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Motivation 

• Quarkonium spectral functions (SPFs) 
– have all information about in-medium properties of quarkonia 
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Quarkonium dissociation temperature 
→ Important to understand  quarkonium 
     suppression 

: vector SPF 

Heavy quark diffusion coefficient 

→ Important input for heavy quark 
transport  models 

STAR Collaboration@QuarkMatter2017 

CMS Collaboration@QuarkMatter2017 ALICE Collaboration@QuarkMatter2017 
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Quarkonium correlation and spectral functions  
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Euclidian (imaginary time) meson correlation function 

Spectral function 

ρ(ω,p=0)/ω2 

ω 

T<Tc 

Exited state 

Ground state Zero mode/trans port peak (V, S, AV) 

ρ(ω,p=0)/ω2 
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T→∞ 
ρ(ω,p=0)/ω2 
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T>Tc 

Zero mode/transport peak(V, S, AV) 

(Free case) 
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Heavy quark diffusion coefficient 
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Zero mode/trans port peak (V, S, AV) 

ρ(ω,p=0)/ω2 

ω 

T>Tc 

D is related to the slope of the 
vector spectral function around 
zero frequency. 

: spatial component of vector spectral function 

: Quark number susceptibility 
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This study 

• Finite temperature lattice QCD simulations 
– large and fine isotropic lattices (Nσ = 192, a ≃ 0.009 fm) 
– Nτ = 96, 48 → T = 0.75Tc, 1.5Tc 

– quenched approximation  (no dynamical quark) 
– both charm and bottom valence quarks treated relativistically 
– vector (V) channel 

 
• Investigating quarkonium SPFs (and heavy quark diffusion) 

– indirectly with reconstructed correlators 
– directly by using both MEM and stochastic methods 
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H.-T. Shu et al, PoS LATTICE 2015, 180 (2016) 
HO, PoS LATTICE  2015,  175 (2016) 

M. Asakawa, T. Hatsuda and  Y. Nakahara, 
Prog.Part.Nucl.Phys. 46 (2001) 459-508  
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Estimation of the heavy quark diffusion coefficient 

5/18 

Contribution from the transport peak is assumed to be dominant for 
G – Grec at τT = ½. 

ρ(ω,p=0)/ω2 

ω 

T<Tc 
ρ(ω,p=0)/ω2 

ω 

T>Tc ρ(ω,p=0)/ω2 

ω 

ー ≃ 

T=1.5Tc , T ‘= 0.75Tc 

Reconstructed correlator:  

G/Grec 

G-Grec 
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Heavy quark diffusion coefficient 

Ansatz: 

Charm: for M = 1－1.5 GeV 
              2πTD ≃ 0.5－0.7 at 1.5Tc 

H.-T. Ding et al., PRD 86 (2012) 014509 

Bottom: for M = 4－5 GeV 
               No solution at 1.5Tc 

Estimation of the heavy quark diffusion coefficient 
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Reconstruction of spectral functions 
• Known to be an ill-posed problem 

→ Simple χ2-fitting does not work. 

• Maximum entropy method (MEM) 
– Based on Bayes’ theorem 
– Prior knowledge (Default models) → Shannon-Jaynes entropy 
– Analytically minimizing  χ2 term + entropy term → a most likely solution 

• Stochastic methods 
– Also based on Bayes’ theorem 
– Stochastically finding a free-energy minimum = a most likely solution 
– Default models can be introduced 
 → Stochastic Analytical Inference (SAI)  
– There is also a default-model-free method 
 → Stochastic Optimization Method (SOM) 
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M. Asakawa, T. Hatsuda and  Y. Nakahara, 
Prog.Part.Nucl.Phys. 46 (2001) 459-508  

A. S. Mishchenko et al., Phys. Rev. B62, 
6317 (2000) 

S. Fuchs et al., PRE81, 056701 (2010) 
K.S.D. Beach, arXiv:cond-mat/0403055 

Y. Burnier and A. Rothkopf, PRL 111 (2013) 18, 182003 
There is also another type of Bayesian methods proposed recently. 
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Default model (DM) dependence of the charmonium SPF 
at 0.75Tc  
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Stochastic methods MEM 

DM = Free, Res(1-3) + Free 
Peak location: Res1 ~ J/Ψ mass, Res2 > J/Ψ mass, Res3 < J/Ψ mass 

Continuum part behaves differently between the stochastic methods and MEM. 
Location of the first peak ~ J/Ψ mass, small DM dependence 
→ There is a stable bound state corresponding to J/Ψ. 

dashed: DM 
solid: output 
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DM dependence of the charmonium SPF at 1.5Tc (1) 

Stochastic methods MEM 
High ω 

Low ω 

DM = Trans + Free, Trans + Res(1-3) + Free (Trans is fixed) 
The resonance peak is unstable and highly sensitive to DMs. 
→ J/Ψ seems to melt already T < 1.5Tc. 
The transport peak is also sensitive to DMs. 

2πTD 2πTD 
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DM dependence of the charmonium SPF at 1.5Tc (2) 

Stochastic methods MEM 
High ω 

Low ω 

DM = Trans(21-24) + Free (width of the transport peak is fixed) 
Trans21: 2πTD ~ 1, Trans22: 2πTD ~ 2, Trans23: 2πTD ~ 5, Trans24: 2πTD ~ 10 
Both high and low frequency parts have small DM dependence. 
→ 2πTD ~ 1－2 

2πTD 2πTD 

Quarkonium spectral functions at finite temperature 
on large quenched lattices and towards the continuum limit 



H. Ohno 
XQCD 2017 

11/18 

DM dependence of the charmonium SPF at 1.5Tc (3) 

Stochastic methods MEM 
High ω 

Low ω 

DM = Trans(12-42) + Free (height of the transport peak is fixed) 
Trans12: η/T ~ 2, Trans22: η/T ~ 1, Trans32:  η/T ~ 0.4, Trans42: η/T ~ 0.2 
High frequency part has small DM dependence. 
Low frequency part is sensitive to DMs. → 2πTD ~ 1－7 

2πTD 2πTD 
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DM dependence of the charm quark diffusion coefficient 
at 1.5Tc 
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Output 2πTD varies as DM η/T 
changes. 
Output η/T is almost the same to 
DM η/T for MEM 
It seems that D・η is always fixed. 

→ The diffusion coefficient cannot be determined unless η/T is fixed. 
Both SAI and MEM can only determine the coefficient c or D・η 

2πTD = 1.16(4) T/η + 0.40(2) for SAI 
2πTD = 1.33(4) T/η + 0.42(2) for MEM 

2πTD ~ 1.6－6.2 for SAI 
2πTD ~ 1.8― 7.0 for MEM 

for T/η = 1―5 

Einstein relation 

The Einstein relation suggests 2πTD ≲ 6. 
Quarkonium spectral functions at finite temperature 
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Comparison with recent lattice results 
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H.-T. Ding et al., PRD 86 (2012) 014509 

• Perturbative estimate 
2πDT ≈ 71.2 in LO 
 
2πDT ≈ 8.4 in NLO 

• Strong coupling limit 
2πDT ≈ 1 

Moore and Teaney, PRD 71 (2005) 064904 Kovtun, Son and Starinets, JHEP 0310 (2004) 064 

Caron-Hout and Moore, PRL 100 (2008) 052301 

• Quenched QCD, using MEM • Heavy quark effective theory, continuum limit, 
      using perturbatively constrained fits 

A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus 
and HO, PRD 92 (2015) no.11, 116003  

2πTD ≈ 2 κ/T3 = 1.8 – 3.4 

→ 2πTD ≈ 3.7－7.0 

Our results are consistent with other lattice results. 
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Summary & outlook 
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• We investigated vector charmonium and bottomonium SPFs on very 
large and fine quenched lattices in both indirect and direct ways. 

• Charmonium SPFs for the vector channel at 0.75Tc and 1.5Tc were 
reconstructed with both MEM and stochastic methods. 

– Both MEM and the stochastic methods gave almost DM-independent stable SPFs 
having a clear J/Ψ peak at 0.75Tc. 

– Most of the results may suggest that J/Ψ might melt already T < 1.5Tc  
– So far we observed a relation between 2πTD and T/η, which gives a range 
     1 ≲ 2πTD ≲ 7 for 1 ≲ T/η ≲ 5. 

 

• More studies on SPF reconstruction are needed. 
– further checks of the DM-dependence and other systematic uncertainties 
– analysis of  the temperature and quark mass dependence as well as other channels 
– continuum extrapolation 
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Continuum extrapolation of vector quarkonium correlators: 
Overview 

15/18 Quarkonium spectral functions at finite temperature 
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1. Normalization 
- Eliminating exponentially 
  decreasing  τ-dependence 
  → free correlator 
- Independent of renormalization 
  → quark number susceptibility 
 

2. Mass interpolation 
- Precise tuning is necessary 
- Using various quark masses in a 
   range btw. charm and bottom 
 

3. Continuum extrapolation 
- Using 4 different lattice spacings 
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Continuum extrapolation of vector quarkonium correlators: 
Mass interpolation 

Fit ansatz: 

Correlators for the finest lattice is fixed as a reference. 
Correlators for the other lattices are tuned to the same meson mass. 
The mass at 0.75 Tc is used at higher temperatures.  

charm 
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Continuum extrapolation of vector quarkonium correlators: 
Continuum limit 

b-spline interpolation in τ 

linear extrapolation in 1/Nτ
2 

charm 

Large cutoff effect at small τ 
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Continuum extrapolation of vector quarkonium correlators: 
Summary 

charm bottom 

Temperature dependence for bottom is smaller than charm 

Future plans: 
• Other channels (pseudo-scalar, scalar, axial-vector) 
• Reconstructing spectral functions  



End 



Backup slides 



H. Ohno 
XQCD 2017 

Reconstructed correlator 

21 

r 

H.-T. Ding et al., PRD 86 (2012) 014509 

S. Datta et al., PRD 69 (2004) 094507 

equals to unity at all τ 

if the spectral function doesn’t change at each temperature  
same different 
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Stochastic method: basic idea 
For given α (fictitious temperature, regularization parameter),  

1. generate SPFs stochastically 
 
 
 
 
 

2. average over all possible spectra 

A(ω) 

ω 

… 
A(ω) 

ω 

A(ω) 

ω 

A(ω) 

ω 
A(ω) 

ω 
A(ω) 

ω 

A(ω) 

ω 
: covariance matrix 
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Boxes 
 
 
 
 

• Update schemes 
 
 
 
 
 

• Constraint 

δ functions 
 
 
 
 

• Update schemes 
 
 
 
 
 

• Constraint 

Stochastic method: basis 

23 

A(ω) 

ω 

A(ω) 

ω 

A(ω) 

ω 

A(ω) 

ω 

A(ω) 

ω 

A(ω) 

ω 

A(ω) 

ω 

(a) Shift (b) Change residues (a) Shift (b) Change width (c) Change heights 

Update schemes which change the number of the basis are also possible. 
Quarkonium spectral functions at finite temperature 
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Stochastic method: default model 
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D(ω) 

ω x 
Φ 

: Default model (prior information) 

K.S.D. Beach, arXiv:cond-mat/0403055 
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Maximum entropy method (MEM) 
 
 

Minimizing F 
 
 
 

Stochastic method 
 
 

Mean filed treatment 

Stochastic method: comparison with MEM(1) 

25 

K.S.D. Beach, arXiv:cond-mat/0403055 

: entropy 

: the most likely solution 

: Hamiltonian 
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Maximum entropy method (MEM) 
 
 

Minimizing F 
 
 
 

Stochastic method 
 
 

Mean filed treatment 

Stochastic method: comparison with MEM(1) 

K.S.D. Beach, arXiv:cond-mat/0403055 

: entropy 

: the most likely solution 

: Hamiltonian 
Equivalent! 
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• Prior probability 
 
 

• Likelihood function 
 
 

• Posterior probability 

• Prior probability 
 
 

• Likelihood function 
 
 

• Posterior probability 

Stochastic method: comparison with MEM(2) 
S. Fuchs et al., PRE81, 056701 (2010) 

MEM Stochastic method 

27 Quarkonium spectral functions at finite temperature 
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(a) By using the posterior probability P[α|G] 
 
 
Choosing α at the peak location of P[α|G] or 
Taking average  
 
 
 
 

(b) By using the log-log plot of α vs <χ2> 
 
 
 
 

Choosing α at the kink of ln<χ2> 

Stochastic method: eliminating α 

ln<χ2> 

lnα 
lnα* 

P[α|G] 

α 
α* 

- - 

- 

Flat region at large α: default model dominant 
Crossover region: both χ2-fitting and the default model are important 
Flat region at small α:  χ2-fitting dominant, overfitting 

K.S.D. Beach, arXiv:cond-mat/0403055 
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MEM Stochastic methods 
• Most likely solution 
 
 
where 

 
 

• Prior information 
 

 
• Eliminating α 

 
where 

SOM(Stochastic Optimization Method) 

• Most likely solution 
Stochastically evaluate 

 
 
 
 

• Prior information 
 

 

• Basis 
 

• Eliminating α 

• Prior information 
 
 

• Basis 
 

• Eliminating α 

A. S. Mishchenko et al., PRB62, 6317 (2000) 
H.-T. Shu et al, PoS LATTICE 2015, 180 (2016) 

S. Fuchs et al., PRE81, 056701 (2010) 
HO, PoS LATTICE  2015,  175 (2016) 

δ functions Boxes 

dose not rely on DM! 
None (              ) 

Choosing α  
at a critical point of <χ2>α 

Stochastic method : summary 

for 

29 

SAI (Stochastic Analytical Inference) 
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Default models 

• Free SPF 
 
 

 
 

• A resonance peak 
 
 

• A transport peak 
 

30 

b(1) = 3, b(2) = 1 for the V channel 
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