Quarkonium spectral functions at finite temperature on large quenched lattices and towards the continuum limit

Hiroshi Ohno^{1,2}

in collaboration with

H.-T. Ding³, O. Kaczmarek^{3,4}, Swagato Mukherjee², H. Sandmeyer⁴ and H.-T. Shu³

¹CCS, University of Tsukuba, ²Brookhaven National Laboratory,

³Central China Normal University, ⁴Bielefeld University

XQCD 2017 Aula Magna Fratelli Pontecorvo, Pisa, Italy June 28, 2017

Motivation

- Quarkonium spectral functions (SPFs)
 - have all information about in-medium properties of quarkonia

Quarkonium correlation and spectral functions

Euclidian (imaginary time) meson correlation function

$$G_H(\tau,\vec{p}) \equiv \int d^3x e^{-i\vec{p}\cdot\vec{x}} \langle J_H(\tau,\vec{x})J_H(0,\vec{0})\rangle$$
 Spectral function
$$= \int_0^\infty \frac{d\omega}{2\pi} \rho_H(\omega,\vec{p}) K(\omega,\tau)$$

$$J_H(\tau, \vec{x}) \equiv \bar{\psi}(\tau, \vec{x}) \Gamma_H \psi(\tau, \vec{x})$$

$$K(\omega, \tau) \equiv \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

Heavy quark diffusion coefficient

$$D = \frac{1}{6\chi_{00}} \lim_{\omega \to 0} \sum_{i=1}^{3} \frac{\rho_{ii}^{V}(\omega, \mathbf{0})}{\omega}$$

 $ho_{ii}^{V}(\omega)$: spatial component of vector spectral function

 χ_{00} : Quark number susceptibility

$$\rho_{00}^V(\omega) = 2\pi\chi_{00}\omega\delta(\omega) \quad \longrightarrow \quad G_{00}^V(\tau) = T\chi_{00}$$

D is related to the slope of the vector spectral function around zero frequency.

This study

- Finite temperature lattice QCD simulations
 - large and fine isotropic lattices (N_{σ} = 192, a \approx 0.009 fm)
 - $-N_{\tau} = 96, 48 \rightarrow T = 0.75T_{c}, 1.5T_{c}$
 - quenched approximation (no dynamical quark)
 - both charm and bottom valence quarks treated relativistically
 - vector (V) channel

- Investigating quarkonium SPFs (and heavy quark diffusion)
 - indirectly with reconstructed correlators
 - directly by using both MEM and stochastic methods

M. Asakawa, T. Hatsuda and Y. Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459-508

H.-T. Shu *et al*, PoS LATTICE 2015, 180 (2016) HO, PoS LATTICE 2015, 175 (2016)

Estimation of the heavy quark diffusion coefficient

Contribution from the transport peak is assumed to be dominant for

$$G - G_{rec} \text{ at } \tau T = \frac{1}{2}.$$

$$\rho(\omega, p=0)/\omega^2 \quad T > T_c$$

Estimation of the heavy quark diffusion coefficient

Heavy quark diffusion coefficient

$$D = \frac{1}{6\chi_{00}} \lim_{\omega \to 0} \sum_{i=1}^{3} \frac{\rho_{ii}^{V}(\omega, \mathbf{0})}{\omega}$$

H.-T. Ding et al., PRD 86 (2012) 014509

Ansatz: $ho_{ii}^V(\omega << T) = 2\chi_{00} \frac{T}{M} \frac{\omega \eta}{\omega^2 + \eta^2}$ $\eta \equiv \frac{T}{MD}$

Charm: for M = 1-1.5 GeV $2\pi TD \simeq 0.5-0.7$ at 1.5 T_c

Bottom: for M = 4-5 GeV No solution at 1.5Tc

Reconstruction of spectral functions

- Known to be an ill-posed problem
 - \rightarrow Simple χ^2 -fitting does not work.
- Maximum entropy method (MEM)
 - Based on Bayes' theorem
 - Prior knowledge (Default models) → Shannon-Jaynes entropy
 - Analytically minimizing χ^2 term + entropy term \rightarrow a most likely solution
- Stochastic methods
 - Also based on Bayes' theorem
 - Stochastically finding a free-energy minimum = a most likely solution
 - Default models can be introduced
 - → Stochastic Analytical Inference (SAI)

K.S.D. Beach, arXiv:cond-mat/0403055 S. Fuchs *et al.*, PRE81, 056701 (2010)

M. Asakawa, T. Hatsuda and Y. Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459-508

There is also a default-model-free method

A. S. Mishchenko et al., Phys. Rev. B62,

→ Stochastic Optimization Method (SOM)

6317 (2000)

There is also another type of Bayesian methods proposed recently.

Y. Burnier and A. Rothkopf, PRL 111 (2013) 18, 182003

Default model (DM) dependence of the charmonium SPF at $0.75T_c$

DM = Free, Res(1-3) + Free

Peak location: Res1 \sim J/ Ψ mass, Res2 > J/ Ψ mass, Res3 < J/ Ψ mass

Continuum part behaves differently between the stochastic methods and MEM. Location of the first peak ~ J/Ψ mass, small DM dependence → There is a stable bound state corresponding to J/Ψ.

DM dependence of the charmonium SPF at $1.5T_c$ (1)

DM dependence of the charmonium SPF at $1.5T_c$ (2)

DM = Trans(21-24) + Free (width of the transport peak is fixed) Trans21: $2\pi TD \sim 1$, Trans22: $2\pi TD \sim 2$, Trans23: $2\pi TD \sim 5$, Trans24: $2\pi TD \sim 10$

Both high and low frequency parts have small DM dependence.

 $\rightarrow 2\pi TD \sim 1-2$

DM dependence of the charmonium SPF at $1.5T_c$ (3)

DM = Trans(12-42) + Free (height of the transport peak is fixed) Trans12: $\eta/T \sim 2$, Trans22: $\eta/T \sim 1$, Trans32: $\eta/T \sim 0.4$, Trans42: $\eta/T \sim 0.2$ High frequency part has small DM dependence. Low frequency part is sensitive to DMs. $\rightarrow 2\pi TD \sim 1-7$

DM dependence of the charm quark diffusion coefficient at 1.5*T*c

Output $2\pi TD$ varies as DM η/T changes.

Output η/T is almost the same to DM η/T for MEM It seems that D• η is always fixed.

$$G(\tau) = \int \frac{d\omega}{2\pi} c \frac{\omega\eta}{\omega^2 + \eta^2} \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)}$$

$$\underset{\omega << T}{\underset{\omega << T}{\otimes}} D = \frac{1}{6\chi_q} \lim_{\omega \to 0} c \frac{\eta}{\omega^2 + \eta^2} \implies c \propto D\eta$$

Both SAI and MEM can only determine the coefficient c or D•n

 \rightarrow The diffusion coefficient cannot be determined unless η/T is fixed.

$$2\pi TD = 1.16(4) T/\eta + 0.40(2)$$
 for SAI $2\pi TD = 1.33(4) T/\eta + 0.42(2)$ for MEM

for
$$T/\eta = 1-5$$

 $2\pi TD \sim 1.6 - 6.2$ for SAI $2\pi TD \sim 1.8 - 7.0$ for MEM

The Einstein relation suggests $2\pi TD \lesssim 6$.

Comparison with recent lattice results

Quenched QCD, using MEM

H.-T. Ding et al., PRD 86 (2012) 014509

Heavy quark effective theory, continuum limit, using perturbatively constrained fits $_{_{\mathrm{T}\sim1.5\,\mathrm{T_{c}}}}$

Our results are consistent with other lattice results.

Perturbative estimate

$$2\pi DT \approx 71.2$$
 in LO

Moore and Teaney, PRD 71 (2005) 064904

$$2\pi$$
DT ≈ 8.4 in NLO

Caron-Hout and Moore, PRL 100 (2008) 052301

Strong coupling limit
 2πDT ≈ 1

and HO, PRD 92 (2015) no.11, 116003

Kovtun, Son and Starinets, JHEP 0310 (2004) 064

Summary & outlook

- We investigated vector charmonium and bottomonium SPFs on very large and fine quenched lattices in both indirect and direct ways.
- Charmonium SPFs for the vector channel at $0.75T_c$ and $1.5T_c$ were reconstructed with both MEM and stochastic methods.
- Both MEM and the stochastic methods gave almost DM-independent stable SPFs having a clear J/Ψ peak at $0.75T_c$.
- Most of the results may suggest that J/Ψ might melt already $T < 1.5T_c$
- So far we observed a relation between 2πTD and T/η, which gives a range
 1 ≤ 2πTD ≤ 7 for 1 ≤ T/η ≤ 5.
- More studies on SPF reconstruction are needed.
 - further checks of the DM-dependence and other systematic uncertainties
 - analysis of the temperature and quark mass dependence as well as other channels
 - continuum extrapolation

Continuum extrapolation of vector quarkonium correlators: Overview

1. Normalization

- Eliminating exponentially decreasing τ-dependence
 - → free correlator
- Independent of renormalization
 - → quark number susceptibility

2. Mass interpolation

- Precise tuning is necessary
- Using various quark masses in a range btw. charm and bottom

3. Continuum extrapolation

- Using 4 different lattice spacings

β	$a[\text{fm}](a^{-1}[\text{GeV}])$	N_{σ}	$N_{ au}$	T/T_c	#confs.
7.192	0.018 (11.19)	96	48	0.75	237
			32	1.1	476
			28	1.3	336
			24	1.5	336
			16	2.25	237
7.394	0.014 (14.24)	120	60	0.75	171
			40	1.1	141
			30	1.5	247
			20	2.25	226
7.544	0.012 (17.01)	144	72	0.75	221
			48	1.1	462
			42	1.3	660
			36	1.5	288
			24	2.25	237
7.793	0.009 (22.78)	192	96	0.75	224
			64	1.1	291
			56	1.3	291
			48	1.5	348
			32	2.25	235

Continuum extrapolation of vector quarkonium correlators: Mass interpolation

Fit ansatz:
$$G\left(\frac{m}{T}, \tau T\right) = \exp\left(a(\tau T)\left(\frac{m}{T}\right)^2 + b(\tau T)\frac{m}{T} + c(\tau T)\right)$$

Correlators for the finest lattice is fixed as a reference. Correlators for the other lattices are tuned to the same meson mass. The mass at 0.75 T_c is used at higher temperatures.

Continuum extrapolation of vector quarkonium correlators: Continuum limit

b-spline interpolation in τ

linear extrapolation in $1/N_{\tau}^2$

Large cutoff effect at small τ

Continuum extrapolation of vector quarkonium correlators: Summary

Temperature dependence for bottom is smaller than charm

Future plans:

- Other channels (pseudo-scalar, scalar, axial-vector)
- Reconstructing spectral functions

Backup slides

Reconstructed correlator

$$G_{\rm rec}(\tau,T;T') \equiv \int_0^\infty d\omega \rho(\omega,T') K(\omega,\tau,T)$$

$$\frac{G(\tau,T)}{G_{\rm rec}(\tau,T;T')} = \frac{\int_0^\infty d\omega \rho(\omega,T) K(\omega,\tau,T)}{\int_0^\infty d\omega \rho(\omega,T') K(\omega,\tau,T)}$$
 equals to unity at all τ different same

if the spectral function doesn't change at each temperature

S. Datta et al., PRD 69 (2004) 094507

$$\frac{\cosh[\omega(\tau - N_{\tau}/2)]}{\sinh[\omega N_{\tau}/2]} = \sum_{\tau'=\tau;\Delta\tau'=N_{\tau}}^{N_{\tau}'-N_{\tau}+\tau} \frac{\cosh[\omega(\tau' - N_{\tau}'/2)]}{\sinh[\omega N_{\tau}'/2]}$$

$$T = 1/(N_{\tau}a) \qquad N_{\tau}' = mN_{\tau} \qquad m = 1, 2, 3, \cdots$$

$$G_{\text{rec}}(\tau, T; T') = \sum_{\tau'=\tilde{\tau};\Delta\tau'=N_{\tau}}^{N_{\tau}'-N_{\tau}+\tau} G(\tau', T')$$

H.-T. Ding et al., PRD 86 (2012) 014509

Stochastic method: basic idea

For given α (fictitious temperature, regularization parameter),

1. generate SPFs stochastically

2. average over all possible spectra

Stochastic method: basis

$$\delta$$
 functions
$$A(\omega) = \sum_{i} r_{i} \delta(\omega - a_{i})$$

Update schemes

(a) Shift

(b) Change residues

Constraint

$$\sum_{i} r_i = \bar{G}(\tau_0)$$

Boxes

$$A(\omega) = \sum_{i} h_i R(\omega, a_i, w_i)$$
 $R(\omega, a_i, w_i) \equiv \begin{cases} 1 & (a_i - \frac{w_i}{2} \le \omega \le a_i + \frac{w_i}{2}) \\ 0 & (ext{otherwise}) \end{cases}$

Update schemes

(a) Shift (b) Change width (c) Change heights

Constraint

$$\sum_{i} h_i w_i = \bar{G}(\tau_0)$$

Update schemes which change the number of the basis are also possible.

Stochastic method: default model

K.S.D. Beach, arXiv:cond-mat/0403055

$$G(\tau) = \int d\omega \ A(\omega) \tilde{K}(\omega, \tau)$$

$$= \int dx \ n(x) \tilde{K}(\phi^{-1}(x), \tau)$$

$$n(x) \equiv \frac{A(\phi^{-1}(x))}{D(\phi^{-1}(x))}$$

$$\bar{G}(\tau_0) - \int dx \ n(x) = 0$$

$$\langle A(\omega) \rangle_{\alpha} = \langle n(\phi(\omega)) \rangle_{\alpha} D(\omega)$$

Stochastic method: comparison with MEM(1)

Maximum entropy method (MEM)

$$F\equiv \chi^2/2-\alpha S$$
 $S\equiv -\int d\omega\; A(\omega)\ln\left(rac{A(\omega)}{D(\omega)}
ight)$: entropy

Minimizing F

$$\left. \frac{\delta F}{\delta A} \right|_{A=\bar{A}} = 0 \quad \Longrightarrow \quad \bar{A}(\omega)$$
: the most likely solution

Stochastic method K.S.D. Beach, arXiv:cond-mat/0403055

$$H[n] \equiv \chi^2 = \int dx \; \epsilon(x) n(x) + rac{1}{2} \int dx dy V(x,y) n(x) n(y)$$
 : Hamiltonian

Mean filed treatment

$$(n(x) - \bar{n}(x))(n(y) - \bar{n}(y)) \approx 0 \implies \bar{A}(\omega) = \bar{n}(\phi(\omega))D(\omega)$$

Stochastic method: comparison with MEM(1)

Maximum entropy method (MEM)

$$F\equiv \chi^2/2-\alpha S$$
 $S\equiv -\int d\omega\; A(\omega)\ln\left(rac{A(\omega)}{D(\omega)}
ight)$: entropy

Minimizing F

$$\frac{\delta F}{\delta A}\Big|_{A=\bar{A}} = 0 \quad \Longrightarrow \quad \bar{A}(\omega)$$
: the most likely solution

Stochastic method K.S.D. Beach, arXiv:co. mat/0403055

$$H[n] \equiv \chi^2 = \int dx \; \epsilon(x) n(x) + \frac{1}{2} \int dx dy V \qquad \text{Equivalent!}$$

$$y) n(x) n(y) : \text{Hamiltonian}$$

Mean filed treatment

$$(n(x) - \bar{n}(x))(n(y) - \bar{n}(y)) \approx 0 \implies \bar{A}(\omega) = \bar{n}(\phi(\omega))D(\omega)$$

Stochastic method: comparison with MEM(2)

S. Fuchs et al., PRE81, 056701 (2010)

MEM

$$P[A|\bar{G}] = \frac{P[G|A]P[A]}{P[\bar{G}]}$$

Prior probability

$$P[A] \propto \exp(\alpha S)$$

Likelihood function

$$P[\bar{G}|A] \propto \exp\left(-\chi^2/2\right)$$

Posterior probability

$$P[A|\bar{G}] \propto e^{-F}$$

$$\implies \max P[A|\bar{G}] \leftrightarrow \min F \leftrightarrow \frac{\delta F}{\delta A} = 0$$

Stochastic method

$$P[n|\bar{G}] = \frac{P[\bar{G}|n]P[n]}{P[\bar{G}]}$$

Prior probability

$$P[n] \propto \Theta[n] \delta \left(\int dx \ n(x) - \bar{G}(\tau_0) \right)$$

Likelihood function

$$P[\bar{G}|n] \propto \exp\left(-\chi^2/2\alpha\right)$$

Posterior probability

$$P[n|\bar{G}] = \Theta[n]\delta\left(\int dx \ n(x) - \bar{G}(\tau_0)\right)e^{-\chi^2/2\alpha}$$

$$\langle n(x)\rangle_{\alpha} = \int \mathcal{D}n \ n(x)P[n|\bar{G}]$$

Stochastic method: eliminating a

(a) By using the posterior probability $P[\alpha | \bar{G}]$

$$P[\alpha|\overline{G}] \propto P[\alpha] \int \mathcal{D}A \ e^{-\chi^2/2\alpha} \quad P[\alpha] = 1, 1/\alpha$$

Choosing α at the peak location of $P[\alpha | \bar{G}]$ or

$$\langle \langle A(\omega) \rangle \rangle \equiv \int d\alpha \, \langle A(\omega) \rangle_{\alpha} P[\alpha | \bar{G}]$$

(b) By using the log-log plot of α vs $\langle \chi^2 \rangle$

Flat region at large α : default model dominant

Crossover region: both χ^2 -fitting and the default model are important

Flat region at small α : χ^2 -fitting dominant, overfitting

Choosing α at the kink of $\ln \langle \chi^2 \rangle$

K.S.D. Beach, arXiv:cond-mat/0403055

Stochastic method : summary

MEM

Most likely solution

$$\max P[A|\bar{G}] \leftrightarrow \min F \leftrightarrow \frac{\delta F}{\delta A} = 0$$
 where

$$P[A|\bar{G}] \propto e^{-F} \quad F \equiv \chi^2/2 - \alpha S$$

Prior information

$$S \equiv -\int d\omega \ A(\omega) \ln \left(\frac{A(\omega)}{D(\omega)} \right)$$

Eliminating α

$$P[\alpha|\bar{G}] \propto P[\alpha] \int \mathcal{D}A \ e^{-F[A]}$$

where

$$P[\alpha] = 1, 1/\alpha$$

$$\langle A(\omega) \rangle = \int d\alpha A_{\alpha}(\omega) P[\alpha|\bar{G}]$$

Stochastic methods

• Most likely solution $\mathcal{D}' n \equiv \mathcal{D} n \Theta[n] \delta \left(\int dx \, n(x) - \bar{G}(\tau_0) \right)$

$$\mathcal{D}'n \equiv \mathcal{D}n \ \Theta[n]\delta \left(\int dx \ n(x) - \bar{G}(\tau_0) \right)$$

Stochastically evaluate

$$\langle n(x)\rangle_{\alpha} = \int \mathcal{D}' n \ n(x) e^{-\chi^2/2\alpha} \quad \text{for } n(x) \equiv \frac{A(\phi^{-1}(x))}{D(\phi^{-1}(x))}$$

SAI (Stochastic Analytical Inference)

S. Fuchs et al., PRE81, 056701 (2010) HO, PoS LATTICE 2015, 175 (2016)

Prior information

$$x \equiv \phi(\omega) = \frac{1}{N} \int_{-\infty}^{\omega} d\omega' D(\omega')$$

- Basis
- δ functions
- Eliminating α

$$P[n|\bar{G}] \propto P[\alpha] \int \mathcal{D}' n \ e^{-\chi^2[n]/2\alpha}$$

$$\Rightarrow \langle \langle n(x) \rangle \rangle = \int d\alpha \langle n(x) \rangle_{\alpha} P[n|\bar{G}]$$

SOM (Stochastic Optimization Method)

A. S. Mishchenko et al., PRB62, 6317 (2000) H.-T. Shu et al, PoS LATTICE 2015, 180 (2016)

Prior information

None ($x = \omega$)

dose not rely on DM!

- Basis Boxes
- Eliminating α Choosing α

at a critical point of $\langle \chi^2 \rangle_{\alpha}$

Default models

Free SPF

$$\rho(\omega) = \frac{N_c}{L^3} \sum_{\mathbf{k}} \sinh\left(\frac{\omega}{2T}\right) \left[b^{(1)} - b^{(2)} \frac{\sum_{i=1}^3 \sin^2 k_i}{\sinh^2 E_{\mathbf{k}}(m)} \right] \times \frac{\delta(\omega - 2E_{\mathbf{k}}(m))}{(1 + \mathcal{M}_{\mathbf{k}}(m))^2 \cosh^2 E_{\mathbf{k}}(m)}$$

A resonance peak

$$\rho(\omega) = \frac{\Gamma M}{(\omega^2 - M^2)^2 + M^2 \Gamma^2} \frac{\omega^2}{\pi}$$

A transport peak

$$\rho(\omega) = \frac{\omega\eta}{\omega^2 + \eta^2}$$

$$\cosh E_{\mathbf{k}}(m) = 1 + \frac{\mathcal{K}_{\mathbf{k}}^2 + \mathcal{M}_{\mathbf{k}}^2(m)}{2(1 + \mathcal{M}_{\mathbf{k}}(m))}$$

$$\mathcal{K}_{\mathbf{k}} = \sum_{i=1}^{3} \gamma_i \sin k_i$$

$$\mathcal{M}_{\mathbf{k}}(m) = \sum_{i=1}^{3} (1 - \cos k_i) + m$$

 $b^{(1)} = 3$, $b^{(2)} = 1$ for the V channel