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Introduction
Why Machine Learning?

Large Variety of uses: spam filters, personalized ads, shopping assistance, face
recognition, Health Sciences, . . . . [Domany, session 1]

In general: pattern recognition, classification.

Algorithms: (deep) neural networks, support vector machines, . . .

Many ready to use libraries in a variety of programming languages: scikit-learn,
tensorFlow, Theano, . . . . [Chang, Chih-Chung and Lin, Chih-Jen, 2011]

Several studies of ML applied to the study of phase transition are already present
in the litterature. [Melko, Rogers, Carrasquilla and many others]
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Introduction
Summary

Our question. . .

Can we obtain the critical indices and critical temperature of the 2D Ising model using
a Support Vector Machine?

We make only one assumption: that there is a (second order) phase transition
somewhere in T .

We choose to study the 2D Ising model because it is exactly solved and critical
slowing down can be overcome with cluster algorithms. see for example [Wolff, ’89]

We want to use one of the simplest and most transparent example of supervised
learning algorithm: a Support Vector Machine. [V. N. Vapnik, A. Y. Chervonenkis ’63]

We perform the standard multihistogram analysis on data obtained from
simulation to compare with our results. [Ferrenberg, Swenden ’88]

D. V. Quantitative machine learning study of the critical 2D Ising model



Introduction
Support Vector Machines

The 2D Ising model
Conclusion and Outlook

Linear SVM

Statement of the problem

Given a set of training data

(~x1, y1), (~x2, y2), · · · , (~xN , yN) (1)

where ~xi ∈ Rp and yi = ±1 labels the class. We want our machine f to classify any
additional data set we feed it

f (~xN+1) = yN+1 (2)

Support Vector Machine

The SVM method seeks to find the maximum margin hyperplane defined by

~ω · ~x − b = 0 (3)

that has the largest possible distance from either of the two classes:

~ω is the normal to the plane in Rp .

b/||~ω|| is the offset with respect to the origin.
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Linear Classification

If the samples are linearly classificable, they are separated by a margin, bounded by
the planes defined by

~ω · ~x − b = −1, ~ω · ~x − b = 1 (4)

The margin has size 2/||~ω||.
On either side of the margin,

yi (~ω · ~x − b) ≥ 1.

Samples on the margin define the
support vectors.

For a sample that falls into the margin

yi (~ω · ~x − b) ≤ 1.

Solution

The problem is solved once ~ω and b are found. Then

f (~x) = sign (d (~x))

provides the classification, where d(~x) = ~ω · ~x − b is the decision function.
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SVM as a minimization problem

Primal problem

Minimize L,

L =
1

2
||~ω||2 + C

N∑
i=1

ζi +
N∑
i=1

αi (1− yi (~ω · ~xi − b))−
N∑
i=1

γiζi (5)

where αi , γi are Lagrange multipliers, and C is a regularization parameter.

Dual problem

Minimizing L w.r.t ~ω, b and ζi yelds the quadratic program

min
α

1

2
αTHα− αT e

s. t. αT y = 0, 0 ≤ αi ≤ C

where now ~ω =
∑

i yiαi~xi and
Hij = yiyj ~xi · ~xj (6)
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Nonlinear classification
Feature mapping

In some cases, problems that don’t accept a linear classification in ~xi might accept one
in φ(~xi ) in some other space. The calculations are the same and lead to

min
α

1

2
αTHα− αT e

s. t. αT y = 0, 0 ≤ αi ≤ C

where now ~ω =
∑

i yiαi φ(~xi ) and

Hij = yiyj K
(
xi , xj

)
(7)

where K = φ(~xi ) · φ(~xj ) is the kernel.
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Nonlinear classification
To help intuition. . .

A polynomial kernel of degree d , K = (co + ~xi · ~xj )d produces as features the d
point correlation functions of the system. For example, for d = 2

φ(~x) = (x2
1 , · · · , x2

L2 ,
√

2 x0x1, · · · ,
√

2 xL2−1xL2 ) (8)

The decision function is now

d(~x) =
N∑
i=1

yiαiK (~xi , ~x)− b (9)

Its sign determines the classification, its value is the distance of φ(~x) from the
maximum margin hyperplane.

The accuracy of classification can be computed for a sample for which the
labeling is known,

acck =
# correctly classified with label k

# total data in sample
(10)
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The analysis with SVM
Comparison

The 2D Ising model
Definition and Numerical setup

The (ferromagnetic) Ising model is defined by the Hamiltonian,

H = −J
∑
〈i,j〉

σiσj , J > 0 (11)

where 〈i , j〉 denotes the sum over next neighbours and σi = ±.
For this study, a square lattice and D = 2, then the model is exactly solved and :

The order parameter associated to the transition is

m =
1

L2

N∑
i=1

σi (12)

At Tc = 2/ ln
(

1 +
√

2
)

, there is a second order phase transition with exponents

ν = 1 and γ = 7/4. Using the hyperscaling relations, all the other exponents can
be computed.

N = 200 decorrelated configurations were generated using the Wolff cluster
algorithm on L× L lattices, with L = 128, 240, 360, 440, 512, 760, 1024.

D. V. Quantitative machine learning study of the critical 2D Ising model



Introduction
Support Vector Machines

The 2D Ising model
Conclusion and Outlook

The analysis with SVM
Comparison

The 2D Ising model
Training the SVM

We want the SVM to classify raw configurations as being ordered or disordered:

We place the original spins at temperature Tk in a L2 components vector,

~xki = (σ0, σ1, · · · , σL2 )ki (13)

where i labels the configuration, i = 1, · · · , 200, k the temperatures.

We associate the labels −1 and +1, respectively, to the ordered and disordered
phase.

Bayesian inference techniques suggest that the quadratic kernel is the optimal
choice across the set of the most popular ones (polynomial and gaussian).

Let To and Td be, respectively, the ordered and disordered training temperatures.
We adopt a self consistent procedure to obtain To and Td :

To = max
k

(
Tk / acco

({
~xki

})
= 0
)

Td = min
k

(
Tk / acco

({
~xki

})
= 1
)

and we visualize the accuracy to classify the configurations as disordered at all
the other temperatures.

D. V. Quantitative machine learning study of the critical 2D Ising model



Introduction
Support Vector Machines

The 2D Ising model
Conclusion and Outlook

The analysis with SVM
Comparison

The 2D Ising model
Classification scores
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The 2D Ising model
Closing on the critical behaviour

The classification sharpens when L is increased.

As shown in [Melko, Ponte 2017], for small C this selects a linear function of m2 as a
decision function.

At each temperature Tk , we compute the average decision function and its error

〈d〉 =
L2

200

200∑
j=1

d(~xj ), χd = L2

√√√√ 1

200

200∑
j=1

(d(~xj )− 〈d〉)2 (14)
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The 2D Ising model
Values of the decision function versus T
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The 2D Ising model
Values of the error of decision function versus T
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The 2D Ising model
Finite size scaling

What we observe

It seems that, at T = Tc (L):

d ∼ 0.

χd reaches its maximum value.

What we think we know [Preliminary]

Since d depends on m2, we expect χd,max(L) to scale as

χd,max(L) ∝ L2+
γ/2−β
ν (15)

while, for Tc (L)

Tc (L)− Tc (∞) ∝ L−1/ν (16)

We extract Tc (L) and χd, max(L) and fit the above scaling behaviour. We expect
Tc = 2.2692, ν = 1, 2 + (γ/2− β)/ν = 2.75
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Computation of Tc
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Computation of 2 + (γ − β)/ν
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Systematics
Where do the errors come from?

From the ~xi : statistical, depends on how to configurations scatter.

from the αi ’s: systematic, depends on the choice of training temperatures.
Heuristically. . .

δ d =
δd

δ~x
δ ~x +

∑
i

δd

δαi
δ αi (17)

where αi are determined during training, i.e. they depend on To and Td .

Arbitrary rescaling performed by libsvm in the scikit-learn package. . .
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Choice of training temperatures

65

70

χ
d

@L = 1024, for choices of To and Td around the autoconsistent values.
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Tentative results corrected for systematics
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Multihistogram method
Determination of Tc and ν
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Multihistogram method
Determination of γ/ν
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γ/ν =1.7632(65)
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PRELIMINARY

Method Tc ν γ/ν 2 + (γ/2− β)/ν

Exact 2.269619. . . 1.0 7/4 = 1.75 2.75

MH 2.2669(19) 1.79(46) 1.7632(65) -

SVM 2.2691(16) 1.14(85) - 1.693(59)

How is the difference between 2.75 and 1.693(59) explained?

Rescaling performed in scikit-learn?

Spurious scalings introduced in the training procedure?

. . .
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Conclusion - PRELIMINARY

Conclusions

Tc and ν can be estimated from finite size scaling.

The difference between the naively predicted value of 2 + (γ/2− β)/ν and its
measured value is ∼ 1.

The accuracy of these estimates is slightly worse than that obtained with
standard techniques.

Future directions & Improvements

Improve the estimation of the systematical error (especially the effects coming
from the choice of the training temperatures. . . )

Try on a model with a transition for which local order parameter cannot be
identified.

Thank you for your attention
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