alok, B. Bhattacharya, A. Datta, D. Kumar, J. Kumar, and D. London, arXiv:1704.07397 [hep-ph]

W. Wang and S. Zhao, arXiv:1704.08168 [hep- ph].

A. Greljo and D. Marzocca, arXiv:1704.09015 [hep-ph].

C. Bonilla, T. Modak, R. Srivastava, and J. W. F. Valle, arXiv:1705.00915 [hep-ph].

F. Feruglio, P. Paradisi, and A. Pattori, arXiv:1705.00929 [hep-ph].

Effective Lagrangian approach in $R_{K(*)}$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^{\infty} C_i(\mu) \mathcal{O}_i(\mu) + \sum_{i=7,\dots,10} \left(C_i(\mu) \mathcal{O}_i(\mu) + C'_i(\mu) \mathcal{O}'_i(\mu) \right) \right]$$

$$\mathcal{O}_{7} = \frac{e}{g^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}, \qquad \mathcal{O}_{8} = \frac{1}{g} m_{b} (\bar{s}\sigma_{\mu\nu}G^{\mu\nu}P_{R}b),$$
$$\mathcal{O}_{9} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \qquad \mathcal{O}_{10} = \frac{e^{2}}{g^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

SM: $C_7 = -0.304, C_9 = 4.211, \text{ and } C_{10} = -4.103$

Buras et al,hep-ph/9311345; Altmannshofer et al, 0811.1214 Bobeth et al, hep-ph/9910220

Similar values obtained by Capdevila et al., 1704.05340

In agreement with Hiller, Schmaltz, 1408.1627, 1411.4773 fit from $\rm R_{\rm K}$

$$C_9^{\mu} = -C_{10}^{\mu} \sim -[0.5, 1]$$

There are many attempts to understand each of them separately.

• Glashow, Guadagnoli and Lane, 1411.0565: lepton flavor non-universality is necessarily associated with lepton flavor violation. NP couples preferentially to third generation:

$$G(b'_L\gamma_\mu b'_L)(\bar{\tau}'_L\gamma^\mu \tau'_L)$$

$$d'_{L3} \equiv b'_{L} = \sum_{i=1}^{3} U^{d}_{L3i} d_{i} \quad , \qquad \ell'_{L3} \equiv \tau'_{L} = \sum_{i=1}^{3} U^{\ell}_{L3i} \ell_{i}$$

 $G\left[U_{L33}^{d}U_{L32}^{d*}|U_{L32}^{\ell}|^{2}(\bar{b}_{L}\gamma_{\mu}s_{L})(\bar{\mu}_{L}\gamma^{\mu}\mu_{L})+h.c.\right]$

• Feruglio et al, 1606.00524; Battacharaya et al., 1412.7164:

If NP scale is above electroweak scale, NP effective operators have to respect $SU(3) \times SU(2)_{I} \times U(1)_{Y}$ assuming NP in the third generation

$$\mathcal{L}_{\rm NP} = \frac{C_1}{\Lambda^2} \left(\bar{q}_{3L} \gamma^{\mu} q_{3L} \right) \left(\bar{\ell}_{3L} \gamma_{\mu} \ell_{3L} \right) + \frac{C_3}{\Lambda^2} \left(\bar{q}_{3L} \gamma^{\mu} \tau^a q_{3L} \right) \left(\bar{\ell}_{3L} \gamma_{\mu} \tau^a \ell_{3L} \right) \qquad u_L \to V_u u_L \qquad d_L \to V_d d_L \qquad V_u^{\dagger} V_d = V \,,$$

$$\begin{aligned} \mathcal{L}_{\rm NP} &= \frac{1}{\Lambda^2} \left[(C_1 + C_3) \,\lambda_{ij}^u \lambda_{kl}^e \, (\bar{u}_{Li} \gamma^\mu u_{Lj}) (\bar{\nu}_{Lk} \gamma_\mu \nu_{Ll}) + \right. \\ &\left. (C_1 - C_3) \,\lambda_{ij}^u \lambda_{kl}^e \, (\bar{u}_{Li} \gamma^\mu u_{Lj}) (\bar{e}_{Lk} \gamma_\mu e_{Ll}) + \right. \\ &\left. (C_1 - C_3) \,\lambda_{ij}^d \lambda_{kl}^e \, (\bar{d}_{Li} \gamma^\mu d_{Lj}) (\bar{\nu}_{Lk} \gamma_\mu \nu_{Ll}) + \right. \\ &\left. (C_1 + C_3) \,\lambda_{ij}^d \lambda_{kl}^e \, (\bar{d}_{Li} \gamma^\mu d_{Lj}) (\bar{e}_{Lk} \gamma_\mu e_{Ll}) + \right. \\ &\left. 2C_3 \left(\lambda_{ij}^{ud} \lambda_{kl}^e \, (\bar{u}_{Li} \gamma^\mu d_{Lj}) (\bar{e}_{Lk} \gamma_\mu \nu_{Ll}) + h.c. \right) \right] \end{aligned}$$

$$\lambda_{ij}^{q} = V_{q3i}^{*} V_{q3j} \qquad \lambda_{ij}^{e} = U_{e3i}^{*} U_{e3j} \qquad \lambda_{ij}^{ud} = V_{u3i}^{*} V_{d3j}$$

from Feruglio et al, 1606.00524 color regions are allowed

the experimental bounds on Z and τ decays significantly constrain LFU breaking effects in B-decays, Models of NP for $R_{D(*)}$ and $R_{K(*)}$ separately

Spin	Color singlet	Color tripet
0	2HDM	Scalar LQ
1 LQ	W' ,Z'	Vector

 $\mathsf{R}_{\mathsf{D}(*)}$

 $R_{K(*)}$

2 HDM: Celis, Jung, Li, Pich 1612.07757, 1210.8443;

W': Greljo, Isidori, Marzocca, 1506.01705

LQ: Doršner, SF, Greljo, Kamenik., Košnik, (1603.04993)...

S.F. J.F. Kamenik, I. Nišandžić, J. Zupan, 1206.187 Z': Altmannshofer and Straub,1411.3161S, Crivellin et al, 1501.00993; Buras and Girrbach, 1309.2466,... Hiller&Schmaltz;1408.1627 ; Kosnik, 1206,2970; LQ: Becirevic, SF, Kosnik arXiv:1503.09024; Barbieri et al,1512.01560. Becirevic et al,1608.08501....

1) 1974 Salam & Pati: partial unification of quark and leptons –four color charges, left-right symmetry;

2) GUT models contain them as gauge bosons (e.g. Georgi-Glashow 1974);

3) Within GUT they can be scalars too;

4) 1997 false signal et DESY (~200 GeV);

5) In recent years LQ might offer explanations of B physics anomalies;

6) LHC has bounds on the masses of LQ_1, LQ_2, LQ_3 of the order ~ 1 TeV.

Leptoquarks in R_{K} and $R_{D(*)}$

Suggested by many authors: naturally acoomodate LUV and LFV

color SU(3), weak isospin SU(2), weak hypercharge U(1) $Q=I_3 + Y$

S	$U(3) \times SU(2) \times U(1)$	Spin	Symbol	Type	3B+L
	$(\overline{3},3,1/3)$	0	S_3	$LL\left(S_{1}^{L} ight)$	-2
	$({f 3},{f 2},7/6)$	0	R_2	$RL(S_{1/2}^L), LR(S_{1/2}^R)$	0
	$({f 3},{f 2},1/6)$	0	$ ilde{R}_2$	$RL(\tilde{S}_{1/2}^L), \overline{LR}$	0
	$(\overline{f 3},{f 1},4/3)$	0	$ ilde{S}_1$	$RR(ilde{S}_{0}^{R})$	-2
	$(\overline{f 3}, {f 1}, 1/3)$	0	S_1	$LL\left(S_{0}^{L} ight),RR\left(S_{0}^{R} ight),\overline{RR}$	-2
	$(\overline{3},1,-2/3)$	0	$ar{S}_1$	\overline{RR}	-2
	(3 , 3 ,2/3)	1	U_3	$LL\left(V_{1}^{L} ight)$	0
	$({f 3},{f 2},5/6)$	1	V_2	$RL(V_{1/2}^L), LR(V_{1/2}^R)$	-2
	$(\overline{\bf 3}, {\bf 2}, -1/6)$	1	\tilde{V}_2	$RL(\tilde{V}_{1/2}^L), \overline{LR}$	-2
	(3 , 1 ,5/3)	1	$ ilde{U}_1$	$RR\left(ilde{V}_{0}^{R} ight)$	0
	(3 , 1 ,2/3)	1	U_1	$LL(V_0^L), RR(V_0^R), \overline{RR}$	0
	$({f 3},{f 1},-1/3)$	1	U_1	RR	0

F=3B +L fermion number; F=0 no proton decay at tree level Doršner, SF, Greljo, Kamenik Košnik, (1603.04993)

If one wants to explain both anomalies at tree level by leptoquarks

LQ in $R_{D(*)}$ and charged current processes at low energies

Effective Lagrangian for charged current process:

b

$$\mathcal{L}_{\text{eff}}^{\text{SL}} = -\frac{4G_F}{\sqrt{2}} V_{ij} \left\{ (U_{\ell k} + g_{ij;\ell k}^L) (\bar{u}_L^i \gamma^{\mu} d_L^j) (\bar{\ell}_L \gamma_{\mu} \nu_L^k) \right. \\ \left. + g_{ij;\ell k}^R (\bar{u}_R^i \gamma^{\mu} d_R^j) (\bar{\ell}_R \gamma_{\mu} \nu_R^k) \right. \\ \left. + g_{ij;\ell k}^{RR} (\bar{u}_R^i d_L^j) (\bar{\ell}_R \nu_L^k) + h_{ij;\ell k}^{RR} (\bar{u}_R^i \sigma^{\mu\nu} d_L^j) (\bar{\ell}_R \sigma_{\mu\nu} \nu_L^k) \right. \\ \left. + g_{ij;\ell k}^{LL} (\bar{u}_L^i d_R^j) (\bar{\ell}_L \nu_R^k) + h_{ij;\ell k}^{LL} (\bar{u}_L^i \sigma^{\mu\nu} d_R^j) (\bar{\ell}_L \sigma_{\mu\nu} \nu_R^k) \right. \\ \left. + g_{ij;\ell k}^{RR} (\bar{u}_L^i d_R^j) (\bar{\ell}_R \nu_L^k) \right. \\ \left. + g_{ij;\ell k}^{RL} (\bar{u}_R^i d_L^j) (\bar{\ell}_L \nu_R^k) \right\} + \text{h.c..}$$

running from LQ mass scale to m_q should be considered for scalar, pseudoscalar and tensor Wilson coefficents.

S = 0	$-rac{m^2_{ m LQ}}{v^2}g^L_{ij;\ell k}$	$rac{m_{ m LQ}^2}{v^2}g^R_{ij;\ell k}$	$rac{m_{ ext{LQ}}^2}{v^2} egin{pmatrix} g_{ij;\ell k}^{RR} \ h_{ij;\ell k}^{RR} \end{pmatrix}$	$\frac{\frac{m_{\mathrm{LQ}}^2}{v^2} \begin{pmatrix} g_{ij;\ell k}^{LL} \\ h_{ij;\ell k}^{LL} \end{pmatrix}}{\left(\begin{array}{c} & \\ \end{array} \right)}$
$egin{array}{c} S_3 \ R_2 \end{array}$	$\left -\frac{(y_3^{LL\dagger}V^*)_{\ell i}(y_3^{LL}U)_{jk}}{4} \right $		$\frac{(y_2^{RL}U)_{ik}y_2^{LR}}{16} \begin{pmatrix} 4\\ 1 \end{pmatrix}$	
$ ilde{R}_2$				$\frac{(V\tilde{y}_{2}^{\overline{LR}})_{ik}\tilde{y}_{2j\ell}^{RL*}}{16}\begin{pmatrix}4\\1\end{pmatrix}$
S_1	$\frac{(y_1^{LL}U)_{jk}(V^Ty_1^{LL})_{i\ell}^*}{4}$	$-\frac{y_{1jk}^{\overline{RR}}y_{1i\ell}^{RR*}}{4}$	$\frac{(y_1^{LL}U)_{jk}y_{1i\ell}^{RR*}}{16} \begin{pmatrix} 4\\-1 \end{pmatrix}$	$\frac{y_{1jk}^{\overline{RR}}(V^T y_1^{LL})_{i\ell}^*}{16} \begin{pmatrix} 4\\ -1 \end{pmatrix}$

Important constraints from

 $P = \pi, K, D, B$

$$P \to l\nu_l$$

$$\tau \to P\nu_\tau$$

$$P \to P'(V)l\nu_l$$

FCNC processes

LQ	$d_i \to d_j \ell^- \ell'^+$ decays, $\lambda_q = V_{qi} V_{qj}^*$	$u_i \to u_j \ell^- \ell'^+$ decays, $\lambda_q = V_{iq}^* V_{jq}$
S_3	$C_9 = -C_{10} = -\frac{v^2}{M^2} \frac{\pi}{\alpha \lambda_q} x_{i\ell'} x_{j\ell}^*$	$C_9 = -C_{10} = -\frac{v^2}{M^2} \frac{\pi}{\alpha \lambda_q} (V^T x)_{i\ell'} (V^T x)_{j\ell}^*$
R_2	$C_9 = C_{10} = \frac{v^2}{M^2} \frac{\pi}{2\alpha\lambda_q} y_{\ell i} y^*_{\ell' j}$	$C_{9} = C_{10} = \frac{v^{2}}{M^{2}} \frac{\pi}{2\alpha\lambda_{q}} (yV^{\dagger})_{\ell i} (yV^{\dagger})^{*}_{\ell' j}$
		$C_{9'} = -C_{10'} = \frac{v^2}{M^2} \frac{\pi}{2\alpha\lambda_q} x_{j\ell'} x_{i\ell}^*$
		$C_S = C_P = -\frac{v^2}{M^2} \frac{\pi}{2\alpha\lambda_q} x_{i\ell}^* (yV^{\dagger})_{\ell'j}^*$
		$C_{S'} = -C_{P'} = -\frac{v^2}{M^2} \frac{\pi}{2\alpha\lambda_q} x_{j\ell'} (yV^{\dagger})_{\ell i}$
		$C_T = (C_S + C_{S'})/4$
		$C_{T5} = (C_S - C_{S'})/4$
\tilde{R}_2	$C_{9'} = -C_{10'} = \frac{v^2}{M^2} \frac{\pi}{2\lambda_q \alpha} x_{j\ell'} x_{i\ell}^*$	
\tilde{S}_1	$C_{9'} = C_{10'} = -\frac{v^2}{M^2} \frac{\pi}{2\lambda_q \alpha} x_{i\ell'} x_{j\ell}^*$	
S_1		$C_9 = -C_{10} = -\frac{v^2}{M^2} \frac{\pi}{2\alpha\lambda_q} (V^T v)_{i\ell'} (V^T v)_{j\ell}^*$
		$C_{9'} = C_{10'} = -\frac{v^2}{M^2} \frac{\pi}{2\alpha\lambda_q} x_{i\ell'} x_{j\ell}^*$
		$C_S = C_P = \frac{v^2}{M^2} \frac{\pi}{2\alpha\lambda_q} x_{i\ell'} (V^T v)_{j\ell}^*$
		$C_{S'} = -C_{P'} = \frac{v^2}{M^2} \frac{\pi}{2\alpha\lambda_q} (V^T v)_{i\ell'} x_{j\ell}^*$
		$C_T = (C_S + C_{S'})/4$
		$C_{T5} = (C_S - C_{S'})/4$

Down quark sector has only these modifications due to $U(1)_{\gamma_1}$

Constraints from flavor observables

 $B_c \to \tau \nu$ $B \to K^{(*)} \nu \overline{\nu}$ $B_{s}^{0} - \bar{B}_{s}^{0}$ $B \to D \mu \nu_{\mu}$ $K \to \mu \nu_{\mu}$ $D_{d,s} \rightarrow \tau, \mu \nu$ $K \to \pi \mu \nu_{\mu}$

Constraints from LFV $(g-2)_{\mu}$ $\tau \to \mu \gamma$ $\mu \to e\gamma$ $\tau \to K(\pi)\mu(e)$ $K \to \mu e$ $B \to K \mu e$ $\tau \to \mu \mu \mu$ $t \to c \ell^+ \ell'^-$

 $Z \to b\bar{b}$

Becirevic et al, 1608.07583, 1608.08501 Alonso et al, 1611.06676,...

Oblique corrections

$R_{\ensuremath{\kappa(*)}}\ensuremath{\mathsf{Greljo}}$ and Marzocca, 1704.09015 Z' model with MFV

LHC dimuon searches already exclude such a scenario independently of the Z' mass.

Two LQs solution of $R_{D(*)}$ and $R_{K(*)}$

- One scalar LQ cannot explain both anomalies;
- GUT possible with light scalar LQs within SU(5) if there are 2 LQs (Doršner, SF, Greljo, Kamenik, Košnik 1603.04993) ;
- Neutrino masses might be explained with 2 light LQs within a loop (Doršner, SF, Košnik, 1701.08322);

Scanar<u>io</u> with 2 light LQs used in Crivellin, Müller, Ota, 1703.09226 LQs: (3,1,-1/3) and (3,3,1/3),

Doršner, SF, Faroughy, Košnik, 1705.xxxxx

Doršner, SF, Košnik, (1701.08322) LQ S_3 , if accommodated within SU(5) does not cause proton decay.

Our proposal $\,S_3\,$ and $\, ilde{R}_2\,$

$$\mathcal{L}_{S_3} = -y_{ij}\bar{d}_L^{C\,i}\nu_L^j S_3^{1/3} - \sqrt{2}y_{ij}\bar{d}_L^{C\,i}e_L^j S_3^{4/3} + \sqrt{2}(V^*y)_{ij}\bar{u}_L^{C\,i}\nu_L^j S_3^{-2/3} - (V^*y)_{ij}\bar{u}_L^{C\,i}e_L^j S_3^{1/3} + \text{h.c.}$$

$$\mathcal{L}_{\tilde{R}_{2}} = -\tilde{y}_{ij}\bar{d}_{R}^{i}e_{L}^{j}\tilde{R}_{2}^{2/3} + \tilde{y}_{ij}\bar{d}_{R}^{i}\nu_{L}^{j}\tilde{R}_{2}^{-1/3} + \text{h.c.}$$

Textures:

$$y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{s\mu} & y_{s\tau} \\ 0 & y_{b\mu} & y_{b\tau} \end{pmatrix}, \qquad V^* y = \begin{pmatrix} 0 & V_{us}^* y_{s\mu} + V_{ub}^* y_{b\mu} & V_{us}^* y_{s\tau} + V_{ub}^* y_{b\tau} \\ 0 & V_{cs}^* y_{s\mu} + V_{cb}^* y_{b\mu} & V_{cs}^* y_{s\tau} + V_{cb}^* y_{b\tau} \\ 0 & V_{ts}^* y_{s\mu} + V_{tb}^* y_{b\mu} & V_{ts}^* y_{s\tau} + V_{tb}^* y_{b\tau} \end{pmatrix}$$
$$\tilde{y} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \tilde{y}_{s\tau} \\ 0 & 0 & \tilde{y}_{b\tau} \end{pmatrix}$$

$$S_3(\bar{3}, 3 - 1/3)$$

three states
$$S_3^{2/3}, S_3^{-1/3}, S_3^{-4/3}$$

 ${\rm R}_{\rm D(*)}$ can be explained by rescaling the SM value, (tree level contribution of $S_3^{-2}/^3$

$$\begin{aligned} \mathbb{R}_{\mathsf{D}(^{*})}(\exp) > \mathbb{R}_{\mathsf{D}(^{*})}(\mathsf{SM}\,) \\ \mathcal{L}_{\bar{c}b\bar{\ell}\nu_{k}} &= -\frac{4G_{F}}{\sqrt{2}} \left[(V_{cb}\delta_{\ell k} + g^{L}_{cb;\ell k})(\bar{c}_{L}\gamma^{\mu}b_{L})(\bar{\ell}_{L}\gamma_{\mu}\nu^{k}_{L}) \right] \\ g^{L}_{cb;\ell\ell} &= -\frac{v^{2}}{4m^{2}_{S_{3}}}(Vy^{*})_{c\ell}y_{b\ell}. \end{aligned}$$
following Freytsis et al,
(1506.08896) fit at 1 σ

$$y_{b\tau}y^{*}_{s\tau} \approx -0.4(m_{S_{3}}/\mathrm{TeV})^{2}$$

$$C_9 = -C_{10} = \frac{\pi}{V_{tb}V_{ts}^*\alpha} y_{b\mu} y_{s\mu}^* \frac{v^2}{m_{S_3}^2}$$

$$y_{b\mu}y_{s\mu}^* \in [0.7, 1.3] \times 10^{-3} (m_{S_3}/\text{TeV})^2$$

 \dot{R}_2 has right-handed couplings which have negligible effects

Constraints from flavour physics

LFU in charged currents

$$R_{e/\mu}^{K} = \frac{\Gamma(K^{-} \to e^{-}\bar{\nu})}{\Gamma(K^{-} \to \mu^{-}\bar{\nu})}, \qquad R_{\tau/\mu}^{K} = \frac{\Gamma(\tau^{-} \to K^{-}\nu)}{\Gamma(K^{-} \to \mu^{-}\bar{\nu})}, \qquad C \to s\ell\nu_{\ell}$$

$$B \to K^{(*)}\nu\bar{\nu}$$
Constraints from LFV processes
$$B \to K\mu\tau$$

$$\tau \to \mu\gamma$$
Rare charm decays

Best fit points

$$y_{s\mu} = 0.026; y_{b\mu} = 1.03; y_{s\tau} = 0.88; y_{b\tau} = -0.77;$$

 $\tilde{u}_{t} = 0.726; \tilde{u}_{t} = -1.027;$

$$y_{s\tau} = 0.726; y_{b\tau} = -1.037;$$

m_{LQ}≈ 1500 GeV

 $S_{3} \text{ alone gives rather large contribution due to rather large } y_{s\tau} y_{b\tau}$ $\mathcal{H}_{\Delta m_{s}} = (C_{1}^{\mathrm{SM}} + C_{1}^{S_{3}}) (\bar{s}_{L} \gamma^{\nu} b_{L})^{2} + \tilde{C}_{1}^{\tilde{R}_{2}} (\bar{s}_{R} \gamma^{\nu} b_{R})^{2} + C_{4}^{S_{3}\tilde{R}_{2}} (\bar{s}_{R} b_{L}) (\bar{s}_{L} b_{R}) + C_{5}^{S_{3}\tilde{R}_{2}} (\bar{s}_{R}^{\alpha} b_{L}^{\beta}) (\bar{s}_{L}^{\beta} b_{R}^{\alpha})$

$$B \to K^{(*)} \nu \bar{\nu}$$

most constraining bound by Belle ${\cal B}(B \to K^* \nu \bar{\nu}) < 2.7 \times 10^{-5}$

Both S_3 and $ilde{R}_2$ contribute

$$\mathcal{L}_{\text{eff}}^{b \to s\bar{\nu}\nu} = \frac{G_F \alpha}{\pi\sqrt{2}} V_{tb} V_{ts}^* \left(\bar{s}\gamma_\mu [C_L^{ij} P_L + C_R^{ij} P_R] b \right) \left(\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j \right).$$

$$C_L^{S_3,ij} = \frac{\pi v^2}{2\alpha V_{tb} V_{ts}^* m_{S_3}^2} y_{bj} y_{si}^*, \qquad C_R^{\tilde{R}_2,ij} = -\frac{\pi v^2}{2\alpha V_{tb} V_{ts}^* m_{\tilde{R}_2}^2} \tilde{y}_{sj} \tilde{y}_{bi}^*$$

The same factor modifies both processes:

 $B \to K \nu \bar{\nu}$ $B \to K^* \nu \bar{\nu}$

white point best fit

experimental bounds grey

white point best fit

Processes in t-channel $pp \rightarrow \tau^+ \tau^-$

Flavour anomalies generate s τ , b τ and c τ relatively large couplings. s quark pdf function for protons are ~ 3 times lagrer contribution then for b quark. Allowed 95% CL regions of parameter space for LHC luminosites of 30, 100, 200 and 300 fb⁻¹ projected from the high-mass $\tau\tau$ resonance search by ATLAS.

$$\alpha \equiv y_{s\tau} y_{b\tau}$$
$$\tilde{\alpha} \equiv \tilde{y}_{s\tau} \tilde{y}_{b\tau}$$

Fixing these couplings one can get full total cross-section. The MC samples generated in MadGraph were subsequently hadronized and showered in Pythia6

GUT possible: SU(5)

LEPTOQUARK	(SU(3), SU(2), U(1))	SU(5)	SO(10)
S_3	$(\overline{3},3,1/3)$	$\overline{45}$	$120,\overline{126}$
R_2	$({f 3},{f 2},7/6)$	$\overline{45},\overline{50}$	$120,\overline{126}$
$ ilde{R}_2$	(3 , 2 ,1/6)	10,15	$120,\overline{126}$
$ ilde{S}_1$	$(\overline{3},1,4/3)$	45	120
S_1	$(\overline{3},1,1/3)$	$\overline{5},\overline{45},\overline{50}$	$10, 120, \overline{126}$

$$y_3^{LL} \to y_{45}/\sqrt{2}$$

$$m_D = -y^{45}v_{45} - y^5v_5/2,$$
$$m_E^T = 3y^{45}v_{45} - y^5v_5/2,$$
$$\sqrt{2}(z + z^{-T})$$

$$m_U = \sqrt{2}(\bar{y} + \bar{y}^T)v_5,$$

 $m_{\rm GUT} \ge 5 \times 10^{15} \,{\rm GeV}$

Neutrino masses (Doršner, SF, Košnik, 1701.08322);

one-loop neutrino mass mechanism within the framework of GUT

$$\begin{bmatrix} \tilde{R}_2^{-1/3 *} \\ R_2^{1/3} \\ S_3^{1/3} \end{bmatrix} \rightarrow \begin{bmatrix} c_\theta & s_\theta \\ & & \\ -s_\theta & c_\theta \end{bmatrix} \begin{bmatrix} \tilde{R}_2^{-1/3 *} \\ S_3^{1/3} \end{bmatrix} \quad \begin{bmatrix} m_1^2 & \lambda \langle H \rangle \\ & & \\ \lambda \langle H \rangle & m_2^2 \end{bmatrix} \rightarrow \begin{bmatrix} m_{LQ1}^2 & 0 \\ 0 & m_{LQ2}^2 \end{bmatrix}$$

 $m_N \sim \sin(2\theta) y_3 \tilde{y}_2 \ln(m_{LQ1}/m_{LQ2})^2$

Summary

- Light scalar LQs offer an explanation of B anomalies;
- > Many other scenarios of NP are already ruled out by the LHC high p_T searches;
- ➢ GUT model with 2 light LQs might explain anomalies not being in conflict with either flavour or LHC searches.

THANK YOU!

Minimal set-up $R_2(3,2,7/6)$ R_{K^*} at loop level

$$\mathcal{L}_{\Delta^{(7/6)}} = (g_R)_{ij} \bar{Q}_i \Delta^{(7/6)} \ell_{Rj} + (g_L)_{ij} \bar{u}_{Ri} \widetilde{\Delta}^{(7/6)\dagger} L_j + \text{h.c.},$$

$$= (Vg_R)_{ij} \bar{u}_i P_R \ell_j \Delta^{(5/3)} + (g_R)_{ij} \bar{d}_i P_R \ell_j \Delta^{(2/3)} + (Ug_L)_{ij} \bar{u}_i P_L \nu_j \Delta^{(2/3)} - (g_L)_{ij} \bar{u}_i P_L \ell_j \Delta^{(5/3)} + \text{h.c.},$$

$$g_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & g_L^{c\mu} & g_L^{c\tau} \\ 0 & g_L^{t\mu} & g_L^{t\tau} \end{pmatrix}, \qquad g_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & g_R^{b\tau} \end{pmatrix}, \qquad Vg_R = \begin{pmatrix} 0 & 0 & V_{ub}g_R^{b\tau} \\ 0 & 0 & V_{cb}g_R^{b\tau} \\ 0 & 0 & V_{tb}g_R^{b\tau} \end{pmatrix}$$

(Becirevic and Sumensary, 1704.05835)