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Basics

{(Si ,Ri)}i≥1 sequence of i.i.d. random vectors on (Ω,F ,P) so that

Si ∈ {1, 2, . . .} ∪ {∞} is a “waiting time”;

Ti := S1 + . . .+ Si is a “renewal time” and T0 := 0;

Ri ∈ R
d is a “reward” associated with Si .



Renewal Theory Applications to Statistical Mechanics Large Deviations Principle Conclusions

Basics

{(Si ,Ri)}i≥1 sequence of i.i.d. random vectors on (Ω,F ,P) so that

Si ∈ {1, 2, . . .} ∪ {∞} is a “waiting time”;

Ti := S1 + . . .+ Si is a “renewal time” and T0 := 0;

Ri ∈ R
d is a “reward” associated with Si .

For each integer time t ≥ 0

Xt := 1(t /∈ {Ti}i≥0) is the (non-)renewal indicator;

Nt := sup{i ≥ 0 : Ti ≤ t} is the number of renewals by t;

Wt :=
∑Nt

i=1 Ri is the total reward by t and Wt := 0 if Nt = 0.
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Constrained Renewal Model (1)

Renewal equation:

P[Xt = 0] =

{

1 if t = 0;
∑t

s=1 p(s)P[Xt−s = 0] if t > 0,

where p(s) := P[S1 = s] is the “waiting time distribution”.
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Constrained Renewal Model (1)

Renewal equation:

P[Xt = 0] =

{

1 if t = 0;
∑t

s=1 p(s)P[Xt−s = 0] if t > 0,

where p(s) := P[S1 = s] is the “waiting time distribution”.

Lemma

P[Xt = 0] > 0 for all t sufficiently large if gcd{s ≥ 1 : p(s) > 0} = 1.

If gcd{s ≥ 1 : p(s) > 0} = 1, then conditioning on {Xt = 0}

is well-defined for all t sufficiently large;

yields the new model (Ω,F ,Pt) with
dPt

dP
:=

1 − Xt

P[Xt = 0]
.
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Constrained Renewal Model (2)

Distribution of waiting times:

Pt

[

S1 = s1, . . . ,Sn = sn,Nt = n
]

=
1

(
∑n

k=1 sk = t
)

P[Xt = 0]

n
∏

k=1

p(sk ).
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[
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]

=
1

(
∑n

k=1 sk = t
)

P[Xt = 0]

n
∏

k=1

p(sk ).

Distribution of renewal indicators:

Pt

[

X1 = x1, . . . ,Xt = xt

]

=
1 − xt

P[Xt = 0]

t
∏

s=1

[

p(s)
]#s|t (0,x1,...,xt )

with #s|t(x0, . . . , xt) :=
∑t−s+1

i=1 (1 − xi−1)
(
∏i+s−2

k=i xk

)

(1 − xi+s−1).
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Constrained Renewal Model (2)

Distribution of waiting times:

Pt

[

S1 = s1, . . . ,Sn = sn,Nt = n
]

=
1

(
∑n

k=1 sk = t
)

P[Xt = 0]

n
∏

k=1

p(sk ).

Distribution of renewal indicators:

Pt

[

X1 = x1, . . . ,Xt = xt

]

=
1 − xt

P[Xt = 0]

t
∏

s=1

[

p(s)
]#s|t (0,x1,...,xt )

with #s|t(x0, . . . , xt) :=
∑t−s+1

i=1 (1 − xi−1)
(
∏i+s−2

k=i xk

)

(1 − xi+s−1).

...and they look like finite-volume Gibbs states!
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Polymer Localization and DNA Denaturation

t monomers (per strand)

in n stretches of lengths sk with
s1 + · · ·+ sn = t and only the

first monomer bound;

with binding energy ǫ;

with loop entropy σs so that
σs ≤ b s.

Statistical weight:
n
∏

k=1

exp(σsk
− ǫ+ ηsk).

Pinned polymer (Fisher):

b
b b b
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DNA molecule (Poland-Scheraga):
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 = t

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 = t

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Take η so that p(s) := exp(σs − ǫ+ ηs) satisfies
∑∞

s=1 p(s) ≤ 1!
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Protein Folding

t peptide bonds

xi = 1 native, xi = 0 non-native;

interact only if belong to the

same native stretch;

with contact energy ǫj−i+1 so that

us :=
∑s

k=1(s − k)ǫk ≥ b s;

order with entropic loss σ.

Statistical weight:

exp

[

−

t−1
∑

i=0

t−1
∑

j=i

ǫj−i+1

j
∏

k=i

xk+σ

t−1
∑

i=0

(1 − xi)+ηt

]
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Strained Epitaxy

t lattice sites

xi = 1 occupied, xi = 0 empty;

particles interact only if belong to

the same cluster;

with energetic gain us so that

us ≥ b s;

with chemical potential µ.

Statistical weight:

exp

[

−

t
∑

s=1

us #s|t (x0, . . . , xt−1, 0)+µ

t−1
∑

i=0

xi+(η−µ)t

]

Crystal film (Tokar-Dreyssé):
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Total Reward Wt :=
∑Nt

i=1 Ri in Statistical Mechanics

In pinned-polymer model and Poland-Scheraga model

Ri := 1 =⇒ Wt counts bound monomers;

Ri := σSi
=⇒ Wt is the total loop entropy;

Ri := (1, σSi
) =⇒ Wt combines both of them;

. . .
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Total Reward Wt :=
∑Nt

i=1 Ri in Statistical Mechanics

In pinned-polymer model and Poland-Scheraga model

Ri := 1 =⇒ Wt counts bound monomers;

Ri := σSi
=⇒ Wt is the total loop entropy;

Ri := (1, σSi
) =⇒ Wt combines both of them;

. . .

In Wako-Saitô-Muñoz-Eaton model and Tokar-Dreyssé model

Ri := Si − 1 =⇒ Wt counts native bonds or particles;

Ri := uSi
=⇒ Wt is the total energy;

Ri := (Si − 1, uSi
) =⇒ Wt combines both of them;

. . .

In all cases

Ri :=
(

1(Si = 1), . . . ,1(Si = d)
)

=⇒ Wt counts waiting times;

. . .
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t
∈ A

]

for large t and some A ⊆ R
d measurable.

Definition

Wt satisfies a large deviations principle (LDP) with rate function I if

(a) I : Rd → [0,∞) ∪ {∞} is lower semicontinuous;

(b) lim sup
t↑∞

1

t
lnPt

[

Wt

t
∈ F

]

≤ − inf
w∈F

{

I(w)
}

for each F ⊆ R
d closed;

(c) lim inf
t↑∞

1

t
lnPt

[

Wt

t
∈ G

]

≥ − inf
w∈G

{

I(w)
}

for each G ⊆ R
d open.

Weak large deviations principle if (b) valid only for F compact.
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Main Results

Let ζ(k) be the extended real number defined for each k ∈ R
d by

ζ(k) := inf

{

z ∈ R : E
[

exp
(

k · R1 − z S1

)

1(S1 < ∞)
]

≤ 1

}

> −∞.
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Main Results

Let ζ(k) be the extended real number defined for each k ∈ R
d by

ζ(k) := inf

{

z ∈ R : E
[

exp
(

k · R1 − z S1

)

1(S1 < ∞)
]

≤ 1

}

> −∞.

Theorem

lim
t↑∞

1

t
lnEt

[

exp(k · Wt )
]

=: c(k) exists and c(k) = ζ(k)− ζ(0).

Let I(w) := supk∈Rd{w · k − c(k)} be the convex conjugate of c.

Theorem

(a) Wt satisfies a weak LDP with rate function I.

(b) If 0 ∈ int
{

k ∈ R
d : c(k) < ∞

}

, then Wt satisfies an LDP with I.
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Remark

c non-differentiable on int
{

k ∈ R
d : c(k) < ∞

}

in general

⇓

Gärtner-Ellis Theorem does not apply

(based on a change of measure)

⇓

an original proof is needed!

(based on subadditivity arguments like for Cramér’s Theorem)
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Final Remarks

On the mathematical side

an LDP established for the constrained renewal model (Ω,F ,Pt);

LDP for the constrained renewal model (Ω,F ,Pt)
⇓

LDP for the free renewal model (Ω,F ,P).

On the physical side

rate function I with singularities.
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