

Ion Beam Analysis per lo studio dei materiali: sviluppi e applicazioni

Alessandro Zucchiatti Seminario INFN/Universitá di Genova 10 Ottobre 2016

La IBA (...e la IBMM) Singolaritá della IBA (alcune) e applicazioni Un laboratorio per IBA e IBMM: il CMAM Un esempio di sviluppo applicativo

Fasci di ioni al keV: IBMM... e analisi

A. Redondo-Cubero

IMPIANTAZIONE

- Drogaggio riproducibile (alte fluenze, nessun limite di miscibilitá
- Controllo della profocditá di impiantazione (ingegnerizzazione).
- Formazione di nanostrutture (clusters, tracce, strati sommersi).

Fasci di ioni al MeV: IBA...e danno

Caratteristiche generali

- Informazione su composizione/struttura.
- Valori quantitativi di concentrazione.
- Acquisizione veloce (10-20 min).
- Non-distruttiva in principio

Prestazioni

- Risoluzione profonditá 5 nm → 100 nm
- Sensibilitá (da 0.1 % at. A qualche ppm).
- Capacitá di mappatura con buona risoluzione
- Buona sensibilitá elementale (e massa)

Potenziale della IBA: microfasci

Micro-beam is becoming "ordinary"; nano beams are the ion beam research frontier. L.C.Feldman

Microfasci→Risoluzione laterale→Imaging

Vantaggi dei micro-fasci esterni

- Facile manipolazione, movimento e monitoraggio del bersaglio
- Quasi nessun limite dimensionale
- Nessuna necessitá di campionamento (NON INVASIVA)
- Dissipazione di calore molto piú efficiente che in vuoto
- Nessun effetto di carica dell'oggetto
- Non si perde tempo nell'aperture della camera di reazione
- Danno strutturale trascurabile, trascurabile pedita di liquidi e gas
- Ridotta perdita di massa organica nel vivente
- Capacitá di mappatura

Una classe speciale di fasci "ordinari" é quella dei micro-fasci esterni

Protoni da 3 MeV						
Perdita di energía e straggling						
	Energia persa[keV]		Straggling (σ) [keV]			
Traiettoria [mm]	Aria	Elio	Aria	Elio		
2	28	6	4	1.5		
3	40	8	5	2		
4	54	10	6	2		
Aumento della dimensione fascio						
	FWHM [µm]		FW1/10M [µm]			
Traiettoria [mm]	Aria	Elio	Aria	Elio		
2	6	3.5	25	14		
3	11	5	50	21		

18

30

74

Il micro-fascio esterno di AGLAE (Louvre)

- Linea multiproposito unica
- Risoluzione spaziale, stabilitá di fascio, rivelazione di piú segnali molto piú alte che in altri sistemi per
- Irradiazione ridotta durante
 l'analisi o maggior informazione a paritá di irradiazione
- Nuove possibilitá: analisi di dipinti senza danno ai pigmenti (un progresso maggiore rispetto ai sistemi anteriori).

AGLAE ha marcato il passo delle applicazioni IBA al patrimonio culturale negli ultimi 26 anni sia rispetto alla tecnica (es. Si_3N_4) e sviluppi metodologici (es. ERDA in atmosfera di Elio) sia rispetto alle line di ricerca (trope per poterle menzionare!)

UNIVERSIDAD

AUTONOMA

Micro-fasci e "imaging"

Nanofasci: Center for Ion Beam Applications

Ha cinque line avanzate per le applicazioni sub-micron di IBA e IBMM. Una é dedicata ad immagini cellulari

Caratteristiche

- (a) Risoluzione sotto i 50 nm s (a basse $I_p \sim 10$ kp/s)
- (b) Immagini per STIM, elettroni secondari e fluorescenza
- (c) PIXE e RBS (a *I_p*>100pA e resoluzione >100nm)
- (d) Microscopia ottica e fluorescente (immagine e posizionamento)
- (e) Manipolazione accurate e stabile con drivers piezoelettrici
- (f) Immagini fino a 2048 x 2048 pixels usando IonDaq

12 34 Quadrupletto russo-singolo spazio2 34 Tripletto Oxford singolo spazio1 34 Tripletto Oxford doppio spazio

1.6 MeV α 10kα/s

DEMADRID

AUTONOMA

UNIVERSIDAD

Immagini cellulari: due esempi

EBS, EBS- Channeling

Caratteristiche del Channeling

La traiettoria dello ione si sviluppa lungo gli assi di maggiore simmetria del cristallo
E´ sensibile ai difetti del reticolo: qualitá del cristallo, difetti nella crescita, deformazione, strati amorfi, danno, separazione di fasi, riaggiustamenti di superficie, problem di interfase,...
Si combina normalmente con RBS (depth profiling) and PIXE (impurezze pesanti)

Vista trasversale

Vista laterale

RBS/C : amorfizzazione del LiNbO₃

IBA: Misure di precisione

MeV-SIMS per applicazioni forensi

- Penetrante (cm in aria)
- Solo micro-distruttiva
- Sensibile anche per Imp. Non contam.
- In sviluppo considerando reagenti

Impronta sopra: carta

Impronta sopra: impr.

Impronta sopra: inch.

Impronta contaminata

Sovrap. Inch. sopra

Sviluppi Software

The 2000 IAEA intercomparison of PIXE spectrum analysis software

M. Blaauw^a, J.L. Campbell^b, S. Fazinić^{c,*}, M. Jakšić^d, I. Orlic^e, P. Van Espen^f

Summary of "IAEA intercomparison of IBA software"

N.P. Barradas^{a,b}, K. Arstila^c, G. Battistig^d, M. Bianconi^e, N. Dytlewski^f, C. Jeynes^{g,*}, E. Kótai^h, G. Lulli^c, M. Mayerⁱ, E. Rauhala^j, E. Szilágyi^h, M. Thompson^k

Nuclear Instruments and Methods in Physics Research B 271 (2012) 107-118

"Total IBA" - Where are we?

C. Jeynes*, M.J. Bailey, N.J. Bright, M.E. Christopher, G.W. Grime, B.N. Jones, V.V. Palitsin, R.P. Webb University of Surrey Ion Beam Centre, Guildford, United Kingdon

Sviluppi Rivelatori

La concorrenza

Evans Analytical Group

Dove si applicano IBA e IBMM

Al numero 135 trovate il CMAM

Indirizzo Postale

Centro de Micro-Análisis de Materiales Calle de Faraday 3, Universidad Autónoma de Madrid Campus de Cantoblanco E-28049, Madrid, Spain

Telefono (+34) 91 497 3621 (centralino)

Posta elettronica cmam@uam.es

Pagina WEB http://www.cmam.uam.es

La ricerca nel CMAM

Archeometria

Interazione ione-solido

Fisica delle superfici $Fe_4N(100)$

Fisica dello stato solido

Materiali per l'energia

Fisica Nucleare

Micro-patterning

Biofisica

I numeri del CMAM

Centro de Microanalisis de Materiales 10th Anniversary

March 11-12, 2013 - Pabellón C, Universidad Autónoma de Madrid, Madrid, Spain

Investimento to	11.35	M€	
Costo annuo (in	730 k€		
Personale:	60%		
Ricerca:	23%		
Servizi:	17%		
Costo annuo (co	1.09	M€	

Personale: 24

- 10 ricercatori,
- 1 dottorando,
- 9 tecnici,
- 4 amministrativi

Personale cessato : 57

Tesi dottorali:13Studenti Master/Erasmus : 36Liceali/tecnici:144

I numeri del CMAM

Infrastrutture: acceleratore da 5MV

- •Co-assiale Cockroft-Walton
- •Anno 2002
- •Tandem
- •Bassissimo ripple <50V @ 5MV
- > 2 sorgenti:
 - Duoplasmatron
 - Sputtering

Implantazione ionica

UNIVERSIDAD AUTONOMA

7 Linee di fascio

Standard

Uso Generale

Tecniche IBA: RBS,RBSc,ERDA,NRA,PIXE IBMM su aree piccole (~1cm²)

Micro-fascio Interno Bio e patterning

PIXE, RBS e STIM con mappatura Risoluzione micrometrica

Micro-Fascio Esterno Beni culturali

PIXE, RBS, (PIGE, IL) Risoluzione > 20 microns

Impiantazione Ionica IBMM e ottica

Fascio 2mm Ø e scansioni fino a 4"x4"
Ioni fino al Au₂ (per adesso)
Caratterizzazione ottica
Doppia irradiazione fs-laser+ione
Fascio "bianco" con degradatore
ERDA-TOF Analisi di "superficie"

Tecniche IBA: ERDA-ToF, PIXE Range profonditá 15 nm

Fisica Nucleare

Reazioni a bassa energia, test apparati Nuclear Reaction Analysis PIGE

Infrastruttura: laboratori ausiliari

Chimica e preparazione target

Laboratorio Elettronica

... piú i servizi della UAM nel campus: SIDI, SEGAINVEX

Formazione e Disseminazione

DISSEMINAZIONE

Ciclo seminari del CMAM

madri⊕d Settimana della Scienza

Visite guidate (350 persone/anno)

Attivitá promozionale UAM Facoltá di Scienze

FECYT

Campo scientifico estivo

FORMAZIONE

Dottorandi CMAM

Studenti Master del CMAM

Studenti internazionali

🐠 📧 Joan Hiró Pratiche Ist. professionali

Appoggio a corsi Master della UAM

Schemi di formazione internazionale (IAEA)

Applicazioni della PIGE...problemi...e soluzioni

UNIVERSIDAD AUTONOMA

Distribuzione statistica

Detection of terrestrial fluorine by proton induced gamma emission (PIGE): A rapid quantification for Antarctic meteorites

PIGE and XRF analysis of a nano-composite pillared layered clay material for **nuclear waste** applications

Microbeam studies of gel-polymer interfaces with Li anode and spinel cathode for Li ion battery applications using PIGE and PIXE spectroscopy

A comparison of the techniques of PIXE, PIGE and INAA by reference to the elemental analysis of **porcine brain** samples

Compositional studies on **Transylvanian gold** nuggets: Advantages and limitations of PIXE-PIGE analysis

Determination of fluorine by PIGE analysis on **bovine tooth enamel** treated with bamboo salt SMFP toothpaste and fluoride mouth rinsing solution

PIGE-PIXE analysis of human milk

In vivo PIXE-PIGE study of enhanced retention of fluorine in tooth enamel after laser irradiation

Problemi

- Fino al 2011 base dati per sezioni d'urto limitata e non validata
- Quantificazione da parametri fondamentali poco affidabile
- Quantificazione attraverso standard non semplice

PIGE quantitativa

 $Y_Z =$

 Q_{s}

Campioni sottili

$$\frac{Q}{e} \frac{\Omega}{4\pi} \varepsilon(E_{\gamma}) \frac{N_0}{A} \mathbf{w}_{\mathbf{Z}} \frac{ds}{\cos \theta} \sigma_{\gamma}(E_0)$$

STD
$$\frac{Y_z}{Y_s} = \frac{Q_z}{Q_s} \frac{w_z}{w_s}$$

$$\begin{array}{ll} \text{Campioni} & \frac{Y_z}{Q_z \Omega} = \frac{N_0}{e \cdot 4\pi \cdot A} \varepsilon(E_\gamma) \frac{1}{\cos \vartheta} \varepsilon(E_\gamma) \frac{1}{\cos \vartheta} \sigma(E_\gamma, E_p, \vartheta + \varphi) \end{array}$$

STD
spesso
$$\frac{Y_s}{Q_s\Omega} = \frac{N_0}{e \cdot 4\pi \cdot A} \varepsilon(E_{\gamma}) \frac{1}{\cos \vartheta} w_s \int_{E_0}^0 \frac{dE}{S_s(E)} \sigma(E_{\gamma}, E_p, \vartheta + \phi)$$

Se
$$S_z(E) = k \cdot S_s(E)$$
 e $k \neq k(E)$ allora

$$\frac{Y_z}{Q_z\Omega} = \frac{N_0}{e \cdot 4\pi \cdot A} \varepsilon(E_\gamma) \frac{1}{\cos \vartheta} W_Z \frac{1}{k} \int_{E_0}^0 \frac{dE}{S_s(E)} \sigma(E_\gamma, E_p, \vartheta + \phi)$$

$$\frac{Y_s}{Y_z}\frac{Q_z}{Q_s} = \frac{w_s}{w_z} \cdot k \qquad \Rightarrow \qquad w_z = w_s \cdot k \cdot \frac{Q_s}{Q_z} \cdot \frac{Y_z}{Y_s}$$

$$\frac{Z}{S} \rightarrow w_{Z} = w_{S} \frac{Y_{Z}}{Y_{S}}$$

La precisione dipende da quanto bene si conosce k e la composizione dello standard. Vale per camponi infiniti (di spessore > range ioni). Non depende dall'angolo di impatto e dall'efficienza assoluta del rivelatore di gamma.

Linea di Nuclear Reaction Analysis

 Sostituisce da fine 2014 la vecchia línea "ambientale"

UNIVERSIDAD

DEMADRID

AUTONOMA

- Camera di reazione di 25 cm Ø
- 2 rivelatori di gamma (REGe, LaBr3)
- 1 rivelatore per particelle retrodiffuse
- Portacampioni motorizzato (1 asse)
- FC di tantalio, disegno HVEE modificato
- Nuova catena elettronica Fast Comtek
- Software di controllo per la esecuzione autómatica di misure

PIGE per Li e F: condizioni sperimentali

TV_{nominal} [kV] CalibrazioneTV con le risonanze ${}^{27}Al(p,\gamma){}^{28}Si$ a 991.86, 1317.14 e 1799.75 keV e ¹⁴N(p,p'γ)¹⁴N a 3903 e 3996 keV.

v=A+B/X+C/X^2+D/x^ Equation 0.57782 Reduced R-Squ 0.99783 Standard /alue 1.19709E- 2.75333E 1 51775 0.03376 -81.38273 7.81999 1510.0245 401.23181 400 800 1000 1200 1400 Photon Energy [keV]

RIVELATORE

UNIVERSIDAD AUTONOMA **DE MADRID**

61 mm Ø X 60 mm res= 2.0 keV @ 1.33 MeV

ELETTRONICA

750

2250 2000

1750

1500

750

500

250

250

500

≥ 1250 · ≥ 1000 ·

Errore fit picchi ¹⁹F a 110, 197, 1233, 1349+1357 keV rispettivamente ± 1.5%, ± 1.2%, ± 4% and ± 4%. Errore fit picchi ⁷Li a 429 e 478 keV rispettivamente 4% e 1%.

BERSAGLI

Bersagli di LiF in sandwich Au/LiF/C $(34.4 \,\mu\text{g/cm}^{2}\,^{19}\text{F} + 11.7 \,\mu\text{g/cm}^{2}\,^{7}\text{Li})$ e LiF/Ag/C (17.4 μg/cm² ¹⁹F +5.9 μg/cm² ⁷Li), misurati con EBS di ⁴He con errore del $\pm 3\%$ e con ⁷Li calcolato stechiometricamente. SI RINGRAZIA INFN-LNL

$$\frac{d\sigma_{\gamma}(\boldsymbol{E}_{0},\boldsymbol{\theta})}{d\Omega} = \frac{\boldsymbol{Y}_{\gamma}(\boldsymbol{E}_{0},\boldsymbol{\theta})}{N_{p}N_{T}\boldsymbol{\varepsilon}_{abs}(\boldsymbol{E}_{\gamma})\cdot 4\pi}$$

Misura di sezioni d'urto: ¹⁹F

N

Misura di sezioni d'urto: 7Li

Per il litio i dati sono ancora pochi e discrepanti. Un benchmarking potrebbe aiutare a risolvere le discrepanze. Dati ad alta energía possono essere interessanti per materiali strutturali per la energía. Per il fluoro il canale a 110 keV non presenta problema di riproducibilitá ed é soddisfacentemente quantitativo. Le risonanze strette permettono in certa misura anche studio di profili di profonditá

UNIVERSIDAD

DEMADRID

AUTONOMA

Verso la quantificazione PIGE affidabile

LATR

🕒 Print | 🚺 Portuguese Version

ABOUT LATR LATR STAFF

Nuclear Reactions Group

Last update 07-04-201

1. Introduction

ERYA (Emited Radiation Yield Analysis) is a Labview program dedicated to PIGE (Particle Induced Gamma-ray Emission). ERVA calculates the mass fraction of the elements present in a given sample, by integrating the relevant nuclear reaction cross sections along its depth.

The free version of ERYA can be found in here. Choose the Installer according to your screen resolution:

Installer 1366x768 (12M) and Installer 1920x1080 (13M).
 No Labview software is needed.
 The tutorial can be found here.

2. ERYA Calculation

The gamma yield Y emitted by an isotope i of an element e within a thick target bombarded by a proton beam of energy E_0 may be written as:

$$\mathbf{Y}(\mathbf{E}_{0}) = \boldsymbol{\varepsilon}_{\textit{abs}}(\mathbf{E}_{\textit{y}}).\mathbf{N}_{\textit{p}}.\mathbf{f}_{\textit{m}}.\mathbf{f}_{\textit{j}}.\mathbf{N}_{\textit{av}}.\mathbf{A}^{-1}.\int_{0}^{\mathbf{E}_{0}} \boldsymbol{\sigma}(\mathbf{E})/\boldsymbol{\varepsilon}(\mathbf{E})\,d\mathbf{E}_{\textit{j}}$$

where $\epsilon_{abs}(E_F)$ is the absolute efficiency of the detection system at the emitted energy E_F , N_P is the number of incident protons, f_m and A^{-1} are the mass fraction (concentration) and the inverse of the atomic mass of the element e, f_1 is the abundance of isotope i, $N_{e^{-1}}$ is the Avogadro a number, $\sigma(E)$ is the nuclear reaction cross section and $\epsilon(E)$ is the tapping cross section of the sample in units of energy area per mass. The last two variables depend on the energy E of the incident proton. In order to perform the integration, the target is divided in n layers parallel to the sample surface. Stopping power calculations were made using semi-empirical equations of Ziegler et al. and the Bragg rule.

Remarks:

- ERYA uses 1 µC for beam fluence;
- · ERYA will automatically normalize to 1 the atomic fraction

ERYA package includes:

Detector Efficiency;
 Ziegler parameters,

All these files can be changed by the user. Bug reports and suggestions are very welcome. Email me at micaelafonseca (add @fct.unl.pt).

Credits:

This code was written in collaboration with Dr. Nuno Franco.

3. Related Bibliography

- R. Mateus, A.P. Jesus, J.P. Ribeiro, Nucl. Instr. and Meth. B 229 (2005) 302.
- PhD thesis: "Análise de elementos leves por reacções nucleares com produção de radiação gama", Maria Micaela Leal da Fonseca, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (2010).
- PhD thesis: "Recolha Automática de aerossóis e a sua análise por técnicas analíticas nucleares", Rodrigo Clemente Velez Mateus, Faculdade de Ciências da Universidade de Lisboa (2003).
- J. F. Ziegler, J. P. Biersack, U. Littmark, in "The Stopping and Ranges of ions in Solids", Vol. 1, Pergamon Press, New York, 1985.
- SRIM: www.srim.org ; J.F. Ziegler, Nucl. Instr. and Meth. B219-220 (2004) 1027.
 IBANDL: http://www-nds.iaea.org/ibandl/

Conclusioni

Grazie!

