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Renewal Theory

Basics

{(Si, Ri)}i>1 sequence of i.i.d. random vectors on (Q, F,P) so that
9 S e{1,2,...} U{oo} is a “waiting time”;
@ T, :=85 +...4+ Sjis a‘“renewal time” and Ty := 0;

@ R; € R is a “reward” associated with S;.
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@ R; € R is a “reward” associated with S;.

For each integer time t > 0
@ X;:= 1(t ¢ {Ti}i>o0) is the (non-)renewal indicator;
@ N;:=sup{i>0:T; <t} is the number of renewals by ;

o W, = Zf; R is the total reward by t and W; := 0 if N; = 0.
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Constrained Renewal Model (1)

Renewal equation:

if t=0;

1
P[X; = 0] = {22_1 p(s)P[X; s =0] ift>0,

where p(s) := P[S; = s] is the “waiting time distribution”.
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Constrained Renewal Model (1)

Renewal equation:

1 if t=0;
St p(s)P[Xi_s = 0] ift>0,

where p(s) := P[S; = s] is the “waiting time distribution”.

P[X; = 0] =

P[X; = 0] > O for all t sufficiently large if gcd{s > 1:p(s) > 0} = 1.

If gcd{s > 1 : p(s) > 0} =1, then conditioning on {X; = 0}

@ is well-defined for all t sufficiently large;

dPt . Xt

@ yields the new model (2, F,P;) with — P }P’[X, o’



Renewal Theory

Constrained Renewal Model (2)

Distribution of waiting times:
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Pt[81—31,--.,8n—sn,Nt—n]—% p(sk).
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Renewal Theory
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Distribution of waiting times:

Sk=1) 1
PT[S1:S1)"')SI7:SH7NT: ]_®(1—ka

Distribution of renewal indicators:

_ _ 1—x #su (0,X1,001%0)
P Xi = x1,...,. X = x| = ]P’[XI—O]H
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Renewal Theory

Constrained Renewal Model (2)

Distribution of waiting times:

Sk=1) 1
PSi=s1,....,Sn =58, Nr=n ]_(2"1—ka

P[X; Pt
Distribution of renewal indicators:
_ _ 1—x #su (0,X1,001%0)
]P[[X1—X1,...,X[—X[ P[X[—O]H
with #¢(X0, - -+, Xe) = 27T (1 = xime) (TTEE 2 %) (1= Xis1).

...and they look like finite-volume Gibbs states!



Applications to Statistical Mechanics

Polymer Localization and DNA Denaturation

Pinned polymer (Fisher): t monomers (per strand)

m @ in n stretches of lengths s, with
Si+---+ s, =tandonly the
first monomer bound;
DNA molecule (Poland-Scheraga): @ with binding energy ¢;

m @ with loop entropy o5 so that
Os S b S.

0 123456 7 8 910111213 14151617 18192021 2223 24 =t Stans“cal We|ght
T LI N N M N Tt

n
[ exp(os, — e+ k).

k=1
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Polymer Localization and DNA Denaturation

Pinned polymer (Fisher): t monomers (per strand)

m @ in n stretches of lengths s, with
Si+---+ s, =tandonly the
first monomer bound;

DNA molecule (Poland-Scheraga): @ with binding energy ¢;

m @ with loop entropy o5 so that
Os S b S.

0 123456 7 8 910111213 14151617 18192021 2223 24 =t Stat|st|cal We|ght
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b tb oty bt bt to by be

n
H exp(os, — € + 15k).

k=1
Take 7 so that p(s) := exp(os — € + 1s) satisfies Yo, p(s) < 1!



Applications to Statistical Mechanics

Protein Folding

t peptide bonds

Protein (Wako-Sait6-Mufioz-Eaton): @ x =1 native, x; = 0 non-native;

@ interact only if belong to the
W same native stretch;

0123 456 7 8 910111213 141516 17 18 1920 21 22 23 24 =t (*] W|th Con'[aCt energy €/7j+1 SO that
0 Tt T TRt US::Ei:1(S_k)€k2bS;

@ order with entropic loss o.

Statistical weight:
t—1 t-1

exp |—Y ) ¢ ,+1HX;<+UZ (1 — X))+t
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Protein Folding

t peptide bonds
Protein (Wako-Saitd-Mufioz-Eaton): @ X; =1 native, x; = 0 non-native;
@ interact only if belong to the

W same native stretch;

0123 456 7 8 910111213 141516 17 18 1920 21 22 23 24 =t (*] W|th ContaCt energy 6/‘7/‘4,1 SO that
0 T T TR T US::Ei:1(S_k)€k2bS;

) bbbty [ oty to by by

@ order with entropic loss o.

Statistical weight:
t

exp Z (o—Us+nS) #s¢(X0, - - -, Xt—1,0)

s=1

Take 7 so that p(s) := exp(c — us + ns) satisfies > "o, p(s) < 1!



Applications to Statistical Mechanics

Strained Epitaxy

t lattice sites
Crystal film (Tokar-Dreyssé): @ x; = 1 occupied, x; = 0 empty;

@ particles interact only if belong to
the same cluster;

012345678 91011121314151617 181920212223 24 = ¢
T LI N N M Tt

@ with energetic gain us so that
us > bs;

@ with chemical potential .
Statistical weight:

t t—1
exp | =Y s #st(Xo, -+, Xe—1,0)+1 Y Xi+(1—pu)t
s=1 i=0
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Strained Epitaxy

t lattice sites
Crystal film (Tokar-Dreyssé): @ x; = 1 occupied, x; = 0 empty;

@ particles interact only if belong to
the same cluster;

0123 4567 89 1011121314151617 181920212223 24 = ¢

° Wi . .
h e P with energetic gain us so that
ty bbbt 5t b gty by fy b US Z bS,

@ with chemical potential (.

Statistical weight:
t

exp Z (_/1’_US+US) #S\I(XO, ey Xt 1, O)

s=1

Take 7 so that p(s) := exp(—u — us + ns) satisfies >_o—, p(s) < 1!
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Applications to Statistical Mechanics

Total Reward W; := S_M. R; in Statistical Mechanics

In pinned-polymer model and Poland-Scheraga model
@ R :=1 — W, counts bound monomers;
® R =05 = W;isthe total loop entropy;
® R :=(1,05) = W,; combines both of them;
o ...
In Wako-Sait6-Munoz-Eaton model and Tokar-Dreyssé model
@ R =S, —1 = W, counts native bonds or particles;
@ R;:=us = W,;is the total energy;
@ Ri:= (S —1,us) = W; combines both of them;
o ...
In all cases
@ Ri:=(1(S;=1),....1(S;=d)) = W, counts waiting times;
o ...
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Large Deviations Principle

Main Results

Let ¢(k) be the extended real number defined for each k € RY by

(k) = inf{ eER: E[exp(k-Fﬁ -728)1(S < oo)} < 1} > —00.

t“TTo 17 InE;[exp(k - W;)| =: c(k) exists and c(k) = ((k) — ¢(0).

Let /(w) := sup,cra{W - k — c(k)} be the convex conjugate of c.

(a) W; satisfies a weak LDP with rate function |.

(b) If0 €int{k € RY: ¢(k) < oo}, then W; satisfies an LDP with I.




Large Deviations Principle

Remark

c non-differentiable on int{k € R? : ¢(k) < oo} in general

4

Gartner-Ellis Theorem does not apply

(based on a change of measure)

4

an original proof is needed!

(based on subadditivity arguments like for Cramér’s Theorem)
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Conclusions

Final Remarks

On the mathematical side

@ an LDP established for the constrained renewal model (Q, F, P;);

@ LDP for the constrained renewal model (Q, 7, P;)

4
LDP for the free renewal model (22, 7, P).

On the physical side

@ rate function / with singularities.
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