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QCD and magnetic fields

QCD with strong magnetic
fields eB 'm2

π ∼ 1015−16 T
� Non-central heavy ion

collisions [Skokov et al. ’09]

� Possible production in
early universe
[Vachaspati ’91]

In heavy ion collisions:
� Expected eB ' 0.3 GeV2 at LHC in Pb+Pb at √sNN = 4.5 TeV
� Spatial distribution of the fields and lifetime are still debated
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Phase diagram of QCD

� Chiral restauration and deconfinement expected at high
temperatures and/or baryon densities

� Magnetic field reduces the critical temperature [Bali et al. ’11]
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Lattice QCD

QCD +
path integral +

euclidean +
discretization +
finite volume +
Monte-Carlo =
Lattice QCD

LQCD formulation allows to study
non-perturbative regime of QCD

Quark fields ψ(n) and gluon links
Uµ(n) (SU(3) parallel transports)
discretized in a N × Nt volume with
spacing a and temperature given by
T = 1/(aNt ).

Monte-Carlo: system configurations
are sampled according to the
desired probability distribution, then
physical observables are computed
over the sample

What about magnetic fields?
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Background field on the lattice

An external magnetic field B on the lattice is introduced
through abelian parallel transports uµ(n)

� Abelian phases enter the
Lagrangian by modifying
the covariant derivative

Uµ(n)→ Uµ(n)uµ(n)

� External magnetic field:
non-propagating fields, no
kinetic term

� Periodic boundary conditions lead to the quantization
condition

|qmin|B =
2πb

a2NxNy
b ∈ Z
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THE ANISOTROPIC
STATIC POTENTIAL
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Static potential

The QQ̄ potential is well described by the Cornell
formula

V (r) = −αr + σr +O
(

1
m2

)
where α is the Coulomb term and σ is the string tension.

� At T=0 from Wilson loops

V (R) = lim
t→∞

log W (R, t + 1)

W (R, t)

with W (R, t) a rectangular
R × t loop made up by
gauge links Uµ(n).

� At T>0 from Polyakov correlators

V (R) ' − 1
β
log〈TrL†(R)TrL(0)〉

where L(R) is a loop winding
over the compact imaginary
direction.

On the lattice the potential has been largely
investigated and it is extracted from the behaviour of
some observables
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Study and results zero temperature
483 × 96 lattice with |e|B ∼ 1 GeV2

Using a constant and
uniform B: [Bonati et al. ’16]

� Wilson loop
averaged over
different spatial
directions

� Access to 8 angles
using three ~B
orientations

V(R) is anisotropic. Ansatz:

V (R, θ,B) = −α(θ,B)

R + σ(θ,B)R + V0(θ,B)

O(θ,B) = Ō(B)

(
1−

∑
n

cO2n(B)cos(2nθ)

)

where O = α, σ,V0 and θ angle between quarks and ~B.
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Study and results zero temperature

Results:
� Good description in

terms of c2s only
� Ō(B)s compatible with

values at B = 0

Continuum limit:
� Anisotropy cσ2 of the

string tension survives
the limit a → 0

� cα2 and cV0
2 compatible

with zero
� Large field limit: string

tension seems to vanish
for |e|B ∼ 4GeV2
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Study and results at (not so) high T
483 × 18 lattice at T ∼ 125 MeV

Results:
� Anisotropy still visible but disappears at large r
� String tension decreases with T
� Cornell form fits only at small B
� Magnetic field effects enhanced near Tc

Data compatible with decrease of Tc due to B [Bali et al. ’12]
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SCREENING MASSES IN
MAGNETIC FIELD
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Screening masses definition

In the deconfined phase the color interaction is screened

Screening mass(es) can be defined non-perturbatively by
studying the large distance behaviour of suitable
gauge-invariant correlators

[Nadkarni ’86, Arnold and Yaffe ’95, Braaten and Nieto ’94]

� with correlation length 1/mE
dominant at small distances

CLL†(r) ∼ 1
r e−mE (T )r

� with length 1/mM dominant at
larger distances

CLL†(r) ∼ 1
r e−mM (T )r

Looking at the Polyakov correlator CLL†(r , T ) we expect it to decay:

Using symmetries it is possible to separate the electric and magnetic
contributions and define correlators decaying with the desired
screening masses.

[Arnold and Yaffe ’95, Maezawa et al. ’10, Borsanyi et al. ’15]
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Study and results
483 × Nt lattices with a ' 0.0989 fmSome results:

� mE > mM and
mE/mM ∼ 1.5− 2

� masses grow linearly with T
[Maezawa et al. ’10, Borsanyi et al. ’15
(lattice) Hart et al. ’00 (EFT)]

Turning on the magnetic field
we studied the screening
masses behaviour along the
directions parallel and
orthogonal to B [Bonati et al. ’17]

� Values at B = 0 agree
previous results

� Masses increase with B
� Magnetic mass mM show a

clear anisotropic effect
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Study and results

Results:
� Magnetic effects vanish when T increase
� A simple ansatz describing our data

md

T = ad
[
1 + cd

1
eB
T 2 atan

(
cd
2

cd
1

eB
T 2

)]
Data compatible with decrease of Tc due to B [Bali et al. ’12]
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CONCLUSIONS
AND RECAP
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CONCLUSIONS

The results we obtained about the effects of magnetic
fields on QQ̄ interaction show that

- The potential is deeply influenced by B
- Also the screening properties get modified
- All the results agree the picture of a decreasing Tc
due to the external field

Possible implications:
� On the heavy quarkonia spectrum: mass variations,

mixings and Zeeman-like splitting effects
[Alford and Strickland ’13, Bonati et al. ’15]

� On heavy meson production rates in non-central ion
collisions [Guo et al. ’15, Matsui and Satz ’86]

Todo with magnetic fields:
� Effects on flux tube / color-electric field
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