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Introduction 
• Multi-messenger era for nuclear astrophysics 

✴ Gravitational waves have (just) been detected!

✴ Supernovae neutrino will be detected by the 
current and next generation neutrino experiments

S. Zeller, ECT* Workshop, May 2012 

MiniBooNE Detector 
10 

Aguilar-Arevalo et al., NIM A599, 28 (2009) 
(inside view of MiniBooNE tank) 

•  800 tons of mineral oil  
•  ν interactions on CH2 

•  Cerenkov detector → ring imaging for event reconstruction and PID v 

• Ton-scale neutrino-oscillation and             experiments

✴ Charge-parity (CP) violating phase and the 
mass hierarchy will be measured

✴ Determine whether the neutrino is a Majorana 
or a Dirac particle

0⌫��

✴ Need for including nuclear dynamics; mean-
field models are inadequate to describe neutrino-
nucleus interaction

✴ Nuclear dynamics determine the structure and the 
cooling of neutron stars (hyperons?)



Modern nuclear physics 
•  Atomic nuclei are strongly interacting many-body systems exhibiting fascinating properties 

including: shell structure, pairing and superfluidity, deformation, and self-emerging clustering.

• The nuclear chart is fully determined by only five parameters: the up-, down- and strange-quark 
masses, the overall scale of the strong interactions and the electromagnetic coupling constant
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The MANYBODY collaboration 

Nodes:
• Bologna
• Lecce
• Pavia
• Roma 1 
• Torino
• Trento-TIFPA     

~50 Kcore/hr
~100 Kcore/hr

~120 Mcore/hr

Current computing time awards include: 
• PRACE: A unified computational protocol for QCD nuclei, 37M core hours on at CINECA 
• ALCC: Nuclear Spectra with chiral forces, 35M core hours of computing time on Theta at ANL
• INCITE: Nuclear structure and dynamics, 60M core hours of computing time on Mira at ANL

Goals of the collaboration
• Electron and neutrino interactions with nuclei
• Equation of state of dense nuclear matter and neutrino propagation in nuclear matter
• Monte Carlo techniques to compute ground- and excited-state properties of many-body systems

National PI:
Francesco Pederiva (TIFPA)



• Owing to its non-abelian character, QCD is strongly non-perturbative in its coupling constant 
at “large” distances.

• Lattice-QCD is the most reliable way of 
“solving” QCD in the low-energy regime, and 
it promises to provide a solid foundation for 
the structure of nuclei directly from QCD

Lattice QCD  
QFT in a Finite and Discretized Spacetime

Lattice Spacing :

1/Λχa << 

m⇡L >> 2⇡
Lattice Volume : 

Extrapolate to a = 0 and L =1

(Nearly Continuum)

(Nearly Infinite Volume)

Systematically remove non-QCD parts of calculation
11

• Lattice-QCD calculations of light nuclei 
are currently carried out at large values of 
the pion masses

Courtesy of M. Savage 

• This allows to understand whether Standard Model parameters might have to be finely 
tuned for nuclei to be stable

From QCD to nuclear physics 



From QCD to nuclear physics 
• Lattice-QCD inputs are essential when experimental data are scarceΛN and ΣN interactions from lattice QCD with physical masses Hidekatsu Nemura

Figure 2: Left: ΛN central potential in the 1S0 channel calculated with nearly physical point lattice QCD cal-

culation on a volume (96a)4 ≈(8.1fm)4 with the lattice spacing a≈ 0.085fm and (mπ ,mK)≈ (146,525)MeV.

Centre: ΛN −ΣN central potential in the 1S0 channel. Right: ΣN central potential in the 1S0 channel.

tion functions, (CB1(t − t0)CB2(t − t0))−1, are used to obtain the normalised four-point correlation

function instead of the simple exponential functional form e(mB1
+mB2

)(t−t0) in the actual numerical

analysis. The statistical correlation between the numerator and the denominator in the normalised

four-point correlation function maybe beneficial to reduce the statistical noise.

Fig. 1 shows the effective masses of the single baryon’s correlation function. The plateau starts

from the time slice around t − t0 ≈ 14, which suggests that the potentials should be obtained at the

time slices t − t0 >∼ 14. However, statistics is still limited. In this report we present preliminary

results at earlier time slices (t − t0 = 5−12) of our on-going work.

4.2 Central potentials of ΛN −ΣN in 1S0 channel

Fig. 2 shows the ΛN diagonal (left), ΛN → ΣN coupled-channel (centre), and ΣN (I = 1/2)

diagonal (right) potentials in the 1S0 channel. In the flavor SU(3) limit, these channels are expressed

in terms of 888s and 222777 representations, |ΛN⟩ = 1√
10
(|888s⟩+ 3|222777⟩), and |ΣN⟩ = 1√

10
(3|888s⟩− |222777⟩).

Therefore the ΛN diagonal potential is expected to be more or less similar to the NN potential in

the 1S0 channel. On the other hand, the ΣN (I = 1/2,1 S0) potential shows strong repulsive force

which is consistent with the quark model’s prediction.

4.3 Central potentials of ΛN −ΣN in 3S1 −3 D1 channel

Fig. 3 shows the ΛN diagonal (left), ΛN → ΣN coupled-channel (centre), and ΣN (I = 1/2)

Figure 3: Left: ΛN central potential in the 3S1 −3 D1 channel calculated with nearly physical point lat-

tice QCD calculation on a volume (96a)4 ≈(8.1fm)4 with the lattice spacing a ≈ 0.085fm and (mπ ,mK) ≈
(146,525)MeV. Centre: ΛN −ΣN central potential in the 3S1-3D1 channel. Right: ΣN central potential in

the 3S1-3D1 channel.
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 Nucleon-hyperon interactions  Nucleon axial form factor

H. Nemura arXiv:1702.00734 (2017)
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FIG. 9. The 8-point fit using Eq. (23) without the finite volume correction (c4 = 0) to the data for the axial radius squared hr2Ai.
The overlaid grey bands in the upper (bottom) row are fits to the single variable a (M2

⇡), i.e., ignoring possible dependence on
the other variable. The rest is the same as in Fig 8.
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FIG. 10. (Left) The data for GA(Q
2)/gA from the eight ensembles is plotted versus Q2 (GeV2). We also show the dipole

fit with the phenomenological estimates of the axial mass, MA = 1.026(21) GeV [13] (turquoise band), the miniBooNE
value MA = 1.35(17) GeV (green band), and our combined estimate MA = 1.42(12) GeV (magenta band) corresponding to
rA|dipole = 0.49(3) given in Eq. (24). The experimental data, reproduced from Ref. [13], were provided by Ulf Meissner. (Right)
A magnified view of the data and the three dipole fits in the region Q2 < 0.5 GeV2.

that the uncertainty versus M2

⇡ is reduced on neglecting
c
4

. Overall, the results of the simultaneous fits to data
obtained using the three ansatz are consistent. In Figs. 8
and 9, we also show fits versus a single variable (a or M2

⇡)
as a grey band. Given the weak dependence on a, M⇡ or
M⇡L, they give estimates that are consistent with results
of the simultaneous fits but with smaller uncertainty.

Our final estimates, using the data summarized in Ta-

ble VII for the case c
4

6= 0, are

rA|dipole = 0.49(3) fm ,

rA|z�expansion

= 0.46(6) fm ,

rA|combined

= 0.48(4) fm ,

MA|dipole = 1.39(9) GeV ,

MA|z�expansion

= 1.48(19) GeV ,

MA|combined

= 1.42(12) GeV . (24)

R. Gupta et al. PRD 96,114503 (2017)



From QCD to nuclear physics 
• At the energy regime relevant for the description of nuclei, quark and gluons are confined inside 
hadrons. Nucleons can treated as point-like particles interacting through the Hamiltonian 

H =
X

i

p2
i

2m
+

X

i<j

vij +
X

i<j<k

Vijk + . . .

• Effective field theories are the bridge between QCD and nuclear observables. They exploit the 
separation between the “hard” (M~nucleon mass) and “soft” (Q ~ exchanged momentum) scales

Lattice QCD  
QFT in a Finite and Discretized Spacetime

Lattice Spacing :

1/Λχa << 

m⇡L >> 2⇡
Lattice Volume : 

Extrapolate to a = 0 and L =1

(Nearly Continuum)

(Nearly Infinite Volume)

Systematically remove non-QCD parts of calculation
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2N Force 3N Force 4N Force

LO

(Q/⇤�)0

NLO

(Q/⇤�)2

NNLO

(Q/⇤�)3

N3LO

(Q/⇤�)4

Figure 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, and solid diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are
given in the text.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-nucleon forces are created
on an equal footing and emerge in increasing number as we go to higher and higher orders. At NNLO, the
first set of nonvanishing three-nucleon forces (3NF) occur [70, 71], cf. column ‘3N Force’ of Fig. 1. In fact, at
the previous order, NLO, irreducible 3N graphs appear already, however, it has been shown by Weinberg [52]
and others [70, 127, 128] that these diagrams all cancel. Since nonvanishing 3NF contributions happen first
at order (Q/⇤

�

)3, they are very weak as compared to 2NF which start at (Q/⇤
�

)0.
More 2PE is produced at ⌫ = 4, next-to-next-to-next-to-leading order (N3LO), of which we show only

a few symbolic diagrams in Fig. 1. Two-loop 2PE graphs show up for the first time and so does three-pion
exchange (3PE) which necessarily involves two loops. 3PE was found to be negligible at this order [57, 58].
Most importantly, 15 new contact terms ⇠ Q4 arise and are represented by the four-nucleon-leg graph with
a solid diamond. They include a quadratic spin-orbit term and contribute up to D-waves. Mainly due to
the increased number of contact terms, a quantitative description of the two-nucleon interaction up to about
300 MeV lab. energy is possible, at N3LO (for details, see below). Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF,
4NF are weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known
fact that 2NF � 3NF � 4NF . . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT
development of the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking

19



Diffusion Monte Carlo
• Diffusion Monte Carlo methods use an imaginary-time projection technique to enhance the 

ground-state component of a starting trial wave function.

• Any trial wave function can be expanded in the complete set of eigenstates of the the 
hamiltonian according to

| T i =
X

n

cn| ni H| ni = En| ni

which implies 

where    is the imaginary time. Hence, GFMC and AFDMC project out the exact lowest-energy 
state, provided the trial wave function it is not orthogonal to the ground state.

⌧

lim
⌧!1

e�(H�E0)⌧ | T i = lim
⌧!1

X

n

cn e
�(En�E0)⌧ | ni = c0| 0i



Exploiting supercomputers 

256 1,024 4,096 16,384 65,536 262,1440
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• Our QMC codes have steadily undergone development to take advantage of each new 
generation of parallel machine and was one of the first to deliver new scientific results each time.



Chapter I 

What binds nuclei 



• Since pions are very massive, the range of applicability of Pionless effective field theory (EFT) is 
larger than in the “real” world

⇡

Q

m⇡
⌧ 1

N N

N N N

N

N

N

Pionless EFT 
• We aim to study the evolution of the nuclear chart as a function of the quark-masses, which are 

input parameters of the Standard Model. 

LO NLO

/

The pionless EFT Hamiltonian is naturally formulated in momentum space

v12

V123 D0

C0 + C1�12 C2(k
2 + q2) + C3(k

2 + q2)�12



Pionless EFT potential 
The coordinate-space version of the 
potential needs is regularized as

v
r

≠
≠
≠
≠

v⇤(r12) = e�r212⇤
2/4

v12 = C1v⇤(r12) + C2v⇤(r12)�12

V123 = D0

X

cyc

v⇤(r12)v⇤(r13)

The low-energy constants are fixed on Lattice-QCD results for A<3 nuclear systems

p n nn p n

p

2H nn 3He



4He results Figure 1: (Color online) Convergence pattern of the 4He variational energy at
physical pion mass and ⇤ = 4 fm �1 as a function of the number of optimiza-
tion steps for the SR method (black squares) and the LM (blues circles). For
comparison, the red line indicates the AFDMC result.

⇤ m⇡ = 140 MeV m⇡ = 510 MeV m⇡ = 805 MeV
2 fm�1 �23.17 ± 0.02 �31.15 ± 0.02 �88.09 ± 0.01
4 fm�1 �23.63 ± 0.03 �34.88 ± 0.03 �91.40 ± 0.03
6 fm�1 �25.06 ± 0.02 �36.89 ± 0.02 �96.97 ± 0.01
8 fm�1 �26.04 ± 0.05 �37.65 ± 0.03 �101.72 ± 0.03
! 1 �30±0.3 (sys)

±2 (stat) �39±1 (sys)
±2 (stat) �124±3 (sys)

±1 (stat)

Exp. �28.30 – –
LQCD – �43.0 ± 14.4 �107.0 ± 24.2

Table 1: 4He energy for di↵erent values of the pion mass m⇡ and the cuto↵
⇤, compared to experiment and LQCD calculations [1, 2]. See main text and
appendix for details on errors and extrapolations.

the di↵erent parametrization of the variational wave functions,
the results are in very good agreement with those reported in
Ref. [7], where a simplified version of the variational wave
function was used because the LM had not been introduced
yet. For most cuto↵ values, our results also agree with those
of Ref. [9], which were obtained with the Resonating-Group
and Hyperspherical-Harmonic methods. For ⇤  6 fm�1, the
QMC results di↵er by less than 0.1 MeV from Ref. [9], while
for ⇤ = 8 fm�1 the QMC method binds 4He more deeply by
more than 1 MeV. In consequence, the extrapolated asymptotic
values di↵er. Our results display a better convergence pattern
with the cuto↵. At the physical pion mass and with the same in-
put observables, our highest-cuto↵ result is in good agreement
with the highest-cuto↵ result (cuto↵ values in the range 8 � 10
fm�1, but a di↵erent regulator function) of Ref. [15].

We found that an expansion of the type (3) up to 1/⇤2 suf-
fices to extrapolate the 4He energies for m⇡ = 140 MeV, since
the addition of a cubic term changes neither the extrapolated
value nor the best-fit coe�cients. For unphysical pion masses,
the usage of the smallest cuto↵ is questionable because ⇤ = 2
fm�1 cuts o↵ momentum modes below the pion mass. We thus
extrapolate the values appearing in the tables with the quadratic
expansion in Eq. (3) but without the result at ⇤ = 2 fm�1. In
all cases, we perform fits with and without the ⇤ = 2 fm�1

results to estimate the systematic extrapolation error. The pro-
cedure adopted for the systematic and statistical errors quoted
throughout this paper is detailed in the appendix.

It has to be remarked that this cuto↵ sensitivity study does
not account for the EFT truncation error. Using cuto↵ variation
from cuto↵ values somewhat larger than the pion mass, for ex-
ample from ⇤ = 2 fm�1, 4 fm�1, and 6 fm�1 for m⇡ = 140,
510, and 805 MeV, we might estimate the error as ±7, ±4, and
±30, respectively. Except for the intermediate pion mass, this
is consistent with the rougher dimensional-analysis estimate
QA/M ⇠ 0.3. In any case, we expect the truncation error to
dominate over the statistical and extrapolation errors.

Given the convergence of the 4He binding energy with in-
creasing cuto↵, we confirm that, for both physical [15] and un-
physical [7, 9] pion masses, LO EFT(/⇡) is renormalized cor-
rectly without the need for a four-nucleon interaction. In the
physical case, the binding energy is underestimated for all val-
ues of the cuto↵ we considered, but the extrapolated value is
in agreement with experiment even if we neglect the trunca-
tion error. Of course when the latter is taken into account we
must conclude that such a good agreement is somewhat for-
tuitous. We expect NLO corrections, including Coulomb and
two-nucleon e↵ective-range corrections, to change the result by
a few MeV. For m⇡ = 510 MeV and m⇡ = 805 MeV, our results
reproduce LQCD predictions (where Coulomb is absent) within
the measurement error over the entire cuto↵ range. As pointed
out in Refs. [7, 9], this is a non-trivial consistency check: if ei-
ther LQCD data or EFT(/⇡) were too wrong, one would expect
no such agreement. However, LQCD uncertainties are too large
at this point for us to draw a very strong conclusion.

It is interesting to study the cuto↵ dependence of the root-
mean-square (rms) point-nucleon radius

p
hr2

pti and the single-
nucleon point density ⇢pt(r). These quantities are related to the
charge density, which can be extracted from electron-nucleus
scattering data, but are not observable themselves: few-body
currents and single-nucleon electromagnetic form factors have
to be accounted for. Still, one can gain some insight into the
features of the ground-state wave function by comparing re-
sults at di↵erent pion masses and cuto↵s. Since neither

p
hr2

pti
nor ⇢pt(r) commute with the Hamiltonian, the desired expecta-
tion values on the ground-state wave function are computed by
means of “mixed” matrix elements

h 0|O| 0i ⇡ 2h T |O| 0i � h T |O| T i . (20)

In the above equation | 0i is the imaginary-time evolved state
of Eq. (4), while | T i is the trial wave function constructed as
in Eq. (5).

The results for the point-proton radius of 4He are reported in
Table 2. (Since Coulomb is absent in our calculation, the point-
nucleon and point-proton radii are the same.) In the physical
case, the calculated radius is much smaller than the empirical
value — that is, the value extracted from the experimental data
of Ref. [34] accounting for the nucleon size, but neglecting
meson-exchange currents. A similar result,

p
hr2

pti ⇡ 1 fm was
obtained by the authors of Ref. [35] using a local form of a chi-
ral interaction. NLO and N2LO potentials in a chiral expansion

6

• We found that an expansion up to 1/Λ2      
suffices to extrapolate the 4He energies 

• The truncation error dominates over the 
statistical and extrapolation errors

mπ=805 MeV mπ=510 MeV

• To minimize the regularization error, we fit 
finite-cutoff results with 

O⇤ = O +
C0
⇤

+
C1
⇤2

+ · · ·



16O results
• 16O is not stable against breakup into four 4He clusters in almost all the cases

⇤ m⇡ = 140 MeV m⇡ = 510 MeV m⇡ = 805 MeV
2 fm�1 �97.19 ± 0.06 �116.59 ± 0.08 �350.69 ± 0.05
4 fm�1 �92.23 ± 0.14 �137.15 ± 0.15 �362.92 ± 0.07
6 fm�1 �97.51 ± 0.14 �143.84 ± 0.17 �382.17 ± 0.25
8 fm�1 �100.97 ± 0.20 �146.37 ± 0.27 �402.24 ± 0.39
! 1 �115±1 (sys)

±8 (stat) �151±2 (sys)
±10 (stat) �504±20 (sys)

±12 (stat)

Exp. �127.62 – –

Table 3: 16O energy for di↵erent values of the pion mass m⇡ and the cuto↵ ⇤,
compared with experiment. (No LQCD data exist for this nucleus.) See main
text and appendix for details on errors and extrapolations.

Figure 3: (Color online) 16O single-nucleon point density for m⇡ = 140 MeV
(upper panel), m⇡ = 510 MeV (middle panel), and m⇡ = 805 MeV (lower
panel), at di↵erent values of the cuto↵ ⇤.

The analysis of the proton densities alone does not su�ce
to support the claim of clustering. Another indication of clus-
terization comes from comparing the expectation values of the
nuclear potentials evaluated in the ground states of 16O and 4He.
For instance, in the m⇡ = 140 MeV and⇤ = 8 fm�1 case it turns
out that the expectation values of the 16O two- and three-body

potentials are ' 4.05 and ' 4.16 times larger than the corre-
sponding values for 4He. The same pattern is observed for all
the combinations of pion mass and cuto↵, except for ⇤ = 2
fm�1 with m⇡ = 140 MeV and m⇡ = 510 MeV. In particular,
for ⇤ = 2 fm�1 and m⇡ = 140 MeV, the expectation values of
the two- and three-body potentials in 16O are ' 4.65 and ' 6.14
times larger than in 4He. This di↵erence is a consequence of
the fact that the number of interacting pairs and triplets is larger
when clusterization does not take place.

To better visualize the clusterization of the wave function, in
Fig. 4 we display the position of the nucleons following the
propagation of a single walker for 5000 imaginary-time steps,
corresponding to �⌧ = 0.125 MeV�1, printed every 10 steps.
In the upper panel, concerning m⇡ = 140 MeV and ⇤ = 2
fm�1, nucleons are not organized in clusters. In fact, during the
imaginary-time propagation they di↵use in the region in which
the corresponding single-nucleon density of Fig. 3 does not
vanish. A completely di↵erent scenario takes place at the same
pion mass when ⇤ = 8 fm�1: the nucleons forming the four
4He clusters remain close to the corresponding centers of mass
during the entire imaginary-time propagation. This is clear ev-
idence of clustering. It has to be noted that the relative position
of the four clusters is not a tetrahedron. To prove this, for each
configuration we computed the moment-of-inertia matrix as in
Ref. [36]. If the 4He clusters were positioned at the vertices of
a tetrahedron, diagonalization would yield only two indepen-
dent eigenvalues. Instead, we found three distinct eigenvalues,
corresponding to an ellipsoid — yet another indication of the
absence of interactions among nucleons belonging to di↵erent
4He clusters.

The non-clustered states at ⇤ = 2 fm�1 for m⇡ = 510 MeV
and m⇡ = 140 MeV deserve further comment. The state at
m⇡ = 510 MeV stands in contrast to the other states found above
threshold whose structure is clustered. We interpret this as an
artifact of the numerical method, since a perfect optimization
procedure should have produced a clustered structure resem-
bling the lower-energy state with four free 4He. While there is
no signal of 16O stability above the physical pion mass, the state
at m⇡ = 140 MeV is certainly stable at the lowest cuto↵, that
is, when the interaction has the longest range. On this basis,
one might speculate that at some pion mass above the physi-
cal one a transition from a non-clustered to a clustered state is
expected. However, such a conclusion cannot be drawn until
higher-order calculations in EFT(/⇡) — which will capture finer
e↵ects from pion exchange such as the tensor force at N2LO —
are available.

The smaller relative size of the model space leads to more
modest signs of cuto↵ convergence for 16O than 4He, which are
reflected in larger extrapolation errors, especially at m⇡ = 805
MeV. At physical pion mass, the central value of the extrap-
olated total energy is only 10% o↵ experiment, which can be
bridged by statistical and extrapolation errors. This di↵erence
is small compared to the expected truncation error, ⇠ 30%. If
there is a low-lying resonant or virtual state of 4He nuclei at

8

• The only exception occurring for mπ=140 MeV and Λ =2 fm-1, where 16O is 4.5 MeV more bound 
than four 4He nuclei. This might be related to the range of the interaction.

• Even considering only statistical and extrapolation errors the asymptotic values of the 16O energy 
cannot be separated from the four-4He threshold.

• In the other cases we miss the four-4He threshold by about 5 MeV, which is beyond our statistical 
errors and reveals a lower bound on the systematic error of our QMC method. 

�120±1.2
±8 �156±4

±8 �496±12
±44-4He threshold



Figure 1: Imaginary-time di�usion of the 16O wave function for pionless-EFT potentials at m⇡ = 510 MeV.

AFDMC calculations to extend LQCD predictions to the 16O nucleus [25]. Leading-order (LO) results indicate
that for m⇡ = 805 MeV and m⇡ = 510 MeV 16O is not stable against breakup into four 4He. The clusterization
of the 16O wave function can be appreciated in Fig. 1, where we display the position of the nucleons during the
imaginary-time evolution. The fact that nucleons forming the four 4He clusters remain close to the corresponding
centers of mass is a clear evidence of clustering. This imaginary-time propagation refers to a specific value of
the cuto� used to regularize the pionless-EFT potential, but analogous results are found for other cuto� values.
It has to be noted that, within the pionless framework, next-to-leading order (NLO) and next-to-next-to-leading
order (N2LO) terms could move 16O with respect to the four- 4He threshold.

While for m⇡ = 805 MeV and m⇡ = 510 MeV the typical nucleon momentum is small in comparison to
m⇡ , the situation is less clearcut for m⇡ ⇠ 300 MeV and for the physical pion mass, which will be reached
in forthcoming LQCD calculations. These smaller values of the pion mass are likely to be within the radius
of convergence of chiral-EFT, despite the fact that the breakdown scale is not fully understood even for the
pure mesonic sector [43] and potentials issues in establishing a proper power counting of chiral-EFT have been
highlighted [44, 45]. We plan to employ both pionless-EFT and chiral-EFT, assessing their convergence
for values of the pion mass where they are both supposed to be applicable. State-of-the-art AFDMC
calculations have shown that local chiral-EFT interactions to at least N2LO fitted on experimental data in the
NN and three-nucleon (3N) sector yield a binding energy of 16O twice as large as the experimental one [46].
There are no reasons to expect di�erent outcomes from N2LO chiral-EFT potentials fitted on LQCD data,
whereas the inclusion of N3LO contributions is likely to improve the agreement with experiments. However,
AFDMC is not suited to account for N2LO pionless-EFT and N3LO chiral-EFT contributions, as they include
strong isospin-dependent spin-orbit terms. The latter could be included in GFMC, but this method is not
applicable to nuclei as large as those belonging to the oxygen chain.

An objective of UNITT is the development of a “hybrid” QMC algorithm (HGFMC), suitable to
describe nuclei and hypernuclei as large as those of the oxygen isotopic chain with the highest level of
accuracy. The conceptual breakthrough consists in using the standard GFMC techniques for the spin degrees
of freedom, while the isospin will be sampled as in AFDMC. HGFMC wave functions will contain significantly
fewer components than that of the GFMC, implying a reduction by a factor of 924 for 12C and by a factor of
12, 870 for 16O in the complexity of the calculation without compromising the accuracy of the results. HGFMC
will enable to perform the first accurate study of the oxygen isotopic chain as a function of the pion mass,
elucidating the very nature of nuclear binding. Emphasis will be posed on the role of three-neutron forces, for
which LQCD inputs are fundamental since they are poorly constrained by experiments on light nuclear systems.
Comparing HGFMC results with experimental data from the exotic beam facilities will foster our understanding
of their behavior in neutron stars and their impact on gravitational-wave signals.

In an e�ort in which I played a key role, we used AFDMC to calculate the equation of state and the neutron
star mass-radius relation of an infinite system of neutrons and ⇤ particles [49]. We considered two di�erent
parametrization of the ⇤NN force that successfully describe the binding energies of medium-mass hypernuclei.

3

16O results at mπ=510 MeV

⇤ m⇡ = 140 MeV m⇡ = 510 MeV m⇡ = 805 MeV
2 fm�1 �97.19 ± 0.06 �116.59 ± 0.08 �350.69 ± 0.05
4 fm�1 �92.23 ± 0.14 �137.15 ± 0.15 �362.92 ± 0.07
6 fm�1 �97.51 ± 0.14 �143.84 ± 0.17 �382.17 ± 0.25
8 fm�1 �100.97 ± 0.20 �146.37 ± 0.27 �402.24 ± 0.39
! 1 �115±1 (sys)

±8 (stat) �151±2 (sys)
±10 (stat) �504±20 (sys)

±12 (stat)

Exp. �127.62 – –

Table 3: 16O energy for di↵erent values of the pion mass m⇡ and the cuto↵ ⇤,
compared with experiment. (No LQCD data exist for this nucleus.) See main
text and appendix for details on errors and extrapolations.

Figure 3: (Color online) 16O single-nucleon point density for m⇡ = 140 MeV
(upper panel), m⇡ = 510 MeV (middle panel), and m⇡ = 805 MeV (lower
panel), at di↵erent values of the cuto↵ ⇤.

The analysis of the proton densities alone does not su�ce
to support the claim of clustering. Another indication of clus-
terization comes from comparing the expectation values of the
nuclear potentials evaluated in the ground states of 16O and 4He.
For instance, in the m⇡ = 140 MeV and⇤ = 8 fm�1 case it turns
out that the expectation values of the 16O two- and three-body

potentials are ' 4.05 and ' 4.16 times larger than the corre-
sponding values for 4He. The same pattern is observed for all
the combinations of pion mass and cuto↵, except for ⇤ = 2
fm�1 with m⇡ = 140 MeV and m⇡ = 510 MeV. In particular,
for ⇤ = 2 fm�1 and m⇡ = 140 MeV, the expectation values of
the two- and three-body potentials in 16O are ' 4.65 and ' 6.14
times larger than in 4He. This di↵erence is a consequence of
the fact that the number of interacting pairs and triplets is larger
when clusterization does not take place.

To better visualize the clusterization of the wave function, in
Fig. 4 we display the position of the nucleons following the
propagation of a single walker for 5000 imaginary-time steps,
corresponding to �⌧ = 0.125 MeV�1, printed every 10 steps.
In the upper panel, concerning m⇡ = 140 MeV and ⇤ = 2
fm�1, nucleons are not organized in clusters. In fact, during the
imaginary-time propagation they di↵use in the region in which
the corresponding single-nucleon density of Fig. 3 does not
vanish. A completely di↵erent scenario takes place at the same
pion mass when ⇤ = 8 fm�1: the nucleons forming the four
4He clusters remain close to the corresponding centers of mass
during the entire imaginary-time propagation. This is clear ev-
idence of clustering. It has to be noted that the relative position
of the four clusters is not a tetrahedron. To prove this, for each
configuration we computed the moment-of-inertia matrix as in
Ref. [36]. If the 4He clusters were positioned at the vertices of
a tetrahedron, diagonalization would yield only two indepen-
dent eigenvalues. Instead, we found three distinct eigenvalues,
corresponding to an ellipsoid — yet another indication of the
absence of interactions among nucleons belonging to di↵erent
4He clusters.

The non-clustered states at ⇤ = 2 fm�1 for m⇡ = 510 MeV
and m⇡ = 140 MeV deserve further comment. The state at
m⇡ = 510 MeV stands in contrast to the other states found above
threshold whose structure is clustered. We interpret this as an
artifact of the numerical method, since a perfect optimization
procedure should have produced a clustered structure resem-
bling the lower-energy state with four free 4He. While there is
no signal of 16O stability above the physical pion mass, the state
at m⇡ = 140 MeV is certainly stable at the lowest cuto↵, that
is, when the interaction has the longest range. On this basis,
one might speculate that at some pion mass above the physi-
cal one a transition from a non-clustered to a clustered state is
expected. However, such a conclusion cannot be drawn until
higher-order calculations in EFT(/⇡) — which will capture finer
e↵ects from pion exchange such as the tensor force at N2LO —
are available.

The smaller relative size of the model space leads to more
modest signs of cuto↵ convergence for 16O than 4He, which are
reflected in larger extrapolation errors, especially at m⇡ = 805
MeV. At physical pion mass, the central value of the extrap-
olated total energy is only 10% o↵ experiment, which can be
bridged by statistical and extrapolation errors. This di↵erence
is small compared to the expected truncation error, ⇠ 30%. If
there is a low-lying resonant or virtual state of 4He nuclei at
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mπ=510 MeV

Figure 3: (Color online) 16O single-nucleon point density for m⇡ = 140 MeV
(upper panel), m⇡ = 510 MeV (middle panel), and m⇡ = 805 MeV (lower
panel), at di↵erent values of the cuto↵ ⇤.

when clusterization does not take place.
To better visualize the clusterization of the wave function, in

Fig. 4 we display the position of the nucleons following the
propagation of a single walker for 5000 imaginary-time steps,
corresponding to �⌧ = 0.125 MeV�1, printed every 10 steps.
In the upper panel, concerning m⇡ = 140 MeV and ⇤ = 2
fm�1, nucleons are not organized in clusters. In fact, during the
imaginary-time propagation they di↵use in the region in which
the corresponding single-nucleon density of Fig. 3 does not
vanish. A completely di↵erent scenario takes place at the same
pion mass when ⇤ = 8 fm�1: the nucleons forming the four
4He clusters remain close to the corresponding centers of mass
during the entire imaginary-time propagation. This is clear ev-
idence of clustering. It has to be noted that the relative position
of the four clusters is not a tetrahedron. To prove this, for each
configuration we computed the moment-of-inertia matrix as in
Ref. [32]. If the 4He clusters were positioned at the vertices of
a tetrahedron, diagonalization would yield only two indepen-
dent eigenvalues. Instead, we found three distinct eigenvalues,
corresponding to an ellipsoid — yet another indication of the

Figure 4: (Color online) Imaginary-time di↵usion with time step �⌧ = 0.125
MeV�1 of a single walker for m⇡ = 140 MeV, at ⇤ = 2 fm�1 (upper panel) and
⇤ = 8 fm�1 (lower panel).

absence of interactions among nucleons belonging to di↵erent
4He clusters.

The non-clustered states at ⇤ = 2 fm�1 for m⇡ = 510 MeV
and m⇡ = 140 MeV deserve further comment. The state at
m⇡ = 510 MeV stands in contrast to the other states found above
threshold whose structure is clustered. We interpret this as an
artifact of the numerical method, since a perfect optimization
procedure should have produced a clustered structure resem-
bling the lower-energy state with four free 4He. While there is
no signal of 16O stability above the physical pion mass, the state
at m⇡ = 140 MeV is certainly stable at the lowest cuto↵, that
is, when the interaction has the longest range. On this basis,
one might speculate that at some pion mass above the physi-
cal one a transition from a non-clustered to a clustered state is
expected. However, such a conclusion cannot be drawn until
higher-order calculations in EFT(/⇡) — which will capture finer
e↵ects from pion exchange such as the tensor force at N2LO —
are available.

The smaller relative size of the model space leads to more
modest signs of cuto↵ convergence for 16O than 4He, which are
reflected in larger extrapolation errors, especially at m⇡ = 805
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Λ=2 fm-1

Λ=8 fm-1

• Bound 16O: during the imaginary-time 
propagation nucleons diffuse in the region 
where the single-nucleon density is large

• Unbound 16O: the nucleons forming the 
four 4He clusters remain close to the 
corresponding centers of mass

L. Contessi et al. / Physics Letters B 772 (2017) 839–848 845

Table 3
16O energy for different values of the pion mass mπ and the cutoff ", compared 
with experiment. (No LQCD data exist for this nucleus.) See main text and appendix 
for details on errors and extrapolations.

" mπ = 140 MeV mπ = 510 MeV mπ = 805 MeV

2 fm−1 −97.19 ± 0.06 −116.59 ± 0.08 −350.69 ± 0.05
4 fm−1 −92.23 ± 0.14 −137.15 ± 0.15 −362.92 ± 0.07
6 fm−1 −97.51 ± 0.14 −143.84 ± 0.17 −382.17 ± 0.25
8 fm−1 −100.97 ± 0.20 −146.37 ± 0.27 −402.24 ± 0.39
→ ∞ −115±1 (sys)

±8 (stat) −151±2 (sys)
±10 (stat) −504±20 (sys)

±12 (stat)

Exp. −127.62 – –

cases the maximum values are 2.1 fm−3 and 2.2 fm−3, respec-
tively.

The similarity between 4He ground-state properties at mπ =
510 MeV and those at the physical pion mass exists despite dif-
ferences in the structure of lighter systems. If confirmed for other 
properties of 4He and heavier nuclei, this semblance would mean 
that simulations at intermediate pion masses could provide useful 
insights into the physical world while saving substantial computa-
tional resources.

In Table 3 the 16O ground-state energies are reported for the 
same pion-mass and cutoff values considered for 4He. A strik-
ing feature is that 16O is not stable against breakup into four 
4He clusters in almost all the cases, the only exception occur-
ring for mπ = 140 MeV and " = 2 fm−1, where 16O is 4.5 MeV 
more bound than four 4He nuclei. In the other cases we miss the 
four-4He threshold by about 5 MeV, which is beyond our statisti-
cal errors and reveals a lower bound on the systematic error of our 
QMC method.

Even considering only statistical and extrapolation errors the 
asymptotic values of the 16O energy cannot be separated from 
the four-4He threshold. The proximity of the threshold suggests 
that the structure of our 16O should be clustered. Indeed, despite 
no explicit clustering being enforced in the trial wave function, 
the highly efficient optimization procedure arranges the two- and 
three-body Jastrow correlations, as well as the orbital radial func-
tions, in such a way as to favor configurations characterized by 
four independent 4He clusters.

The single-proton density profiles displayed in Fig. 3 indicate 
that only for " = 2 fm−1 with mπ = 140 MeV and mπ = 510 MeV 
are the nucleons distributed according to the classic picture of 
a bound wave function. For all the other combinations of pion 
masses and cutoffs, nucleons are pushed away from the center of 
the nucleus, which is basically empty — the density at the ori-
gin is a minuscule fraction of the peak — until ≃ 2 fm from the 
center of mass. The erratic behavior of the peak position of the 
density profiles as a function of the cutoff has to be ascribed to the 
fact that the relative position of the four 4He clusters is practically 
unaffected by the cutoff value. In fact, once the clusters are suffi-
ciently apart, a landscape of degenerate minima in the variational 
energy emerges. Hence, the single-proton densities correspond to 
wave functions that, despite potentially significantly different, lead 
to almost identical variational energies. In contrast, the width of 
the peaks decreases with increasing cutoff in step with the shrink-
ing of the individual 4He clusters reported in Table 2.

The analysis of the proton densities alone does not suffice to 
support the claim of clustering. Another indication of clusteriza-
tion comes from comparing the expectation values of the nuclear 
potentials evaluated in the ground states of 16O and 4He. For in-
stance, in the mπ = 140 MeV and " = 8 fm−1 case it turns out 
that the expectation values of the 16O two- and three-body poten-
tials are ≃ 4.05 and ≃ 4.16 times larger than the corresponding 
values for 4He. The same pattern is observed for all the com-
binations of pion mass and cutoff, except for " = 2 fm−1 with 

Fig. 3. (Color online) 16O single-nucleon point density for mπ = 140 MeV (upper 
panel), mπ = 510 MeV (middle panel), and mπ = 805 MeV (lower panel), at differ-
ent values of the cutoff ".

mπ = 140 MeV and mπ = 510 MeV. In particular, for " = 2 fm−1

and mπ = 140 MeV, the expectation values of the two- and three-
body potentials in 16O are ≃ 4.65 and ≃ 6.14 times larger than in 
4He. This difference is a consequence of the fact that the number 
of interacting pairs and triplets is larger when clusterization does 
not take place.

To better visualize the clusterization of the wave function, in 
Fig. 4 we display the position of the nucleons following the prop-
agation of a single walker for 5000 imaginary-time steps, corre-
sponding to #τ = 0.125 MeV−1, printed every 10 steps. In the 
upper panel, concerning mπ = 140 MeV and " = 2 fm−1, nucleons 
are not organized in clusters. In fact, during the imaginary-time 
propagation they diffuse in the region in which the correspond-
ing single-nucleon density of Fig. 3 does not vanish. A completely 
different scenario takes place at the same pion mass when " =
8 fm−1: the nucleons forming the four 4He clusters remain close 
to the corresponding centers of mass during the entire imaginary-
time propagation. This is clear evidence of clustering. It has to be 
noted that the relative position of the four clusters is not a tetra-
hedron. To prove this, for each configuration we computed the 
moment-of-inertia matrix as in Ref. [36]. If the 4He clusters were 
positioned at the vertices of a tetrahedron, diagonalization would 
yield only two independent eigenvalues. Instead, we found three 
distinct eigenvalues, corresponding to an ellipsoid — yet another 
indication of the absence of interactions among nucleons belong-
ing to different 4He clusters.

L. Contessi, AL et al., PLB 772, 839 (2017)



Chapter II 

Neutrino-nucleus scattering 



The Argonne v18 is a finite, local, configuration-space potential controlled by ~4300 np and pp 
scattering data below 350 MeV of the Nijmegen database

Phenomenological Hamiltonian and currents 
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Three-nucleon interactions effectively include the lowest nucleon excitation, the ∆(1232) resonance, 
end other nuclear effects

 The nuclear electromagnetic current is constrained by the continuity equation

r · JEM + i[H, J0
EM] = 0
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Quantum Monte Carlo methods 



Lepton-nucleus scattering 
The inclusive cross section of the process in which a lepton scatters off a nucleus can be written 
in terms of five response functions
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• The response functions contain all the information on target structure and dynamics
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• In the electromagnetic case only the longitudinal  
and the transverse  response functions contribute
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X

f
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• They account for initial state correlations, final state correlations and two-body currents
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At finite imaginary time the contributions from 
large energy transfer are quickly suppressed

Euclidean response function 
Valuable information on the energy 
dependence of the response functions can 
be inferred from their Laplace transforms

The system is first heated up by the transition operator.

Its cooling determines the Euclidean response of the system

Quantum Monte Carlo

Zero Temperature

 0 = exp [�H⌧ ]  T
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Diffusion Branching
In nuclear physics, we have a!
set of amplitudes for each spin !
and isospin

Brownian motion
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Same technique used in Lattice QCD, condensed 
matter physics…



• We inverted the electromagnetic Euclidean response of 12C

12C electromagnetic response 

• Very good agreement with the experimental data once two-body currents are accounted for

q=570 MeV

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

3

FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!+
el

d! e�!⌧ R↵(q,!)

[Gp
E(q,!)]

2

, (2)

where Gp
E(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!

el

is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵(q)e

�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,
(3)

where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E(q,!) [15]. The
calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E

0

) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?
f � E

0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O

1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O

1b and
GFMC-O

1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E
0

) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E

0

and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

AL et al. PRL 117 082501 (2016)AL et al. PRL 117 082501 (2016)



• Recently, we were able to invert the neutral-current Euclidean responses of 12C

12C neutral-current response 

q=570 MeV

AL et al. arXiv:1711.02047 (2017)



Chapter III 

Hyperons in neutron stars 



Diffusion Monte Carlo: hyperons
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• The interactions between hyperons and nucleons play a fundamental role in the softening of the 
Equation of State and the consequent reduction of the neutron star maximum mass.

D. Lonardoni, AL et al. PRL 114, 092301 (2015)



Diffusion Monte Carlo: hyperons
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• We have recently implemented Lattice-QCD 
hyperon-nucleon interactions. Our preliminary 
results are promising
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• The two-body currents enhancement is effective in the entire energy transfer domain.

Conclusions 

• The onset of hyperons in neutron stars largely depends upon the hyperon-nucleon interaction

• Two-body current contributions enhance the longitudinal and transverse axial responses, 
plausible solution of the “axial mass puzzle”. 

• Our results for the 4He binding energy are in agreement with LQCD calculations

• At large pion mass, 16O is unstable with respect to break-up into four 4He nuclei. 

• The long-range structure of the interaction is deficient

Nuclei from Lattice-QCD

Neutrino-nucleus scattering

Hyperons in neutron stars

• Lattice-QCD data supplement the scarce experimental inputs that is currently available



Thank you
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In chiral-EFT, the symmetries of quantum chromodynamics, in particular its approximate chiral 
symmetry, are employed to systematically constrain classes of Lagrangians describing the 
interactions of baryons with pions and the interactions of these hadrons with electroweak fields 


Chiral EFT 

2N LO

N LO3

NLO

LO

3N force 4N force2N force

)LJXUH ��� 'LDJUDPV WKDW JLYH ULVH WR QXFOHDU IRUFHV LQ &K()7 EDVHG RQ :HLQEHUJ¶V SRZHU FRXQWLQJ�
6ROLG DQG GDVKHG OLQHV GHQRWH QXFOHRQV DQG SLRQV� UHVSHFWLYHO\� 6ROLG GRWHV� ILOOHG FLUFOHV DQG ILOOHG
VTXDUHV DQG FURVVHG VTXDUHV UHIHU WR YHUWLFHV ZLWK ∆i = 0, 1, 2 DQG 4� UHVSHFWLYHO\�

7KH TXDQWLW\ κi ZKLFK HQWHUV WKLV H[SUHVVLRQ LV QRWKLQJ EXW WKH FDQRQLFDO ILHOG GLPHQVLRQ RI D YHUWH[ RI
W\SH i �XS WR WKH DGGLWLRQDO FRQVWDQW −4� DQG JLYHV WKH LQYHUVH PDVV GLPHQVLRQ RI WKH FRUUHVSRQGLQJ
FRXSOLQJ FRQVWDQW� ,Q IDFW� WKLV UHVXOW FDQ EH REWDLQHG LPPHGLDWHO\ E\ FRXQWLQJ LQYHUVH SRZHUV RI WKH
KDUG VFDOH Λχ UDWKHU WKDQ SRZHUV RI WKH VRIW VFDOH Q �ZKLFK LV� RI FRXUVH� FRPSOHWHO\ HTXLYDOHQW��
,QGHHG� VLQFH WKH RQO\ ZD\ IRU WKH KDUG VFDOH WR EH JHQHUDWHG LV WKURXJK WKH SK\VLFV EHKLQG WKH /(&V�
WKH SRZHU ν LV MXVW WKH QHJDWLYH RI WKH RYHUDOO PDVV GLPHQVLRQ RI DOO /(&V� 7KH DGGLWLRQDO IDFWRU −2
LQ (T� ������� LV D FRQYHQWLRQ WR HQVXUH WKDW WKH FRQWULEXWLRQV WR WKH QXFOHDU IRUFH VWDUW DW ν = 0�
, HQFRXUDJH WKH UHDGHU WR YHULI\ WKH HTXLYDOHQFH RI (TV� ������� DQG ������� IRU VSHFLILF GLDJUDPV�
2QH LPPHGLDWHO\ UHDGV RII IURP (T� ������� WKDW LQ RUGHU IRU SHUWXUEDWLRQ WKHRU\ WR ZRUN� WKH HIIHFWLYH
/DJUDQJLDQ PXVW FRQWDLQ QR UHQRUPDOL]DEOH DQG VXSHU�UHQRUPDOL]DEOH LQWHUDFWLRQV ZLWK κi = 0 DQG
κi < 0� UHVSHFWLYHO\� VLQFH RWKHUZLVH DGGLQJ QHZ YHUWLFHV ZRXOG QRW LQFUHDVH RU HYHQ ORZHU WKH FKLUDO
GLPHQVLRQ ν� 7KLV IHDWXUH LV JXDUDQWHHG E\ WKH VSRQWDQHRXVO\ EURNHQ FKLUDO V\PPHWU\ RI 4&' ZKLFK
HQVXUHV WKDW RQO\ QRQ�UHQRUPDOL]DEOH LQWHUDFWLRQV HQWHU WKH HIIHFWLYH /DJUDQJLDQ�

:KLOH (T� ������� GRHV QRW VD\ PXFK DERXW WKH WRSRORJ\ DQG LV� WKHUHIRUH� QRW SDUWLFXODUO\ XVHIXO WR
GHDO ZLWK GLDJUDPV� LW LV YHU\ FRQYHQLHQW IRU DOJHEUDLFDO FDOFXODWLRQV� ,Q IDFW� LW IRUPDOO\ UHGXFHV WKH

��

Chiral EFT 

NN potential NNN potential NNNN potential 

In chiral-EFT, the symmetries of quantum chromodynamics, in particular its approximate chiral 
symmetry, are employed to systematically constrain classes of Lagrangians describing the interactions 
of baryons with pions as well as the interactions of these hadrons with electroweak fields



   -full local chiral potential�
We have complemented the historical “Argonne” approach by considering a local chiral     -full 
potential giving an excellent fit to the NN scattering data that can be readily used in QMC.
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FIG. 1. (Color online) S-wave, P-wave, and D-wave phase shifts for np (in T=0 and 1 states)

and pp, obtained in the Nijmegen [36, 37], Gross and Stadler [52], and Granada [39] PWA’s, are

compared to those of models a, b, and c, indicated by the band. The left (right) panels show phase

shifts up to 125 (200) MeV lab energy.

Gross-Stadler [52] groups. The recent Gross and Stadler’s PWA is limited to np data only.

In Fig. 2, the np (top panels) and pp (lower panel) S-wave, P-wave, and D-wave phase

shifts are displayed for model b up to 125 MeV lab energy order-by-order in the chiral

expansion. Dashed (blue), dash-dotted (green), double-dash-dotted (magenta), and solid

(red) lines represent the results at LO, NLO, N2LO and N3LO, respectively. Of course, the

description of the phase shifts improves substantially, as one progresses from LO to N3LO.
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FIG. 1. (Color online) S-wave, P-wave, and D-wave phase shifts for np (in T=0 and 1 states)

and pp, obtained in the Nijmegen [36, 37], Gross and Stadler [52], and Granada [39] PWA’s, are

compared to those of models a, b, and c, indicated by the band. The left (right) panels show phase

shifts up to 125 (200) MeV lab energy.

Gross-Stadler [52] groups. The recent Gross and Stadler’s PWA is limited to np data only.

In Fig. 2, the np (top panels) and pp (lower panel) S-wave, P-wave, and D-wave phase

shifts are displayed for model b up to 125 MeV lab energy order-by-order in the chiral

expansion. Dashed (blue), dash-dotted (green), double-dash-dotted (magenta), and solid

(red) lines represent the results at LO, NLO, N2LO and N3LO, respectively. Of course, the

description of the phase shifts improves substantially, as one progresses from LO to N3LO.
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• Consistent MEC being constructed 

• Reliable theoretical uncertainty estimation

• Closer connection with QCD

model order ELab (MeV) Npp+np �2/datum

b LO 0–125 2558 59.88

b NLO 0–125 2648 2.18

b N2LO 0–125 2641 2.32

b N3LO 0–125 2665 1.07

a N3LO 0–125 2668 1.05

c N3LO 0–125 2666 1.11

ea N3LO 0–200 3698 1.37

eb N3LO 0–200 3695 1.37

ec N3LO 0–200 3693 1.40

a N3LO 0–200 3690 2.41

b N3LO 0–200 3679 3.76

c N3LO 0–200 3679 4.52

TABLE I: Total �2/datum for model a (ã) with (RL, RS) = (1.2, 0.8) fm, model b (b̃) with (1.0, 0.7)

fm, and model c (c̃) with (0.8, 0.6) fm fitted up to 125 (200) MeV laboratory energy. For model

b, results of the fits up to 125 MeV order by order in the chiral expansion are also given; Npp+np

denotes the total number of pp and np data, including observables and normalizations.

LO and NLO and from N2LO and N3LO. However, the quality of the fit worsens slightly

in going from NLO to N2LO. At N2LO we fixed the chiral LECs, namely c1, c2, c3, c4 and

b3 + b8, from the ⇡N scattering analysis of Ref. [28]. In the range 0–125 MeV, the total

�2/datum at N3LO are 1.05, 1.07, 1.11 for models a, b, and c, respectively; while in the

range 0–200 MeV the total �2/datum at N3LO are 1.37, 1.37, 1.40. The total �2/datum at

N3LO for models a, b, and c when compared (without refitting) to the 0–200 MeV database

are 2.41, 3.76, 4.52, respectively. In both energy ranges, the quality of the fits deteriorates

slightly as the (RL, RS) cuto↵s are reduced from the values (1.2,0.8) fm of model a down to

(0.8,0.6) fm of model c.

The fitted values of the LECs corresponding to models a, b, c and ea, eb, ec are listed in

Tables II and III, respectively. The values for the ⇡N LECs in the OPE and TPE terms of

these models are given in Table I of Ref. [50].
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   -full local chiral potential�
The experimental A≤12 ground- and excited state energies are very well reproduced by the local          

    -full NN+NNN chiral interaction �

M. Piarulli, et al. PRL (in press)

FIG. 3. Spectra of A=4–12 nuclei. The energy spectra obtained with the NV2+3-Ia chi-

ral interactions are compared to experimental data. Also shown are results obtained with the

phenomenological AV18+IL7 interactions.
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The linear method 
• Automatic optimization techniques have been introduced in VMC and CVMC by Maria 
Piarulli and Diego Lonardoni 

• The linear method allows us to deal with a much larger number of variational parameters

Figure 1: (Color online) Convergence pattern of the 4He variational energy at
physical pion mass and ⇤ = 4 fm �1 as a function of the number of optimiza-
tion steps for the SR method (black squares) and the LM (blues circles). For
comparison, the red line indicates the AFDMC result.

⇤ m⇡ = 140 MeV m⇡ = 510 MeV m⇡ = 805 MeV
2 fm�1 �23.17 ± 0.02 �31.15 ± 0.02 �88.09 ± 0.01
4 fm�1 �23.63 ± 0.03 �34.88 ± 0.03 �91.40 ± 0.03
6 fm�1 �25.06 ± 0.02 �36.89 ± 0.02 �96.97 ± 0.01
8 fm�1 �26.04 ± 0.05 �37.65 ± 0.03 �101.72 ± 0.03
! 1 �30±0.3 (sys)

±2 (stat) �39±1 (sys)
±2 (stat) �124±3 (sys)

±1 (stat)

Exp. �28.30 – –
LQCD – �43.0 ± 14.4 �107.0 ± 24.2

Table 1: 4He energy for di↵erent values of the pion mass m⇡ and the cuto↵
⇤, compared to experiment and LQCD calculations [1, 2]. See main text and
appendix for details on errors and extrapolations.

the di↵erent parametrization of the variational wave functions,
the results are in very good agreement with those reported in
Ref. [7], where a simplified version of the variational wave
function was used because the LM had not been introduced
yet. For most cuto↵ values, our results also agree with those
of Ref. [9], which were obtained with the Resonating-Group
and Hyperspherical-Harmonic methods. For ⇤  6 fm�1, the
QMC results di↵er by less than 0.1 MeV from Ref. [9], while
for ⇤ = 8 fm�1 the QMC method binds 4He more deeply by
more than 1 MeV. In consequence, the extrapolated asymptotic
values di↵er. Our results display a better convergence pattern
with the cuto↵. At the physical pion mass and with the same in-
put observables, our highest-cuto↵ result is in good agreement
with the highest-cuto↵ result (cuto↵ values in the range 8 � 10
fm�1, but a di↵erent regulator function) of Ref. [15].

We found that an expansion of the type (3) up to 1/⇤2 suf-
fices to extrapolate the 4He energies for m⇡ = 140 MeV, since
the addition of a cubic term changes neither the extrapolated
value nor the best-fit coe�cients. For unphysical pion masses,
the usage of the smallest cuto↵ is questionable because ⇤ = 2
fm�1 cuts o↵ momentum modes below the pion mass. We thus
extrapolate the values appearing in the tables with the quadratic
expansion in Eq. (3) but without the result at ⇤ = 2 fm�1. In
all cases, we perform fits with and without the ⇤ = 2 fm�1

results to estimate the systematic extrapolation error. The pro-
cedure adopted for the systematic and statistical errors quoted
throughout this paper is detailed in the appendix.

It has to be remarked that this cuto↵ sensitivity study does
not account for the EFT truncation error. Using cuto↵ variation
from cuto↵ values somewhat larger than the pion mass, for ex-
ample from ⇤ = 2 fm�1, 4 fm�1, and 6 fm�1 for m⇡ = 140,
510, and 805 MeV, we might estimate the error as ±7, ±4, and
±30, respectively. Except for the intermediate pion mass, this
is consistent with the rougher dimensional-analysis estimate
QA/M ⇠ 0.3. In any case, we expect the truncation error to
dominate over the statistical and extrapolation errors.

Given the convergence of the 4He binding energy with in-
creasing cuto↵, we confirm that, for both physical [15] and un-
physical [7, 9] pion masses, LO EFT(/⇡) is renormalized cor-
rectly without the need for a four-nucleon interaction. In the
physical case, the binding energy is underestimated for all val-
ues of the cuto↵ we considered, but the extrapolated value is
in agreement with experiment even if we neglect the trunca-
tion error. Of course when the latter is taken into account we
must conclude that such a good agreement is somewhat for-
tuitous. We expect NLO corrections, including Coulomb and
two-nucleon e↵ective-range corrections, to change the result by
a few MeV. For m⇡ = 510 MeV and m⇡ = 805 MeV, our results
reproduce LQCD predictions (where Coulomb is absent) within
the measurement error over the entire cuto↵ range. As pointed
out in Refs. [7, 9], this is a non-trivial consistency check: if ei-
ther LQCD data or EFT(/⇡) were too wrong, one would expect
no such agreement. However, LQCD uncertainties are too large
at this point for us to draw a very strong conclusion.

It is interesting to study the cuto↵ dependence of the root-
mean-square (rms) point-nucleon radius

p
hr2

pti and the single-
nucleon point density ⇢pt(r). These quantities are related to the
charge density, which can be extracted from electron-nucleus
scattering data, but are not observable themselves: few-body
currents and single-nucleon electromagnetic form factors have
to be accounted for. Still, one can gain some insight into the
features of the ground-state wave function by comparing re-
sults at di↵erent pion masses and cuto↵s. Since neither

p
hr2

pti
nor ⇢pt(r) commute with the Hamiltonian, the desired expecta-
tion values on the ground-state wave function are computed by
means of “mixed” matrix elements

h 0|O| 0i ⇡ 2h T |O| 0i � h T |O| T i . (20)

In the above equation | 0i is the imaginary-time evolved state
of Eq. (4), while | T i is the trial wave function constructed as
in Eq. (5).

The results for the point-proton radius of 4He are reported in
Table 2. (Since Coulomb is absent in our calculation, the point-
nucleon and point-proton radii are the same.) In the physical
case, the calculated radius is much smaller than the empirical
value — that is, the value extracted from the experimental data
of Ref. [34] accounting for the nucleon size, but neglecting
meson-exchange currents. A similar result,

p
hr2

pti ⇡ 1 fm was
obtained by the authors of Ref. [35] using a local form of a chi-
ral interaction. NLO and N2LO potentials in a chiral expansion

6

• In recent AFDMC calculations the stochastic reconfiguration (SR) method has been adopted. 


