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Free-energy differences in LGTs

In lattice gauge theories the expectation values of a large set of physical quantities is naturally
related to the computation (via Monte Carlo simulations) of free-energy differences (or,
equivalently, of ratios of partition functions).

I the pressure (→ equilibrium thermodynamics)

I but also: free-energy of interfaces, ’t Hooft loops, magnetic susceptibility, entanglement
entropy...

In general, the calculation of ∆F is a computationally challenging problem, since it usually
cannot be performed directly.

I “integral method”: computing first the derivative of the free energy with respect to some
parameter, and then integrate

I reweighting (→ snake algorithm)

Jarzynski’s equality may provide a more efficient and intuitive method
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The Second Law of Thermodynamics

We start from Clausius inequality ∫ B

A

dQ

T
≤ ∆S

that for isothermal transformations becomes
Q

T
≤ ∆S

If we use {
Q = ∆E −W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that the former relation (valid
for a macroscopic system) becomes

〈W 〉 ≥ ∆F
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Jarzynski’s equality

Let’s consider a system with Hamiltonian Hλ (depending on some parameter λ → e.g. the
coupling) with free energy F (λ,T ) = −β−1 lnZ(λ,T ).

We are interested in an evolution of the system driven during which λ is changed from an initial
value λi to a final one λf .

We can state non-equilibrium equality [C. Jarzynski, 1997]

〈
exp

(
−
W (λi , λf )

T

)〉
= exp

(
−
F (λf )− F (λi )

T

)
Jarzynski’s equality relates the exponential statistical average of the work done on a system
during a non-equilibrium process with the difference between the initial and the final free energy
of the system.

This result can be derived for stochastic processes such
as Markov chains and thus Monte Carlo simulations

The evolution is performed by changing continuously
(as in real time experiments) or discretely (as in MC

simulations) a chosen set of one or more parameters,
such as the couplings of the system.

The initial state must be at equilibrium, but all the
following ones do not!
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Relation with the Second Law

It is instructive to see how this result is connected with the Second Law of Thermodynamics

Starting from Jarzynski’s equality 〈
exp

(
−

W

T

)〉
= exp

(
−

∆F

T

)

and using Jensen’s inequality
〈exp x〉 ≥ exp〈x〉

(valid for averages on real x) we get

exp

(
−

∆F

T

)
=

〈
exp

(
−

W

T

)〉
≥ exp

(
−
〈W 〉
T

)

from which we have
〈W 〉 ≥ ∆F

In this sense Jarzynski’s relation can be seen as a generalization of the Second Law.
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Jarzynski’s equality in a Monte Carlo simulation

〈
exp

(
−
W (λ0, λN)

T

)〉
= exp

(
−

∆F

T

)
1. the non-equilibrium transformation begins by changing λ with some prescription (e.g. a linear one)

λ0 → λ1 = λ0 + ∆λ

2. we compute the “work”
Hλn+1

[φn]− Hλn [φn]

3. after each change, the system is updated using the new value → driving the system out of equilibrium!

[φn]
λn+1−−−→ [φn+1]

4. the total work W (λ0, λN ) made on the system to change λ using N steps is

W (λ0, λN ) =

N−1∑
n=0

(
Hλn+1

[φn]− Hλn [φn]
)

5. at the end, we create a new initial state φ0 and we repeat this transformation for nr realizations

The 〈...〉 indicates that we have to take the average on all possible realizations of the transformation
→ it must be repeated several times to obtain convergence to the correct answer!

We can check the convergence by looking for discrepancies between the ’direct’ (λi → λf ) and ’reverse’
(λf → λi ) transformations
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Pressure on the lattice

The thermal properties of QCD and QCD-like theories are particularly well suited for being
studied on the lattice, due to non-perturbative nature of the deconfinement transition.

The pressure p in the thermodynamic limit equals the opposite of the free energy density

p ' −f =
T

V
log Z(T ,V )

On the lattice, the temperature T is the inverse of the temporal extent,

T =
1

Lt
=

1

a(βg )Nt

and it can be controlled by the inverse coupling βg .

Jarzynski’s relation gives us a direct method to compute the pressure: we can change
temperature T (by controlling βg ) in a non-equilibrium transformation!
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Pressure with Jarzynski’s relation

If we focus on the SU(N) pure gauge theories, the dynamics of the theory on the lattice can be
described by the Wilson action

SW = −
βg

N

∑
x

∑
0≤µ<ν≤3

Re TrUµν(x)

If we use Jarzynski’s equality the difference in pressure between two temperatures T and T0 is

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log〈e−WSU(Nc ) 〉

with WSU(Nc ) being the “total work” made on the system between T0 and T :

WSU(Nc ) =

N−1∑
n=0

[
SW (β

(n+1)
g , Û)− SW (β

(n)
g , Û)

]

Trace of the energy-momentum tensor, energy density and entropy density are obtained by

∆

T 4
= T

∂

∂T

( p

T 4

)
ε = ∆ + 3p s =

∆ + 4p

T

A test for the SU(2) pressure in the proximity of the deconfining transition yielded excellent
results [Caselle et al.,2016].
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The SU(3) equation of state

The equation of state of the SU(3) Yang-Mills theory has been determined in the last few years
using different methods.

I using a variant of the integral method [Borsànyi et al., 2012]

→ the primary observable is the trace of the energy-momentum tensor

I using a moving frame [L. Giusti and M. Pepe, 2016]

→ the primary observable is the entropy density (extracted from the spacetime components
of the energy-momentum tensor)

→ see talk by Mattia Dalla Brida in the afternoon (17:40)

I using the gradient flow [Kitazawa et al., 2016]

An high-precision determination of the SU(3) e.o.s. is an excellent benchmark for the efficiency
of a technique based on non-equilibrium transformations.
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SU(3) pressure across the deconfinement transition, for different values of Nt , with Jarzynski’s equality
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SU(3) pressure - continuum extrapolation

∼ 700k configurations across all values of Nt were used in this region
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SU(3) trace anomaly
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SU(3) entropy density
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Conclusions

Jarzynski’s equality provides a new technique to compute directly the pressure on the lattice with
Monte Carlo simulations.

I we can always verify the convergence of the method to the correct result by performing
transformations in reverse and comparing the results

I with these checks we can look for systematic errors → especially useful close to the transition

I suitable choices of N and nr provide high-precision results while keeping the expected
discrepancies under control

I even with a limited amount of configurations it is possible to extract precise results

Why use it?

I very efficient: intuitively we are exploiting the autocorrelation, since the average is not taken
across all configurations, but only on the different realizations

I to get more precise results we can not only increase nr , but also N, i.e. we get closer to a
reversible transformation
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Thank you for your attention!
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Two special cases

Two insightful limits of Jarzynski’s equality:

I the limit of N →∞: now the transformation is infinitely slow and the the system is always
at equilibrium. The switching process is reversible: no energy is dissipated and thus

W = ∆F

→ this is the case of thermodynamic integration → a common way to estimate p on the
lattice is by the “integral method” [Engels et al., 1990]

p(T ) =
1

a4

1

Nt N3
s

∫ βg (T )

0
dβ′g

∂ log Z

∂β′g

where the integrand is calculated from plaquette expectation values.

I the limit of N = 1: now the system is driven instantly to the final state and no updates are
performed on the system after the parameter λ has been changed
→ this is the reweighting technique.
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SU(3) energy density
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SU(3) pressure - confining phase
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Applications beyond the equation of state

I In principle there are no obstructions to the derivation of numerical methods based on
Jarzynski’s relation for fermionic algorithms, opening the possibility for many potential
applications in full QCD

I the free energy density in QCD with a background magnetic field B, to measure the
magnetic susceptibility of the strongly-interacting matter.

I the entanglement entropy in SU(Nc ) gauge theories

I studies involving the Schrödinger functional: Jarzynski’s relation could be used to compute
changes in the transition amplitude induced by a change in the parameters that specify the
initial and final states on the boundaries.
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An experimental test

An experimental test of Jarzynski’s equality was performed in 2002 by Liphardt et al. by
mechanically stretching a single molecule of RNA between two conformations.

The irreversible work trajectories (via the non-equilibrium relation) provide the result obtained
with reversible stretching.
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Preliminary results for the SU(2) model

Finite T simulations performed on 723 × 6 lattices. Temperature range is ∼ [0.9Tc ,Tc ].

Excellent agreement with integral method data [Caselle et al., 2015]
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Dominant realizations

Picture taken from [Jarzynski (2006)]

The work is statistically distributed on ρ(W ); however the trials that dominate the exponential
average are in the region where g(W ) = ρ(W )e−βW has the peak.
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Work distributions
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Extended to non-isothermal transformations [Chatelain, 2007] (the temperature takes the role of
λ) 〈

exp

(
−

N−1∑
n=0

{
Hλn+1

[φn]

Tn+1
−

Hλn [φn]

Tn

})〉
=

Z(λN ,TN)

Z(λ0,T0)
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