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We seek a microscopic approach to model the dynamics of 
proteins (and other biomolecules)

Our footprint: use tools of “high-energy theorists”: 
Renormalization Group, Path Integrals, Quantum Field Theory,   
etc.. 
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Complete characterisation of the protein dynamics

⇢̂(t) = e
i
~ Ĥt ⇢̂(0) e�

i
~ Ĥt

Conformational dynamics: Electronic excitations dynamics:

P (Qf , t|Qi) =
Tr[|Qf ihQf |⇢̂(t)]

Tr⇢̂(0) P (kf , t|ki) =
Tr [ |kf ihkf |⇢̂(t) ]

Tr ⇢̂(0)

recombination and trapping. The results are shown in Figs.
1–3. In Fig. 2!a", we illustrate the functional dependence of
the ETE, Eq. !11", on temperature for two initial states local-
ized at site 1 or 6, respectively. The overall dependence is
less than 1% for reasonable temperatures. This can be ex-
plained by the relatively small size of the FMO and the ap-
proximately three orders of magnitude separation of lifetime
!1 /!r" and acceptor transfer !1 /"3" timescales. In order to
see this, note that at zero temperature there are only quantum
jumps originated from spontaneous emission of energy into
the phonon bath, leading to relaxation down the energy fun-
nel. This phenomenon in itself leads to a high efficiency of

transport due to the presence of irreversible trapping on a
time scale much faster than the lifetime of the excitation. At
higher temperatures quantum jumps due to stimulated emis-
sion and absorption enter the dynamics. Both processes have
the same rates and a temperature dependence which is deter-
mined by the bosonic distribution function n!#". In the FMO
protein, stimulated emission of excitonic energy helps the

(b)

(a)

FIG. 1. !Color online" The FMO protein. !a" The spatial structure and en-
ergy levels of the complex, where the number at each site represents the
localized site energy and the arrows with numbers denote the couplings
among various bacteriochlorophylls. For clarity, some small couplings are
not shown. The inset depicts the participation of the seven chlorophylls in
the delocalized excitonic states !Ref. 5". !b" The susceptiblities of ETE with
respect to perturbations of intersite jumps and corresponding damping, res-
caled by a factor of 104 and drawn with a cutoff of 2.0. The initial state is
taken to be a mixture of populations at sites 1 and 6. Standard parameters
are ER=35 cm−1, T=295 K, "3=1 ps−1, and !r=1 ns−1. Susceptibilites are
large when interchromophoric couplings are strong and site energies are
similar. The sign of the susceptibility is an indication of the directionality
toward the target site 3.

(b)
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(c)

(d)

FIG. 2. !Color online" ETE as a function of !a" temperature, !b" reorgani-
zation energy !log linear", and !c" transfer rate to the acceptor !log linear".
Transfer time as a function of reorganization energy !d". Blue lines show the
efficiencies starting from an initial state localized at site 1. Red lines how
the efficiencies starting from site 6. The default parameters !shown as ver-
tical lines" are taken to be T=295 K, "3=1 ps−1, !r=1 ns−1, and ER

=35 cm−1. A quantum walk with no environment-assisted jumps corre-
sponds to no reorganization energy in panel !b". The ETE in this case is
15%–30% less than for the parameters obtained experimentally for FMO
demonstrating the effect of the environment-assisted quantum walk.

174106-6 Mohseni et al. J. Chem. Phys. 129, 174106 !2008"
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A microscopic calculation of ρ(t) can be achieved 
using:

* QUANTUM FIELD THEORY
* PATH INTEGRALS


DISSIPATIVE QUANTUM TRANSPORT IN . . . PHYSICAL REVIEW B 88, 085428 (2013)

bk(t) =
{

sin
( 1

2ωk
0|t |

)
if 2"k ! γ ,

sinh
( 1

2ωk
0|t |

)
if 2"k < γ .

(57)

It is useful to consider the asymptotic expressions for the
Green’s functions in the limit γ ≫ 2"k , which corresponds to
the overdamping regime:

$ij (t) = e−("2
k/γ )|t |

2M2γ"2
k

U
†
ikUkj , (58)

Vij (t) = 1
Mγ

(
1 + 2

"2
k

γ

)

× (e−(2"2
k/γ )|t | − e−γ |t | e(2"2

k/γ
2)|t |)U †

ikUkj . (59)

In the opposite underdamped regime (γ ≪ "k) the asymptotic
expression for the propagators is

$ij (t) = e− γ
2 |t |

2M2γ"2
k

cos ("k|t |) U
†
ikUkj , (60)

Vij (t) = e− γ
2 |t |

2M"k

sin ("k|t |) U
†
ikUkj . (61)

Equation (52) is one of the central results of this work.
It shows that the conditional probability P (kf ,t |ki) for the
dissipative dynamics of the quantum charge can be written
in a form which is formally an analog to that of a vacuum-to-
vacuum amplitude, in an effective zero-temperature Dirac-like
quantum field theory. This analogy is quite remarkable, since
our theory describes an open system and is fully consistent with
the fluctuation-dissipation relation. We also emphasize that the
path integral expression (44) is real and positive definitive as
it yields directly the conditional probability, even though it is
formally equivalent to probability amplitude (namely a two-
point Green’s function) in the effective quantum field theory.

We remark again that a particularly attractive feature of this
formulation is that it does not involve the Keldysh contour.
This strongly simplifies the formalism, since one does not
need to introduce different types of Green’s functions to
distinguish between different sectors of the Keldysh contour.
Instead, one can adopt time-ordered Feynman propagators
and apply textbook perturbative and nonperturbative quantum
field theory techniques to evaluate directly the conditional
probability and the expectation values of operators.

IV. PERTURBATION THEORY AND
FEYNMAN DIAGRAMS

In the short-time and weak-coupling regimes, the condi-
tional probability Pt (kf |ki) can be computed analytically in a

perturbation theory derived by performing a Taylor expansion
of the exponents in Eq. (52) in powers of the interaction terms

V1 = −Mγ

β

∫ t

0
dt ′

∫ t

0
dt ′′ψ̄m(t ′)f i

mnψn(t ′)

×$ij (t ′ − t ′′)ψ̄m′ (t ′′)f j
m′n′ψn′(t ′′), (62)
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0
dt ′
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0
dt ′′ψ̄m(t ′)γ0f

i
mnψn(t ′)

×Vij (t ′ − t ′′)ψ̄m′ (t ′′)f j
m′n′ψn′ (t ′′). (63)

The conditional probability is then written as

Pt (kf |ki) =
∞∑

i

P
(i)
t (kf |ki) , (64)

where P
(0)
t (kf |ki) corresponds to the unperturbed conditional

probability, which neglects all the couplings between the hole,
the heat bath, and the vibronic modes,

P
(0)
t (kf |ki) = −1

Z(0)

∫
Dψ̄Dψe−L1(t,0)[ψ̄kf

(t)γ−γ5ψkf
(t)
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(0)γ+γ5ψki

(0)]e−iS0[ψ̄,ψ]. (65)

Its normalization factor Z(0) can be written in path integral
form as
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∫
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(t)γ−γ5ψkf
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(0)γ+γ5ψki

(0)]e−iS0[ψ̄,ψ].
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The leading-order perturbative correction in the series (64)
reads

P
(1)
t (kf |ki) = −1

Z(0) + Z(1)

∫
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(t)γ−γ5
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(67)

where the corresponding leading-order correction to the
normalization factor is

Z(1) =
∫

Dψ̄Dψe−L1(t,0)
∑
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(t)γ−γ5ψkf

(t)
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(0)](V1 + V2)e−iS0[ψ̄,ψ]. (68)

Equations (65), (66), (67), and (68) correspond to corre-
lation functions in the free limit for the effective Dirac-like
quantum field theory. According to Wick’s theorem, these
Green’s functions can be evaluated by considering the sum
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FIG. 3. Feynman rules for the effective field theory for charge propagation in the macromolecule. On the left panel, we show the hole’s
Feynman propagator, on the center panel the effective interaction V1, and on the right panel the effective interaction V2.
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Why using path integrals?
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‣Computational Convenience:

‣Focus on the reactive part 
of the dynamics


‣ Exploit approximation 
methods  for functional 
integrals

Theoretical convenience: 

1) easy to take the classical limit of a subset of d.o.f’s (atomic 
nuclei)

2) easy to trace out (Gaussian) d.o.f.’s



Why using  
Quantum Field Theory?

Quantum evolution: 

⇢̂(t) = eiHt|Q0ihQ0|e�iHt

e
i
~ Ĥt backward time evolution

e�
i
~ Ĥt forward time evolution t Keldlish Contour   

The quantum version of the Liuvillian operator is a  
superoperator => Extremely difficult to deal of 

dynamics of open quantum systems!
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FIG. 3. Feynman rules for the effective field theory for charge propagation in the macromolecule. On the left panel, we show the hole’s
Feynman propagator, on the center panel the effective interaction V1, and on the right panel the effective interaction V2.
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Our IDEA: Introduce (bosonic) “spinors”
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evolving forward in time

evolving backwards in time
�0(x, t)

�00(x, t)

“Bra” is (almost) the antiparticle of “Ket”
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i
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Electronic excitations:where the term1

S
0

[Â̄, Â] =
⁄ t

0

dtÕ Â̄
m

!
i~ ˆtÕ”

mn

≠ f0

mn

"
Â

n

, (3.5)

corresponds to Eq. (2.27) in the new variables, and it describes the quantum propagation of the
charge in the absence of any coupling with the molecular dynamics. In this Dirac-like notation,
the interaction action in Eq. (2.28) reads

S
I

[Â̄, Â] = 1
4

⁄ t

0

dtÕdtÕÕ !
Â̄

k

(tÕ) “
0

f i
kl

Â
l

(tÕ)
"

Vij(tÕ ≠ tÕÕ)
!
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(tÕÕ) f j
mn

Â
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+ i M“

—~
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"

�ij(tÕ ≠ tÕÕ)
!
Â̄

m

(tÕÕ) f j
mn

Â
n

(tÕÕ)
"

, (3.6)

where � and V are the non-local interaction terms derived in the previous chapter. The surface
term L

1

(t, 0) follows from the over completeness of the coherent-field basis, and reads

L
1

(t, 0) =
!
Â̄

m

(0) “
0

“
+

Â
m

(0) + Â̄
m

(t) “
0

“≠ Â
m

(t)
"

, (3.7)

Some comments on Eq. (3.4) are in order. Firstly, we note that the overall minus sign appearing
in front of the integral is a consequence of the Fermi statistics and ensures the overall positivity of
the probability density. Secondly, we observe that, while the path integral (2.22) is defined over
forward- and backward- propagating fields, the path integral Eq. (3.4) contains only the integration
in the forward time direction. Indeed, the backward-propagating fields have been replaced by lower-
components of the doublet field, hence they can be formally interpreted as anti-matter degrees of
freedom propagating forward in time. This analogy can be useful to derive perturbative calculation
and to adopt non-perturbative quantum field theory technique.

3.1.2 Short-time Regime
Let us now evaluate the reduced density matrix fl

ij

(t) in the short-time regime by means of pertur-
bation theory. This method derives by performing a Taylor expansion of the exponents in Eq. (3.4)
in powers of the interaction terms
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The reduced density matrix is then written as

fl
ij

(t) =
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i

fl
(i)
ij

(t) , (3.8)

where fl
(0)

ij

(t) corresponds to the unperturbed reduced density matrix, which neglects all the cou-
plings between the quantum excitation, the heat bath and the vibronic modes,
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Its normalization factor Z(0) can be written in path integral form as:

Z(0) =
⁄

DÂ̄ DÂ e≠L1(t,0)
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1 Throughout this thesis we shall adopt Einstein’s notation and implicitly assume the summation over all bold
repeated indexes, except for the initial exciton position ki which is held fixed.
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Atomic nuclei:

X
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QED:

Imaginary components => Irreversible dynamics !!! 
Monte Carlo for real time dynamics

atomic nucl. electr. excitations
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~ Ĥt

Molecular Quantum Field Theory 
E .Schneider and PF

classical quantum



An arsenal of approximation techniques

Z[J, J̄ ]

Neglecting  electronic excitations and 
Sampling  conformational dynamics 
PRL 2006, PRL 2007, PNAS 2012, PRL 2015 
JCP 2017

Perturbative diagrammatic techniques
PRB 2012, PRB 2013, PRB 2016

Exact Monte Carlo
PRB 2016

Renorm. Group and EFT
PRB 2013, JCP 2016

generating  
functional 

for the density  
matrix



Different sectors of the density matrix for different  
physics …

Problems to address Bridging the gap with experiments

Calculating linear and non-linear optical spectra

Problems to address:

• field-matter interaction

• define n-exciton states
(stop at biexcitons)

• evolution of density matrix

• numerical implementation

fl =

Q

ccccccccccccca
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Problems to address Bridging the gap with experiments

Calculating linear and non-linear optical spectra

Problems to address:

• field-matter interaction

• define n-exciton states
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• evolution of density matrix

• numerical implementation
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conformational dynamics ⇢gg ! P (x, t|xi)

P (x, t|xi) =

Z
DR e

� �
4m�

R t
0 d⌧(mR̈+m�Ṙ+rU)2

We recovered the path integral representation of Langevin dynamics 

NB the same path integral can be obtained starting directly from the classical 
Langevin equation (Onsager-Machlup):



 Useful conformational transitions  
(e.g. protein folding)

ps ns µs ms s m hfs

QM biologyMD simulations
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Bias Functional approach

1) From each initial condition, generate many trial reactive pathways 
using some “smart” biased dynamics

2) Select the trial path with the highest probability to be realised in the 
unbiased dynamics

(bias functional)
P (x

f

, t|x
i

) =

Z
xf

xi

DXe

� �
4m�

R t
0 d⌧(mẍ+m�+rU(x))2



Analogy with Density Functional Theory

1) Based on a rigorous variational theorem

2) Useless without a smart guess (or perhaps lucky 
one) - prior knowledge-

….but if one does find a good guess, then a whole 
new scale of problems opens up

Similarly, the BF is useless without a scheme to 
generate reasonable trial paths to choose from



Problem 1: the choice of biasing collective coordinate is arbitrary 
and introduces uncontrolled systematic errors

rMD Minimum bias  
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We introduce an iterative algorithm to efficiently simulate protein folding and other conformational
transitions, using state-of-the-art all-atom force fields. Starting from the Langevin equation, we obtain
a self-consistent stochastic equation of motion, which directly yields the reaction pathways. From the
solution of this set of equations we derive a stochastic estimate of the reaction coordinate. We validate
this approach against the results of plain MD simulations of the folding of a small protein, which were
performed on the Anton supercomputer. In order to explore the computational efficiency of this algo-
rithm, we apply it to generate a folding pathway of a protein that consists of 130 amino acids and has
a folding rate of the order of s

1. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4997197]

I. INTRODUCTION

The protein folding pathway problem consists in clarify-
ing the pattern of structural changes through which a given
denaturated protein reaches its native structure.1,2 Its solution
would shine light on the main forces guiding the folding reac-
tion and provide valuable insight into the origin of possible
pathogenic misfolding events.

Even using the most powerful special-purpose supercom-
puter, plain Molecular Dynamics (MD) simulations of protein
folding are feasible only for small chains (consisting of up
to ⇠100 amino acids), with folding time within the ms time
scale.3 On the other hand, most proteins involved in biologi-
cally relevant folding or misfolding reactions contain several
hundreds of amino acids and have folding time that can be as
long as seconds or even minutes.

To overcome the computational limitations of plain MD
simulations, more advanced algorithms have been proposed in
the literature, see, e.g., Refs. 4–11. These techniques have been
successfully applied to investigate the kinetics or thermody-
namics of structural reactions involving polypeptide chains,
including the protein-ligand binding or the folding of small
protein fragments.

However, to date, only a relatively small number of appli-
cations of these methods to study the folding of large and
topologically complex proteins have been reported in the lit-
erature (see, e.g., Refs. 12–15). In particular, the so-called
Bias Functional (BF) approach11 has been used to provide a
variational approximation to the reaction pathways in several
protein folding and conformational transitions. In Ref. 14 it
was used to explain the puzzle of different folding kinetics of
two structurally homologous proteins, while in Ref. 15 it was
applied to explore the folding mechanism of a protein with a
knotted native state. In Ref. 16 a preliminary version of this
algorithm17 was employed to simulate a large conformational
transition that occurs with an inverse rate longer than 1 h. The

a)pietro.faccioli@unitn.it

BF method was also recently applied to investigate folding
and misfolding of several variants of the ↵1 anti-trypsin ser-
pin protein, which is made of nearly 400 amino acids and has
a folding time as long as tens of minutes. It was shown that
not only the BF method agrees with all existing experimental
information on the folding mechanism but also correctly pre-
dicts the effect of point mutations on the protein misfolding
propensity.18

The BF method exploits a rigorous variational princi-
ple to select the most reliable folding trajectory within a set
of trial pathways, previously generated by means of a spe-
cific type of biased dynamics, called ratchet-and-pawl MD
(rMD).19,20 In a rMD simulation, no bias is applied to the
protein, as long as it spontaneously progresses towards the
native state. A harmonic history-dependent force is introduced
only to discourage spontaneous backtracking towards the
reactant.

Clearly, if this biasing force was defined in terms of a good
reaction coordinate—for example, the direction orthogonal
to the iso-commitor hyper-surfaces in the protein configura-
tion space—then the rMD scheme would provide the correct
description of the folding mechanism. In practice, however,
rMD simulations of protein folding are biased along the direc-
tion set by a specific collective coordinate20 closely related
to the instantaneous fraction of native contacts, which is not
necessarily an optimal choice. Even though the BF varia-
tional condition is expected to improve on the results of plain
rMD simulations, a sub-optimal choice of biasing coordinate
may give rise to systematic errors that are hard to estimate
a priori.

In this work, we introduce a reaction path sampling
algorithm that enables generating protein-folding trajecto-
ries without relying on any model-dependent choice of bias-
ing coordinate. Instead, the reaction coordinate is derived
self-consistently and represents an output of the calculation,
providing insight into the folding mechanism.

This new scheme is not heuristically postulated, but rather
it follows directly from the Langevin dynamics, with no addi-
tional approximation other than a mean-field estimate of some
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Problem 2: Detailed balance is lost. We need to post process in 
order to recover thermodynamics and kinetics
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Povo (Trento) I-38123, Italy

(Received 26 May 2017; accepted 20 September 2017; published online 6 October 2017)

The Bias Functional (BF) approach is a variational method which enables one to efficiently gener-
ate ensembles of reactive trajectories for complex biomolecular transitions, using ordinary computer
clusters. For example, this scheme was applied to simulate in atomistic detail the folding of proteins
consisting of several hundreds of amino acids and with experimental folding time of several minutes.
A drawback of the BF approach is that it produces trajectories which do not satisfy microscopic
reversibility. Consequently, this method cannot be used to directly compute equilibrium observables,
such as free energy landscapes or equilibrium constants. In this work, we develop a statistical anal-
ysis which permits us to compute the potential of mean-force (PMF) along an arbitrary collective
coordinate, by exploiting the information contained in the reactive trajectories calculated with the
BF approach. We assess the accuracy and computational efficiency of this scheme by comparing its
results with the PMF obtained for a small protein by means of plain molecular dynamics. Published
by AIP Publishing. https://doi.org/10.1063/1.5006039

I. INTRODUCTION

Thermally activated conformational transitions are
involved in many biological functions performed by proteins
and other biomolecules. The number of amino acids participat-
ing in these structural changes can vary significantly, ranging
from a few units to even several hundreds, as in some large
allosteric transitions or in protein folding.

From a theoretician’s perspective, the problem of investi-
gating the dynamics of protein thermally activated structural
reactions involves two distinct main tasks. The first challenge
consists in generating an ensemble of statistically significant
reactive trajectories connecting the reactant and product states,
in configuration space. The second challenge involves reduc-
ing this large amount of data, in order to extract the relevant
physico-chemical information. This second problem includes,
for example, identifying and structurally characterizing long-
lived metastable states and estimating the rate limiting free
energy barriers.

Tackling both such challenges requires an extensive use
of computational resources. A first reason is the large number
of degrees of freedom present in proteins and in their hydra-
tion shells. A second reason is that the relevant time scales of
large conformational reactions are many orders of magnitude
longer than the short time scales associated with fast atomic
vibrations or even local rearrangements of the polypeptide
chain.

For example, in protein folding (for recent reviews, see,
e.g., Refs. 1 and 2), the longest relevant time scale is the fold-
ing time (or inverse folding rate), i.e., the average time it takes
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for the chain to reach the native state for the first time, starting
from the unfolded state. According to the Kramers-Arrhenius
theory, this time scale increases exponentially with the height
of the barrier separating the two states, ⌧ = ⌧0 exp[�G/kBT ],
where the pre-factor ⌧0 is typically in the µs time scale. Since
the folding energy barriers vary from a few to many units of
thermal energy kBT, the folding times span over many orders
of magnitude, ranging from ms to even minutes. In contrast,
elementary local rearrangements of the chain, such as the rota-
tion of a dihedral angle or the formation of a hydrogen bond,
usually occur over time scales ranging from several ps to a
few ns.

Fortunately, in order to gain microscopic insight into the
reaction mechanism, one does not necessarily need to simulate
the time evolution of the system for times as long as the mean-
first-passage time. Indeed, productive reaction pathways are
very rapid events: it has been shown that the so-called tran-
sition path time (TPT)—i.e., the time it takes for a system
to reach the product along productive reactive trajectory—
scales only logarithmically with the height of the barrier,
⌧TPT ' ⌧0 log[↵�G/kBT ].3,5 This result explains why proteins
with widely different folding times have comparable TPTs,
typically in the few µs range.4 In view of these considera-
tions, it is clear that the most efficient way to investigate the
reaction mechanism consists in sampling directly the produc-
tive reaction pathways, without wasting computational time to
simulate uninteresting thermal oscillations in the reactant or
generate unsuccessful reactive attempts, as one would do in
plain molecular dynamics (MD) simulations.

Many advanced methods and algorithms have been pro-
posed in order to lower the computational cost of gener-
ating reaction pathways for rare biomolecular transitions
(for a recent review, see, e.g., Refs. 6). In this context, the
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We introduce a variational approximation to the microscopic dynamics of rare conformational
transitions of macromolecules. Within this framework it is possible to simulate on a small computer
cluster reactions as complex as protein folding, using state of the art all-atom force fields in
explicit solvent. We test this method against MD simulations of the folding of an α and a β protein
performed with the same all-atom force field on the Anton supercomputer. We find that our
approach yields results consistent with those of MD simulations, at a computational cost orders of
magnitude smaller.
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The development of the special-purpose Anton super-
computer has recently opened the way to MD simulations
of biomolecules consisting of several hundred atoms,
covering time intervals in the millisecond range [1]. By
using this facility, Shaw and co-workers characterized the
reversible folding of several small proteins, showing that
the existing all-atom force fields are able to attain the
correct protein native structures [1–3]. Unfortunately,
many biologically important conformational reactions
occur at time scales many orders of magnitude larger than
the millisecond. Hence, it is important to continue the
development of more efficient algorithms to sample the
reactive pathways space (see, e.g., Ref. [4] and references
therein).
In particular, in the dominant reaction pathways (DRP)

approach [5–8], microscopic trajectories XðτÞ, connecting
given initial and final molecular configurations Xi ¼ Xð0Þ
and Xf ¼ XðtÞ, are determined by maximizing their prob-
ability density P½X% in the Langevin dynamics. This
algorithm was first validated against MD using both
simplified and realistic atomistic force fields (see, e.g.,
Ref. [8]). Next, it was applied to characterize in atomistic
detail conformational reactions far too slow to be inves-
tigated by means of plain MD. Notable examples include
the folding of a knotted protein [9] and the latency
transition of several serpins [10].
One crucial limitation of the DRP method is that it can

only be applied in implicit solvent simulations. In this work
we overcome this limitation by introducing a new varia-
tional approximation suitable also for atomistic simulations
in an explicit solvent.
Let (X; Y) represent a point of the system’s configuration

space, where X¼ðx1;…;xNÞ and Y ¼ ðy1;…; yN0Þ denote

the solute and solvent coordinates, respectively. The
Langevin equations for the solvent and solute are

miẍi ¼ −miγi _xi −∇iU þ ηiðtÞ;
mjÿj ¼ −mjγj _yj −∇jU þ ηjðtÞ; ð1Þ

where UðX; YÞ is the potential energy, ηi is a white noise,
and mi and γi denote mass and viscosity, respectively.
We are interested in the probability density for the solute

to make a transition from Xi to Xf in a time t, along a given
path XðτÞ. This is given by the path integral (PI),

P½X% ¼
Z

DYe−SOM½X;Y%−UðXi;YiÞ=kBT; ð2Þ

where SOM½X; Y% is the Onsager-Machlup functional,
to be defined below. Maximizing P½X% with respect to
the path X yields the DRP optimum condition [5–7]:
ðδ=δXÞhSOM½X; Y%iY ¼ 0, where the average h·iY refers
to the PI over YðτÞ.
Unfortunately, computing this average with the accuracy

required for the path optimization is computationally
unfeasible, because of large statistical fluctuations. To
overcome this problem, we need to derive an optimum
criterion that does not involve any average over the solvent
dynamics.
We begin by considering a modified stochastic dynam-

ics, defined by introducing into Eq. (1) an external
(possibly time-dependent) biasing force Fbias

i ðX; tÞ, acting
on the solute atoms only and accelerating the transition to
the product. The probability of a given reactive pathway
XðτÞ in the biased dynamics is given by
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We investigate the folding mechanism of the WW domain Fip35
using a realistic atomistic force field by applying the Dominant
Reaction Pathways approach. We find evidence for the existence
of two folding pathways, which differ by the order of formation
of the two hairpins. This result is consistent with the analysis of
the experimental data on the folding kinetics of WW domains
and with the results obtained from large-scale molecular dynamics
simulations of this system. Free-energy calculations performed in
two coarse-grained models support the robustness of our results
and suggest that the qualitative structure of the dominant paths
are mostly shaped by the native interactions. Computing a folding
trajectory in atomistic detail only required about one hour on 48
Central Processing Units. The gain in computational efficiency
opens the door to a systematic investigation of the folding path-
ways of a large number of globular proteins.

atomistic simulations ∣ protein folding

Unveiling the mechanism by which proteins fold into their
native structure remains one of the fundamental open

problems at the interface of contemporary molecular biology,
biochemistry, and biophysics. A critical point concerns the char-
acterization of the ensemble of reactive trajectories connecting
the denatured and native states, in configuration space.

In this context, a fundamental question which has long been
debated (1) is whether the folding of typical globular proteins in-
volves a few dominant pathways; i.e., well defined and conserved
sequences of secondary and tertiary contact formation, or if it can
take place through a multitude of qualitatively different routes. A
related important question concerns the role of nonnative interac-
tions in determining the structure of the folding pathways (2, 3).

In principle, atomistic molecular dynamics (MD) simulations
provide a consistent framework to address these problems from a
theoretical perspective. However, due to their high computational
cost, MD simulations can presently only be used to investigate the
conformational dynamics of relatively small polypeptide chains,
and are only able to cover time intervals much smaller than the
folding times of typical globular proteins.

In view of these limitations, a considerable amount of theore-
tical and experimental activity has been devoted to investigate the
folding of protein subdomains, which consist of only a few tens of
amino acids, and fold on submillisecond time scales (4). In par-
ticular, a number of mutants of the 35 amino acid WW domain of
human protein pin1 have been engineered which fold in few tens
of microseconds (5). The mutant's small size and their ultrafast
kinetics make them ideal benchmark systems, for which numer-
ical simulations can be compared with a large body of experimen-
tal data (5–7).

In particular, a MD simulation was performed to investigate
the dynamics of a mutant named Fip35 (see Fig. 1), for a time
interval longer than 10 μs. Unfortunately, in that simulation
no folding transition was observed (8, 9).

The folding of this WW domain was later investigated by
Pande and coworkers, using a world wide distributed computing
scheme (10). According to this study the transition proceeds in a
very heterogeneous way; i.e., through a multitude of qualitatively
different and nearly equiprobable folding pathways.

Noé, et al. performed a Markov state model analysis of a large
number of short (≲200 ns) nonequilibrium MD trajectories (11)
performed on the WW domain of human Pin 1 protein. In their
paper the authors reported a complex network of transition path-
ways, which differ by the specific order in which the different local
meta-stable states were visited. On the other hand, in all pathways
the formation of hairpins takes place in a definite sequence (see
e.g., Fig. 2). In particular, from the statistical model it was in-
ferred that in about 30% of the folding transitions, the second
hairpin forms first, as in the right box.

A different conclusion has been reached by Shaw, et al., by
analyzing a ms-long MD trajectory with multiple unfolding/
refolding events, obtained using a special-purpose supercompu-
ter (12). In that simulation theWWdomain of Fip35 was found to
fold and unfold predominantly along a pathway in which hairpin 1
is fully structured, before hairpin 2 begins to fold, as shown in the
left box of Fig. 2. In a recent paper (13), Krivov reanalyzed the
same ms-long MD trajectory in order to identify an optimal set of
reaction coordinates. His conclusion was that the folding of this
WW domain is thermally activated rather than incipient downhill
and that the transition also occurs through a second pathway, in
which hairpin 2 forms before hairpin 1. The statistical weights of
the two pathways estimated from the number of folding events
are 80%! 20% and 20%! 10%.

While all these theoretical studies yield folding times in rather
good agreement with available experimental data on folding
kinetics, they provide different pictures of the folding mechanism
and raise a number of issues.

Firstly, it is important to assess the degree of heterogeneity of
the folding mechanism and to clarify whether the most statisti-
cally significant folding pathways are those in which the hairpins
form in sequence. Important related questions are also whether
the folding mechanism is correlated with the structure of the
initial denatured conditions from which the reaction is initiated
and with the temperature of the heat bath. Finally, it is interesting
to address the problem of the relative role played by native and
nonnative interactions in determining the structure of folding
pathways. Indeed, while native interactions are arguably shaping
the dynamics in the vicinity of the native state, nonnative inter-
actions may in principle play an important role in the transition
region and at the rate limiting stages of the reaction.

In order to tackle these questions, in this work we use the
Dominant Reaction Pathways (DRP) approach (14–18), a frame-
work which allows to very efficiently compute the statistically
most significant pathways connecting given denatured configura-
tions to the native state at an atomistic level of detail, with rea-
listic force fields. To further support our results and to study the
role of native and nonnative interactions we map the free
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Povo (Trento) I-38123, Italy

(Received 26 May 2017; accepted 20 September 2017; published online 6 October 2017)

The Bias Functional (BF) approach is a variational method which enables one to efficiently gener-
ate ensembles of reactive trajectories for complex biomolecular transitions, using ordinary computer
clusters. For example, this scheme was applied to simulate in atomistic detail the folding of proteins
consisting of several hundreds of amino acids and with experimental folding time of several minutes.
A drawback of the BF approach is that it produces trajectories which do not satisfy microscopic
reversibility. Consequently, this method cannot be used to directly compute equilibrium observables,
such as free energy landscapes or equilibrium constants. In this work, we develop a statistical anal-
ysis which permits us to compute the potential of mean-force (PMF) along an arbitrary collective
coordinate, by exploiting the information contained in the reactive trajectories calculated with the
BF approach. We assess the accuracy and computational efficiency of this scheme by comparing its
results with the PMF obtained for a small protein by means of plain molecular dynamics. Published
by AIP Publishing. https://doi.org/10.1063/1.5006039

I. INTRODUCTION

Thermally activated conformational transitions are
involved in many biological functions performed by proteins
and other biomolecules. The number of amino acids participat-
ing in these structural changes can vary significantly, ranging
from a few units to even several hundreds, as in some large
allosteric transitions or in protein folding.

From a theoretician’s perspective, the problem of investi-
gating the dynamics of protein thermally activated structural
reactions involves two distinct main tasks. The first challenge
consists in generating an ensemble of statistically significant
reactive trajectories connecting the reactant and product states,
in configuration space. The second challenge involves reduc-
ing this large amount of data, in order to extract the relevant
physico-chemical information. This second problem includes,
for example, identifying and structurally characterizing long-
lived metastable states and estimating the rate limiting free
energy barriers.

Tackling both such challenges requires an extensive use
of computational resources. A first reason is the large number
of degrees of freedom present in proteins and in their hydra-
tion shells. A second reason is that the relevant time scales of
large conformational reactions are many orders of magnitude
longer than the short time scales associated with fast atomic
vibrations or even local rearrangements of the polypeptide
chain.

For example, in protein folding (for recent reviews, see,
e.g., Refs. 1 and 2), the longest relevant time scale is the fold-
ing time (or inverse folding rate), i.e., the average time it takes
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for the chain to reach the native state for the first time, starting
from the unfolded state. According to the Kramers-Arrhenius
theory, this time scale increases exponentially with the height
of the barrier separating the two states, ⌧ = ⌧0 exp[�G/kBT ],
where the pre-factor ⌧0 is typically in the µs time scale. Since
the folding energy barriers vary from a few to many units of
thermal energy kBT, the folding times span over many orders
of magnitude, ranging from ms to even minutes. In contrast,
elementary local rearrangements of the chain, such as the rota-
tion of a dihedral angle or the formation of a hydrogen bond,
usually occur over time scales ranging from several ps to a
few ns.

Fortunately, in order to gain microscopic insight into the
reaction mechanism, one does not necessarily need to simulate
the time evolution of the system for times as long as the mean-
first-passage time. Indeed, productive reaction pathways are
very rapid events: it has been shown that the so-called tran-
sition path time (TPT)—i.e., the time it takes for a system
to reach the product along productive reactive trajectory—
scales only logarithmically with the height of the barrier,
⌧TPT ' ⌧0 log[↵�G/kBT ].3,5 This result explains why proteins
with widely different folding times have comparable TPTs,
typically in the few µs range.4 In view of these considera-
tions, it is clear that the most efficient way to investigate the
reaction mechanism consists in sampling directly the produc-
tive reaction pathways, without wasting computational time to
simulate uninteresting thermal oscillations in the reactant or
generate unsuccessful reactive attempts, as one would do in
plain molecular dynamics (MD) simulations.

Many advanced methods and algorithms have been pro-
posed in order to lower the computational cost of gener-
ating reaction pathways for rare biomolecular transitions
(for a recent review, see, e.g., Refs. 6). In this context, the
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We introduce an iterative algorithm to efficiently simulate protein folding and other conformational
transitions, using state-of-the-art all-atom force fields. Starting from the Langevin equation, we obtain
a self-consistent stochastic equation of motion, which directly yields the reaction pathways. From the
solution of this set of equations we derive a stochastic estimate of the reaction coordinate. We validate
this approach against the results of plain MD simulations of the folding of a small protein, which were
performed on the Anton supercomputer. In order to explore the computational efficiency of this algo-
rithm, we apply it to generate a folding pathway of a protein that consists of 130 amino acids and has
a folding rate of the order of s

1. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4997197]

I. INTRODUCTION

The protein folding pathway problem consists in clarify-
ing the pattern of structural changes through which a given
denaturated protein reaches its native structure.1,2 Its solution
would shine light on the main forces guiding the folding reac-
tion and provide valuable insight into the origin of possible
pathogenic misfolding events.

Even using the most powerful special-purpose supercom-
puter, plain Molecular Dynamics (MD) simulations of protein
folding are feasible only for small chains (consisting of up
to ⇠100 amino acids), with folding time within the ms time
scale.3 On the other hand, most proteins involved in biologi-
cally relevant folding or misfolding reactions contain several
hundreds of amino acids and have folding time that can be as
long as seconds or even minutes.

To overcome the computational limitations of plain MD
simulations, more advanced algorithms have been proposed in
the literature, see, e.g., Refs. 4–11. These techniques have been
successfully applied to investigate the kinetics or thermody-
namics of structural reactions involving polypeptide chains,
including the protein-ligand binding or the folding of small
protein fragments.

However, to date, only a relatively small number of appli-
cations of these methods to study the folding of large and
topologically complex proteins have been reported in the lit-
erature (see, e.g., Refs. 12–15). In particular, the so-called
Bias Functional (BF) approach11 has been used to provide a
variational approximation to the reaction pathways in several
protein folding and conformational transitions. In Ref. 14 it
was used to explain the puzzle of different folding kinetics of
two structurally homologous proteins, while in Ref. 15 it was
applied to explore the folding mechanism of a protein with a
knotted native state. In Ref. 16 a preliminary version of this
algorithm17 was employed to simulate a large conformational
transition that occurs with an inverse rate longer than 1 h. The

a)pietro.faccioli@unitn.it

BF method was also recently applied to investigate folding
and misfolding of several variants of the ↵1 anti-trypsin ser-
pin protein, which is made of nearly 400 amino acids and has
a folding time as long as tens of minutes. It was shown that
not only the BF method agrees with all existing experimental
information on the folding mechanism but also correctly pre-
dicts the effect of point mutations on the protein misfolding
propensity.18

The BF method exploits a rigorous variational princi-
ple to select the most reliable folding trajectory within a set
of trial pathways, previously generated by means of a spe-
cific type of biased dynamics, called ratchet-and-pawl MD
(rMD).19,20 In a rMD simulation, no bias is applied to the
protein, as long as it spontaneously progresses towards the
native state. A harmonic history-dependent force is introduced
only to discourage spontaneous backtracking towards the
reactant.

Clearly, if this biasing force was defined in terms of a good
reaction coordinate—for example, the direction orthogonal
to the iso-commitor hyper-surfaces in the protein configura-
tion space—then the rMD scheme would provide the correct
description of the folding mechanism. In practice, however,
rMD simulations of protein folding are biased along the direc-
tion set by a specific collective coordinate20 closely related
to the instantaneous fraction of native contacts, which is not
necessarily an optimal choice. Even though the BF varia-
tional condition is expected to improve on the results of plain
rMD simulations, a sub-optimal choice of biasing coordinate
may give rise to systematic errors that are hard to estimate
a priori.

In this work, we introduce a reaction path sampling
algorithm that enables generating protein-folding trajecto-
ries without relying on any model-dependent choice of bias-
ing coordinate. Instead, the reaction coordinate is derived
self-consistently and represents an output of the calculation,
providing insight into the folding mechanism.

This new scheme is not heuristically postulated, but rather
it follows directly from the Langevin dynamics, with no addi-
tional approximation other than a mean-field estimate of some
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Some benchmark results:
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models the transition current distribution and obeys c1 = 0).
As expected, the first distribution relaxes to equilibrium about
40 times more slowly than the second distribution. This ratio
of relaxation time scales is consistent with the fact that, for
this system, �2/�1 ⇠ 50.

B. Realistic application

Let us now see how this result can be used to profile the
PMF of protein FIP35, along a specific reaction coordinate.
In particular, we choose the fraction of native contacts, which
can be defined as follows:

Q(X) =

P
|i�j |>4 ✓(r0 � rij(X)) ✓(r0 � rij(XN ))
P
|i�j |>4 ✓(r0 � rij(XN ))

. (25)

In this equation, rij is the distance between the ith and jth C↵

atoms and r0 = 7.5 Å is a typical reference value for a native
contact. Note that the theta-function ✓(r0 rij(XN )) restricts
the summation to the pairs of C↵ atoms which are in con-
tact in the native state, while the denominator contains the
total number of native contacts. The constraint |i� j | > 4 in the
summation excludes the contribution of the amino acids which
are topologically close along the polypeptide chain. In Ref. 40,
it was shown that Q correlates relatively well with the com-
mittor probability for small globular proteins. Furthermore,
in the same work, it was shown that the diffusion coefficient
depends rather weakly on Q, so the approximation D(Q) ' D0
is reasonable.

In practice, we implemented our method to profile the
PMF, by adopting the following procedure:

1. We evaluated JBF
1 (Q) [the BF estimate for J1(Q)] from

a frequency histogram of values of Q visited along the 8
reaction pathways computed with the BF approach.

2. We clustered the frames visited by the 8 folding trajecto-
ries according to their value of Q, which was defined on
a discrete mash with bin size �Q = 0.02.

3. We randomly picked 6 frames from each of such clus-
ters of configurations and used them as starting point for

5 ns of plain MD simulation. MD trajectories have been
computed following the same simulation setup of the
rMD simulations.

4. We performed a weighted histogram of the values of Q
visited during such MD simulations, using the distribu-
tion JBF

1 (Q) to re-weight. According to Eq. (10), this is
equivalent to evolve for a time interval t an initial dis-
tribution JBF

1 (Q). Once the resulting distribution P(Q, t)
stops evolving with time t, the PMF G(Q) was extracted
using Eq. (5).

The PMF calculated according to this procedure is shown
in the left panel of Fig. 4, where it is compared with the exact
calculation of G(Q) obtained from an histogram of the Anton
equilibrium MD trajectories. These ultra-long MD simula-
tions include about a dozen unfolding-refolding events. We
see that our calculation of G(Q) is in overall good agree-
ment with the exact result. In particular, the height of the
barrier is accurately estimated, the transition state is correctly
located, and even the double hump structure of the barrier top
(which is due to the sequential folding of the individual hair-
pins) is well reproduced. A minor discrepancy—of the order
of 0.5 kBT—is observed only in the highly denatured region,
Q . 0.2. We note that an insufficient sampling of the denatured
state (which is plausible with only 8 initial conditions) would
lead to an underestimate of its entropic contribution, thus pro-
viding a possible explanation for overshooting the PMF in this
region.

The comparison with the negative logarithm of the initial
distribution of values of Q (central panel of Fig. 4) shows
that the short time evolution has significantly improved the
quality the estimate of G(Q), with respect to a naive histogram
analysis of the reactive trajectories. In the right panel of Fig. 4,
we show the estimates of G(Q) obtained evolving for different
time intervals. We see that after about 5 ns, our estimate for the
PMF stops to sizeably depend on t, suggesting that equilibrium
has been attained.

We can check a posteriori that the observed thermal-
ization time scale of 5 ns is quite reasonable. Indeed, we
expect this value to be of the same order of the time scale

FIG. 4. Left panel: PMF along the fraction of native contacts Q computed from a frequency histogram of equilibrium MD trajectories—GMD(Q)—and from the
short time evolution based on BF simulations developed in this work—GBF (Q). Center panel: Comparison of the results for G(Q) obtained before and after the
time evolution. Right panel: predictions for G(Q) obtained after time evolving the initial distribution J1(Q) calculated from BF simulations, for different time
intervals. Statistical errors in these curves have been estimated according to the following jackknife procedure. The set of 300 MD trajectories was split in six
subsets of 50 trajectories each. For six times, one group of trajectories was excluded from the calculation of the frequency histogram and the jackknife histogram
was computed as the average between the six results, equipped with the corresponding variance. Free energy was computed from the jackknifed histogram and
the statistical error was propagated correspondingly. The error on the free energy obtained from the Anton calculations was obtained in a similar fashion: the
two ⇠100 µs trajectories were split in 20 trajectories of approximately ⇠10 µs each. Frequency histograms were computed by excluding one short trajectory
from the set and iterating until all the trajectories were excluded once. Free energy was obtained by averaging on the corresponding frequency histograms and
propagating the corresponding variance.
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FIG. 3. Upper panel: two dimensional energy surface of the illustrative toy model. Lower panel: configuration harvested by the reactive trajectories obtained at
different iterations of the SCPS calculation.

that of the physical force) and used a very bad reaction coor-
dinate, which ignores the existence of the gate through which
the physical reaction pathways reach the bottom.

The result of this rMD simulation is shown in the right
panel of Fig. 3. As expected, a significant fraction of the
rMD reactive trajectories reaches the bottom of the funnel by
directly crossing the barrier, thus providing a poor descrip-
tion of the reaction mechanism. However, the relative majority
of such rMD trajectories still manages to find the gate. As a
result, the average pathway in configuration place hX(⌧)i—
which in this toy model plays the role of the average contact
map hC

ij

(X)i—displays a small bend towards the direction of
the gate.

In all subsequent self-consistent iterations, we performed
rMD simulations with the two biasing forces

F

w
i

(X, w
m

) = �kwrw� (w
m

� w�) ✓(w� � wm

),

F

s

i

(X, s

m

) = �k

s

rs� (s
m

� s�) ✓(s� � s

m

),
(36)

where k

s

= 3 and kw = 3 and the tube variables w� and s� are
calculated according to

s�(X) ' 1 �
1
t

s t

0 dt

0
t

0
e

�� | |[ X�hX(t0)i | |2

s t

0 dt

0
e

�� | |X�hX(t0)i | |2

w�(X) ' � log
⌅

t

0
dt

0
e

�� | |X�hX(t0)]i | |2 ,

(37)

where | | . . . | | denotes the Euclidean norm in configuration
space. We checked that, choosing �= 0.3, the exponents
in the definition of path variables are �1 for most time
frames.

The results shown in the lower panels of Fig. 3 illus-
trate how, already after the first iteration, the results have
significantly improved with respect to plain rMD simulations.
Indeed all reactive trajectories reach the bottom by passing

through the gate. The second iteration leads results consistent
with the previous one, indicating that convergence has been
attained.

V. APPLICATIONS TO PROTEIN FOLDING

In this section, we assess the accuracy and the compu-
tational efficiency of the SCPS approach in realistic protein
folding simulations. First, we study the folding of Fip35, the
WW protein domain shown in Fig. 4, which represents a stan-
dard benchmark for protein folding simulations. Indeed, for
this system, ultra-long plain MD trajectories displaying sev-
eral unfolding/refolding events have been made available by

FIG. 4. Comparison between folding trajectories of Fip35 (pdb: pin1, the
native structure shown at the right) calculated through MD and SCPS and
projected on the plane defined by the RMSD to their native structure of the
two hairpins.

Free energy profile:

the bottom of the funnel by passing through a gate, i.e., a
spatially localized depression on the energy barrier (see
Fig. 1 in the SM [14]).
We compared the results obtained using different algo-

rithms to generate the trial paths (RMD and standard
steered MD) and different values of the biasing force
constant kR. In all cases, we chose to bias the dynamics
along a rather poor reaction coordinate, which does not take
into account the presence of the gate.
We found that all of the trajectories generated by steered

MD very closely follow the direction selected by the
biasing coordinate, failing to predict the passage through
the gate. Hence, in general, we expect a variational
calculation based on steered MD trial paths to yield rather
poor results unless the reaction coordinate is very accu-
rately known.
Results obtained by using RMD trial paths are definitely

better (see Fig. 2 of the SM [14]). In particular, even when
choosing a large value for kR, a significant fraction of the
trial paths access the bottom of the funnel through the gate.
This is because in RMD the biasing force is not contin-
uously pushing the system, but only sets in to hinder
backtracking. We also note that the variational principle
systematically discards unphysical trial RMD trajectories
and correctly predicts the essential qualitative features of
the reaction. We conclude that the variational calculations
based on RMDmay yield reasonable results, even when the
reaction coordinate is rather poorly known.
Let us now report our application to the folding transition

of two globular proteins: the WW domain Fip35 (with
β-type native secondary structures, see Fig. 1) and the
villin headpiece subdomain (with α-type native secondary

structures, see Fig. 2). In both cases, we have used the
AMBER99SB-ILDN all-atom force field in TIP3P explicit
water [15]. Several reversible folding-unfolding MD tra-
jectories for these proteins generated on Anton by using
the same force field have been made available by DES
Research.
The RMD bias in Eq. (10) was based on the RC

introduced in Ref. [13] (also reported in the SM [14]),
defined as the distance between the instantaneous contact
map and the native state’s contact map. The kR constant
was set to 5 × 10−3 kJ=mol. With this value, the modulus
of the total bias force was on average about 2 orders of
magnitude smaller than that of the total physical force. We
tested the robustness of our predictions by repeating the
variational calculation with different values of KR for a
given initial condition (see Fig. 5 in the SM [14]).
For each test protein, we have used the RMD algorithm

to produce in total about 1000 600-ps-long trial folding
trajectories, started from 10 different denatured configura-
tions Xð1Þ

i ;…; Xð10Þ
i . The 10 initial conditions were obtained

by 1 ns of plain MD at the temperature T ¼ 800 K, starting
from the crystal native state and thermalized by 200 ps at
300 K. Folding events were defined as those attaining a
final root-mean-square deviation (RMSD) to the native
structure smaller than 2 Å. For each initial condition a
single folding trajectory was selected out the ensemble of
trial paths by applying condition (9).
In order to define a convergence criterion for the

variational search, we note that the least value of the
functional (9) is non-negative and vanishes for spontaneous
transitions. These events have a negligible probability to be
observed in the short simulation time, t ∼ 200 ps.
Typically, we observed that the least value of the functional
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FIG. 1 (color online). Folding trajectories for the WW domain
(crystal structure shown in the bottom right-hand corner) ob-
tained in the variational approximation projected on the plain
defined by RMSD to the native structure of the two hairpins. The
color map in the background represents the free-energy landscape
obtained from the frequency histogram of the Anton MD
trajectories. Inset: Similarity distribution between variational
and MD folding pathways (dashed line) compared with the
intrinsic similarity of MD folding pathways (solid line).
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FIG. 2 (color online). Folding trajectories for villin (crystal
structure shown in left-hand inset) obtained in the variational
approximation, projected on the plain defined by the total RMSD
to the native structure and by the RMSD to the native structure of
the residues in helix I and helix III (left-hand panel) and on the
plane defined by the RMSD to the native structure of helix I versus
that of helix III (right-hand panel). In the background, the free-
energy landscape obtained from the Anton MD simulations is
shown. Right-hand inset: Distribution of similarity between varia-
tional and MD folding pathways (dashed line) compared with the
intrinsic similarity of MD folding pathways (solid line).
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Protease inhibition by serpins requires a large conformational
transition from an active, metastable state to an inactive, stable
state. Similar reactions can also occur in the absence of proteases,
and these latency transitions take hours, making their time scales
many orders of magnitude larger than are currently accessible
using conventional molecular dynamics simulations. Using a varia-
tional path sampling algorithm, we simulated the entire serpin
active-to-latent transition in all-atom detail with a physically re-
alistic force field using a standard computing cluster. These simu-
lations provide a unifying picture explaining existing experimental
data for the latency transition of the serpin plasminogen activator
inhibitor-1 (PAI-1). They predict a long-lived intermediate that
resembles a previously proposed, partially loop-inserted, prelatent
state; correctly predict the effects of PAI-1 mutations on the kinet-
ics; and provide a potential means to identify ligands able to accel-
erate the latency transition. Interestingly, although all of the
simulated PAI-1 variants readily access the prelatent intermediate,
this conformation is not populated in the active-to-latent transition
of another serpin, α1-antitrypsin, which does not readily go latent.
Thus, these simulations also help elucidate why some inhibitory
serpin families are more conformationally labile than others.

molecular simulations | conformational change |
plasminogen activator inhibitor-1

The serpin plasminogen activator inhibitor 1 (PAI-1) negatively
regulates blood clot clearance (fibrinolysis) by mechanically

inhibiting important serine proteases, including tissue type plas-
minogen activator and urokinase type plasminogen activator (1).
Suicide inhibition, initiated by proteolytic cleavage of the PAI-1
reactive center loop (RCL), requires insertion of the cleaved
RCL into the central β-sheet (sheet A). This process expands
sheet A, inhibits the covalently attached protease by mechanical
disruption of the active site (2), and results in a thermodynami-
cally stable serpin conformation. Alternatively, PAI-1 can spon-
taneously deactivate by inserting its intact, uncleaved RCL into
sheet A, resulting in the more stable but inactive latent confor-
mation (1) (Fig. 1).
The latency transition provides a facile way to regulate PAI-1

activity. Physiologically, this regulation is achieved by binding to
the cell adhesion factor vitronectin, leading to an ∼50% increase
in the active state t1/2 (3). Because high levels of active PAI-1 are
associated both with poor prognoses for some cancers, pre-
sumably due to interactions with vitronectin, and with cardio-
vascular diseases (1), PAI-1 inhibitors that accelerate the latency
transition are under development (1, 4, 5). However, drug design
efforts are hampered by the lack of detailed molecular mecha-
nisms for PAI-1 conformational changes. Numerous studies have
identified mutations that either accelerate or retard the confor-
mational transition, as well as antibodies that can accelerate la-
tency. Despite these efforts, the molecular details of the latency
transition and the residues involved in the key interactions that
drive it are still unclear.
In principle, molecular dynamics (MD) simulations can aptly

complement these experiments and provide an atomistic de-
scription of protein structural transitions. Unfortunately, even
using the most powerful special-purpose supercomputer, MD
simulations can only cover time intervals up to about a millisecond

for polypeptide chains consisting of nearly 100 amino acids (6),
which are considerably smaller than PAI-1. Additionally, the
PAI-1 active state has a t1/2 of 1–2 h at 37 °C (3), a time scale
clearly beyond the reach of any present or foreseen conventional
all-atom MD simulation.
In view of the computational limitations of MD, more so-

phisticated alternative algorithms have been developed and then
applied to investigate rare biological transitions (an incomplete
list is provided in refs. 7–11). To date, the only attempt to sim-
ulate the active-to-latent transition in PAI-1 in atomic detail
used the targeted MD algorithm (12). Unfortunately, even ap-
plication of a strong steering force to drive the protein toward
the latent state did not result in a transition. To overcome this
problem, an ad hoc intermediate structure was postulated and
used as the target for the steered simulation. This procedure,
however, resulted in trajectories that disagree with the results of
kinetic experiments.
In this paper, we show that using the so-called “dominant

reaction pathways” (DRP) (13–15) approach, it is finally possible
to overcome the existing computational limitations and perform
atomistic simulations of the active-to-latent transitions of several
PAI-1 variants and of human α1-antitrypsin (A1AT), with mean
first-passage times as long as several days. The DRP method is
a path integral-based approach that yields the reaction pathways
with the highest probability of being realized within Langevin
dynamics. This scheme has been extensively tested against the
results of MD protein folding simulations using both reduced
(16, 17) and realistic atomistic force fields (15). It was then
successfully applied to much more complex processes, such as
the folding of a natively knotted protein (14).

Significance

Inhibitory serpin plasminogen activator inhibitor 1 (PAI-1) helps
regulate blood clot clearance, and high levels of active PAI-1
are associated with poor cancer prognoses and cardiovascular
diseases. PAI-1 transitions from an active form to an inactive,
latent form via large structural rearrangements. Our simu-
lations provide the first realistic atomistic characterization, to
our knowledge, of this transition. They correctly predict the
kinetic effects of mutations and explain why PAI-1 binding to
specific molecules accelerates the transition. Structures from
these simulations provide templates to design drugs that
speed up the latency transition, with potentially important
biomedical applications. Serpins are large proteins, and the
first-passage times of the simulated conformational transitions
are many orders of magnitude longer than the time intervals
accessible using conventional molecular dynamics.
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Abstract

We report on atomistic simulation of the folding of a natively-knotted protein, MJ0366, based on a realistic force field. To
the best of our knowledge this is the first reported effort where a realistic force field is used to investigate the folding
pathways of a protein with complex native topology. By using the dominant-reaction pathway scheme we collected about
30 successful folding trajectories for the 82-amino acid long trefoil-knotted protein. Despite the dissimilarity of their initial
unfolded configuration, these trajectories reach the natively-knotted state through a remarkably similar succession of steps.
In particular it is found that knotting occurs essentially through a threading mechanism, involving the passage of the C-
terminal through an open region created by the formation of the native b-sheet at an earlier stage. The dominance of the
knotting by threading mechanism is not observed in MJ0366 folding simulations using simplified, native-centric models.
This points to a previously underappreciated role of concerted amino acid interactions, including non-native ones, in aiding
the appropriate order of contact formation to achieve knotting.
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Introduction

Natively-knotted proteins are increasingly studied as a new
paradigm of ‘‘multiscale’’ folding coordination, which leads to
establishing the native knot in the native position starting from the
unknotted newly-translated state [1–4]. Intuitively, the pathways
associated to this process appear so improbable and prone to
misfolding that it was long held that naturally occurring proteins
would be protected against the occurrence of knots. This a priori
expectation, which has a sound statistical basis [5,6], was so strong
radicated that only several years after the publication of the
human carbonic anhydrase II structure [7] it was realized that it
actually accommodated a knot [8]. Since then, hundreds of
instances of naturally-occurring knotted proteins have been found
and they now account for about 2% of the protein data bank
(PDB) entries [6].

The salient aspects of the folding phenomenology of several
knotted proteins have been recently probed by various experi-
ments (for recent reviews see refs. [1–4]). These studies have
demonstrated that newly translated, unknotted proteins, can fold
into the native knotted structure without the assistance of
chaperones [9,10], though the latter can significantly speed up
the process [10]. The details of the concerted backbone
movements that lead to the self-tying of the protein in the native
knot remain, however, beyond reach of current experimental
techniques. In this regard, numerical investigations can aptly
complement experimental ones, by providing valuable insight into
the repertoire of viable modes of knot formation, the stage at

which the knot is formed, and the possible role of non-native
interactions [11–14].

To ease the major computational burden imposed by simulating
the slow process of spontaneous folding/knotting of these
molecules, the above-mentioned studies were performed using
Gôo-type native-centric force fields, in either coarse-grained (CG)
or atomistic protein representations. The latter approach allowed
for establishing the noteworthy result that by promoting native
interactions alone it is possible to fold a natively-knotted protein
[11,12]. Non-native interactions have, however, been argued to be
important for enhancing the efficiency of the process, by
significantly increasing the accessibility of knotted configurations
in the early folding stages [13,14].

A natural test case for numerical studies of spontaneous knotting
in polypeptide chains is represented by protein MJ0366, which is
the shortest known knotted protein. The folding process of this 82-
amino acid long protein appears to be governed by such a delicate
interplay of amino acid stereochemical interactions that folding
simulations employing different levels of spatial resolution have
been shown to yield different knotting mechanisms. In particular,
the seminal study of Noel and co-workers [12], where the folding
of MJ0366 was characterized using pure native-centric force-fields,
has shown that in coarse-grained folding simulations, the knot
could form at either terminus, while only the C-terminal is
involved in knotting when the full atomistic detail is used.

The observed sensitivity of the MJ0366 folding process on
structural details poses a further fundamental question: to what
extent is the knotting mechanism sensitive to details of the force
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ABSTRACT: Im7 and Im9 are evolutionary related proteins with
almost identical native structures. In spite of their structural similarity,
experiments show that Im7 folds through a long-lived on-pathway
intermediate, while Im9 folds according to two-state kinetics. In this
work, we use a recently developed enhanced path sampling method to
generate many folding trajectories for these proteins, using realistic
atomistic force fields, in both implicit and explicit solvent. Overall, our
results are in good agreement with the experimental ϕ values and with
the result of ϕ-value-restrained molecular dynamics (MD) simulations.
However, our implicit solvent simulations fail to predict a qualitative
difference in the folding pathways of Im7 and Im9. In contrast, our
simulations in explicit solvent correctly reproduce the fact that only
protein Im7 folds through a on-pathway intermediate. By analyzing our
atomistic trajectories, we provide a physical picture which explains the observed difference in the folding kinetics of these chains.

■ INTRODUCTION
The overall success of simplified protein models based on
structure-based native-centric force fieldssee refs 1 and 2
poses the problem of identifying aspects of protein folding which
cannot be explained by the energy−entropy competition
associated with forming native contacts. In this context,
considerable effort has been put toward investigating the folding
of polypeptide chains in which the energy−entropy balance is
expected to be different from that of single-domain globular
proteins. Examples include proteins subject to topological
constraints provided by the tethering to a membrane,4 by the
presence of disufide bonds5−8 or by knots in the native state.9−11

In some of these cases, it was shown that non-native interactions
can play an active role in guiding the folding reaction, for example
by orienting the threading terminus toward the loop in a knot-
forming event.12,13

Another feature of the protein folding phenomenology which
cannot be explained in a purely native-centric picture is the
observation of qualitative differences in the folding kinetics and
thermodynamics of structurally homologous proteins. In this
context, a particularly interesting case of study is represented by
the folding kinetics of colicin immunity binding proteins of
Escherichia coli, a family of small four-helix proteins with close
sequence similarity (∼60%) and almost identical native
structures. Figure 1 displays the crystal structure of two proteins
of this family, named Im7 and Im9, respectively. While it is
generally accepted that protein Im7 folds via an on-pathway
intermediate,14,15 the folding mechanism of Im9 has long been
debated. In particular, a clear experimental evidence for an on-
pathway intermediate also for Im9 has been reported only under

Received: June 9, 2016
Revised: August 16, 2016

Figure 1. Superimposed native structures of protein Im7 (yellow, PDB
code: 1CEI) and Im9 (blue, PDB code: 1IMQ).
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Applications to linear optics

Problems to address Bridging the gap with experiments

Calculating linear and non-linear optical spectra
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Extracting detailed structural kinetic information from 
near UV CD spectra (with B. Mennucci’s team)
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Solution strategies: fast exciton propagation limit

Figure 5.3: Diagramatic representation of Bethe Salpeter Equation (5.9) for the � function.

Replacing this definition in Eq. (5.7) and after some manipulation, we can follow the same
resummation procedure used above (see Appendix D.2). Hence, we can write down the following
equation, similar to the Bethe-Salpeter equation, for the quantities �:

�
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(5.9)

In Fig. 5.3, we diagramatically show the resummation of the cross-interaction. Due to the presence
of the integral convolution, the resolution of this equation is only possible numerically, hence
additional approximations are needed in order to obtain a simpler equation.

In the following, we introduce the Markovian approximation for the �(‹) interaction recovering
a Lindblad equation, and we discuss its limitation. Then, we relax the Markovian approximation
and we find a simpler formulation of Eq. (5.9).

5.1.3 Markovian Limit: Lindblad Equation

The dynamics of quantum excitations propagating in macromolecules is shaped by three main char-
acteristic time scales: ·S is the time scale at which the quantum excitations propagate through the
system, ·v is the time scale associated to the periods of the important conformational oscillations
(i.e. the inverse of the most relevant normal mode frequencies �) and ·E is the time scale at which
such vibrations are damped by dissipation.

Suppose we are interested in studying quantum energy transport over very long time scales
so that: ·S ∫ ·E , ·v. In this case we can adopt the so called Markovian limit, which consists in
neglecting all memory e�ects. It is well known that, in this limit, we expect the density matrix to
obey a Lindblad equation. In the QTFT framework, the Markovian condition is implemented by
taking the small frequency expansion of the vibron propagator, which is equivalent to reduce the
QTFT to a Fermi-like theory with only contact interactions:

�
nm qs

(t) ƒ d
nm qs

”(t) ∆ �
nm qs

(‹) ƒ 2fi d
nm qs

.

In frequency space this approximation corresponds to replace vibronic Green’s function � whit
the constant d

nm qs

in Eq. (5.9), obtaining
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In order to compute the quantum Liouvillian operators G(Ê), we integrate the last formula over
the variables Ê

1

and Ê
2

3:

G
ij kl

(Ê) = G0

ij kl

(Ê) + G0

ij nm

(Ê) d
nm qs

G
qs kl

(Ê) , (5.10)

3 Shifting the integral variable ‹ æ ‹

Õ = ‹ + Ê1, we can factorize the unperturbed G0 and the non-perturbative
G dynamical maps
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Results are simple analytic formulas!
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substrate with in-plane electrodes in an FET configuration (Fig. 7). In 

the ideal molecular structure for an OFET, strong π-π stacked building 

blocks should be uniaxially aligned in a direction parallel to the current 

flow in the channel region. The development of appropriate processing 

technologies is essential to the fabrication of unperturbed long-range-

oriented organic semiconductors.

Techniques for the molecular alignment of liquid crystals (LCs)56, 

such as mechanical alignment57,58, Langmuir-Blodgett (LB) 

deposition59-61, liquid-crystalline self-organization62, and alignment on 

specific substrates, have also been applied to the alignment of organic 

semiconductors. The rubbing technique63,64 is the most commonly 

used LC alignment method, and has been used in the alignment of 

the LC semiconducting polymer, (dioctylfluorene)-bithiophene 

copolymer (F8T2). F8T2 films prepared from the nematic liquid-

crystalline phase on rubbed polyimide have an enhanced mobility of up 

to 0.02 cm2/Vs, with anisotropies of ~5-8 for current flow parallel and 

perpendicular to the alignment direction65. Furthermore, for several 

common organic molecules that are not liquid crystalline, such as 

pentacene, copper phthalocyanine, p-sexithiophene, and P3HT, oriented 

thin films can be achieved by crystallization on a rubbed dielectric 

surface. The long axes of the conjugated molecules become highly 

oriented parallel to the substrate along the rubbing direction66,67. 

However, these anisotropic properties of oriented organic 

semiconductors on rubbed surfaces are possible mainly because of the 

surface roughness induced by the rubbing process, rather than the 

uniaxial alignment of the molecules68.

Brinkmann and coworkers69 have demonstrated that a friction-

transferred poly(tetrafluoroethylene), or PTFE, layer can be used 

to produce oriented pentacene and tetracene films. They conclude 

that the orientations of these molecules may be the result of the 

conjunction of topographically directed nucleation at PTFE ledges 

and confinement of the nanocrystal growth by the PTFE mesorelief 

induced by the friction-transfer process. OFETs based on P3HT films 

have also been fabricated on ordered PTFE-treated SiO2 surfaces, 

in which the polymer chain axis is aligned along the PTFE friction-

transfer direction70. In the case of the discotic LC semiconductor 

hexa-peri-benzocoronene (HBC), special columnar stacks parallel to 

the underlying PTFE have been achieved by casting from solution 

onto a friction-transferred, highly ordered PTFE surface71 (Fig. 8a). 

The alignment of organic semiconductors using friction-transferred 

PTFE results in anisotropies in the electrical properties of current 

flow parallel and perpendicular to the alignment direction, but these 

differences may be caused by surface roughness arising from the 

friction-transferred PTFE as much as by the rubbed dielectric surfaces. 

Oriented P3HT films can be prepared directly without using a PTFE 

layer and the friction-transfer technique72,73. P3HT backbones form a 

layered structure with stacking of the thiophene rings normal to the 

film surface, but it does not result in a high charge carrier mobility 

in OFET devices73. One critical point is that rubbed and friction-

Fig. 7 Schematics of the ideal alignment of organic semiconductor building blocks with strong π-π stacking. The diagrams show a P3HT wire. 

Fig. 6 Morphological features and structural characteristics of a single-crystal 
P3HT microwire formed on a Si substrate modified with an OTS dielectric layer. 
(a) Schematic of the self-assembly of P3HT chains along the π-π stacking 
direction into a single-crystal microwire. (b) SEM showing the rectangular 
cross section of a P3HT single-crystal with well-defined facets. (c) Optical 
microscopy image of a P3HT microwire FET. (Reprinted with permission from53. 
© 2006 Wiley-VCH.)
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Technical “intermezzo”: Self Consistent Path Sampling
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procedure. This way the system’s dynamics is used in
order to define an optimal reaction coordinate and accel-
erate the calculation of reactive pathways by many orders
of magnitudes.

Furthermore, we shall show that such a self-consistent
formulation dynamics can be rigorously derived starting
from the original (unbiased) Langevin equations, by re-
placing a suitably defined function of the reactive path
with its average over the full enable of reactive trajecto-
ries. This way the cost of calculating folding pathways
for proteins of virtually any size become a↵ordable us-
ing standard computer clusters. Thus, our self-consistent
itesrative scheme yields provides a mean-field solution of
the folding pathway problem.

To derive this formalism, we consider the Langevin
equation for all the atoms in the solute (and, possibly,
in the solvent):

miẍi = �mi�iẋi � riU(X) + ⌘i(t), (1)

where X = (x1, ...,xN ) denotes a point in configura-
tion space, U(X) is the potential energy, ⌘i is a delta-
correlated white noise obeying standard fluctuation-
dissipation relationship and mi and �i denote the atomic
masses and viscosity, respectively. Within this dynam-
ics, we consider the conditional probability to perform a
transition from the unfolded state U to the native state
N :

PU!N (t) =

Z

N

dXf

Z

U

dXi p(Xf , t|Xi) ⇢0(Xi) (2)

where
R

U(N) denotes the integral restricted to the con-
figurations in the unfolded and folded state respectively,
⇢0(Xi) is the initial distribution of unfolded configura-
tions and p(Xf , t|Xi) is the conditional probability to
di↵use from Xi to Xf in a time interval t. In the path
integral representation of the Langevin dynamics one has

p(Xf , t|Xi) =

Z Xf

Xi

DXe

�SOM [X] (3)

where SOM [X] is the Onsager-Machlup (OM) functional:
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Z t

0
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�imi
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(4)

Our purpose is to provide a scheme to e�ciently sam-
ple the statistically relevant trajectories which contribute
to the conditional probability p(Xf , t|Xi). To this goal
we introduce two auxiliary variables zm(⌧) and �m(⌧)
into the path integral by means of appropriate functional
Dirac-deltas:

p(Xf , t|Xi) =
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For sake of convenience and without loss of generality,
throughout this work we assume a definition of the Heav-
iside function such that ✓(0) = 1 In Eq. (5), s(⌧) and
z(⌧) are two external time-dependent functions defined
as follows:

s(⌧) = 1 � ⌧

t

(6)

z(⌧) = z(0) ⌘ 0 (7)

We note that functional deltas along with the initial con-
ditions zm(0) = z(0) and sm(0) = s(0) completely de-
termine the dynamics of the auxiliary variables zm(⌧) =
z(⌧) and sm(⌧) = s(⌧) for all ⌧ 2 [0, t].

Let us now rewrite the external functions s(⌧) and z(⌧)
as follows
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In these expressions Cij(X) are the entries of a contact
map matrix which continuously interpolate between 0
and 1, depending on the distance rij between atoms i

and j:

Cij(X) =
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#
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The symbol || . . . || in exponents of Eq.s (8) and
(9) denotes the Fröbenius norm, ||Aij � Bij ||2 ⌘

1
N(N�1)/2

PN
i<j=1(Aij�Bij)2. We note that, even though

the definitions of s�[X, ⌧ ] and z�[X, ⌧ ] involve some path
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We introduce an iterative algorithm to efficiently simulate protein folding and other conformational
transitions, using state-of-the-art all-atom force fields. Starting from the Langevin equation, we obtain
a self-consistent stochastic equation of motion, which directly yields the reaction pathways. From the
solution of this set of equations we derive a stochastic estimate of the reaction coordinate. We validate
this approach against the results of plain MD simulations of the folding of a small protein, which were
performed on the Anton supercomputer. In order to explore the computational efficiency of this algo-
rithm, we apply it to generate a folding pathway of a protein that consists of 130 amino acids and has
a folding rate of the order of s

1. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4997197]

I. INTRODUCTION

The protein folding pathway problem consists in clarify-
ing the pattern of structural changes through which a given
denaturated protein reaches its native structure.1,2 Its solution
would shine light on the main forces guiding the folding reac-
tion and provide valuable insight into the origin of possible
pathogenic misfolding events.

Even using the most powerful special-purpose supercom-
puter, plain Molecular Dynamics (MD) simulations of protein
folding are feasible only for small chains (consisting of up
to ⇠100 amino acids), with folding time within the ms time
scale.3 On the other hand, most proteins involved in biologi-
cally relevant folding or misfolding reactions contain several
hundreds of amino acids and have folding time that can be as
long as seconds or even minutes.

To overcome the computational limitations of plain MD
simulations, more advanced algorithms have been proposed in
the literature, see, e.g., Refs. 4–11. These techniques have been
successfully applied to investigate the kinetics or thermody-
namics of structural reactions involving polypeptide chains,
including the protein-ligand binding or the folding of small
protein fragments.

However, to date, only a relatively small number of appli-
cations of these methods to study the folding of large and
topologically complex proteins have been reported in the lit-
erature (see, e.g., Refs. 12–15). In particular, the so-called
Bias Functional (BF) approach11 has been used to provide a
variational approximation to the reaction pathways in several
protein folding and conformational transitions. In Ref. 14 it
was used to explain the puzzle of different folding kinetics of
two structurally homologous proteins, while in Ref. 15 it was
applied to explore the folding mechanism of a protein with a
knotted native state. In Ref. 16 a preliminary version of this
algorithm17 was employed to simulate a large conformational
transition that occurs with an inverse rate longer than 1 h. The

a)pietro.faccioli@unitn.it

BF method was also recently applied to investigate folding
and misfolding of several variants of the ↵1 anti-trypsin ser-
pin protein, which is made of nearly 400 amino acids and has
a folding time as long as tens of minutes. It was shown that
not only the BF method agrees with all existing experimental
information on the folding mechanism but also correctly pre-
dicts the effect of point mutations on the protein misfolding
propensity.18

The BF method exploits a rigorous variational princi-
ple to select the most reliable folding trajectory within a set
of trial pathways, previously generated by means of a spe-
cific type of biased dynamics, called ratchet-and-pawl MD
(rMD).19,20 In a rMD simulation, no bias is applied to the
protein, as long as it spontaneously progresses towards the
native state. A harmonic history-dependent force is introduced
only to discourage spontaneous backtracking towards the
reactant.

Clearly, if this biasing force was defined in terms of a good
reaction coordinate—for example, the direction orthogonal
to the iso-commitor hyper-surfaces in the protein configura-
tion space—then the rMD scheme would provide the correct
description of the folding mechanism. In practice, however,
rMD simulations of protein folding are biased along the direc-
tion set by a specific collective coordinate20 closely related
to the instantaneous fraction of native contacts, which is not
necessarily an optimal choice. Even though the BF varia-
tional condition is expected to improve on the results of plain
rMD simulations, a sub-optimal choice of biasing coordinate
may give rise to systematic errors that are hard to estimate
a priori.

In this work, we introduce a reaction path sampling
algorithm that enables generating protein-folding trajecto-
ries without relying on any model-dependent choice of bias-
ing coordinate. Instead, the reaction coordinate is derived
self-consistently and represents an output of the calculation,
providing insight into the folding mechanism.

This new scheme is not heuristically postulated, but rather
it follows directly from the Langevin dynamics, with no addi-
tional approximation other than a mean-field estimate of some

0021-9606/2017/147(6)/064108/12/$30.00 147, 064108-1 Published by AIP Publishing.



Step 2: With a mere mathematical trick, we re-write the external 
functions in a fancy way

Self-Consistent Reaction Path Sampling

s(⌧) = lim
�!1

s�[X, ⌧ ] ⌘ lim
�!1

 
1�

1
t

R t
0 dt0t0e�� ||Cij [X(⌧)]�Cij [X(t0)]||2

R t
0 dt0e��||Cij(X)�Cij [X(t0)]||2

!

z(⌧) = lim

�!1
z�[X, ⌧ ] ⌘ lim

�!1

✓
� 1

�
log

Z t

0
dt0e��||Cij [X(⌧)]�Cij [X(t0)]||2

◆

NB: X(t) is an arbitrary path in configuration space. In the large λ limit:  

Thus the specific choice of X(t) is irrelevant

s�[X, ⌧ ] ! 1� ⌧

t
z�[X, ⌧ ] ! const.&



Self-Consistent Reaction Path Sampling

Step 3: re-write the OM functional in a fancy way:

SOM [X] = lim
�!1

S�[X]

S�[X] ⌘ �/4

�m

Z t

0
d⌧ [mẍ+m�ẋ+riU(X)+

+kzrz�[X, ⌧ ](zm(⌧)� z�[X, ⌧ ])✓(zm(⌧)� z�[X, ⌧ ])

+ksrs�[X, ⌧ ](sm(⌧)� s�[X, ⌧ ])✓(sm(⌧)� s�[X, ⌧ ])]2

These terms look like rMD biasing forces…but in fact they are 
identically null!

Ratchet-and -Pawl (rMD)



Self-Consistent Reaction Path Sampling
Thus so far, no approximations have been introduced and the original stochastic 
path integral is exactly re-written as

p(Xf , t|Xi) = lim
�!1

p�(Xf , t|Xi)

p�(Xf , t|Xi) ⌘
Z Xf

Xi

DX

Z
Dsm

Z
Dzme�S�[X]

� [żm � ż�✓(zm � z�)] � [ṡm � ṡ�✓(sm � s�)]



Self-Consistent Reaction Path Sampling

Step 4: We now introduce our only approximation 

s�[X, ⌧ ] ' 1�
1
t

R t
0 dt0t0e�� ||Cij [X(⌧)]�hCij(t

0)i�||2

R t
0 dt0e��||Cij [X(⌧)]�hCij(t0)i�||2

z�[X, ⌧ ] ' � log

Z t

0
dt0e��||Cij [X(⌧)]�hCij(t

0)]i�||2

hCij(⌧)i� =

RXf

Xi
DXe�S�[X]Cij [X(⌧)]
RXf

Xi
DXe�S�[X]

where:

2

procedure. This way the system’s dynamics is used in
order to define an optimal reaction coordinate and accel-
erate the calculation of reactive pathways by many orders
of magnitudes.

Furthermore, we shall show that such a self-consistent
formulation dynamics can be rigorously derived starting
from the original (unbiased) Langevin equations, by re-
placing a suitably defined function of the reactive path
with its average over the full enable of reactive trajecto-
ries. This way the cost of calculating folding pathways
for proteins of virtually any size become a↵ordable us-
ing standard computer clusters. Thus, our self-consistent
itesrative scheme yields provides a mean-field solution of
the folding pathway problem.

To derive this formalism, we consider the Langevin
equation for all the atoms in the solute (and, possibly,
in the solvent):

miẍi = �mi�iẋi � riU(X) + ⌘i(t), (1)

where X = (x1, ...,xN ) denotes a point in configura-
tion space, U(X) is the potential energy, ⌘i is a delta-
correlated white noise obeying standard fluctuation-
dissipation relationship and mi and �i denote the atomic
masses and viscosity, respectively. Within this dynam-
ics, we consider the conditional probability to perform a
transition from the unfolded state U to the native state
N :

PU!N (t) =

Z

N

dXf

Z

U

dXi p(Xf , t|Xi) ⇢0(Xi) (2)

where
R

U(N) denotes the integral restricted to the con-
figurations in the unfolded and folded state respectively,
⇢0(Xi) is the initial distribution of unfolded configura-
tions and p(Xf , t|Xi) is the conditional probability to
di↵use from Xi to Xf in a time interval t. In the path
integral representation of the Langevin dynamics one has

p(Xf , t|Xi) =

Z Xf

Xi

DXe

�SOM [X] (3)

where SOM [X] is the Onsager-Machlup (OM) functional:

SOM [X] ⌘
Z t

0
d⌧

NX

i=1

�/4

�imi
(miẍi + mi�iẋi + riU)2

(4)

Our purpose is to provide a scheme to e�ciently sam-
ple the statistically relevant trajectories which contribute
to the conditional probability p(Xf , t|Xi). To this goal
we introduce two auxiliary variables zm(⌧) and �m(⌧)
into the path integral by means of appropriate functional
Dirac-deltas:

p(Xf , t|Xi) =

Z Xf

Xi

DX · e

�SOM [X]

Z

s(0)
Dsm

Z

z(0)
Dzm

·� [żm � ż ✓(zm � z) ] � [ṡm � ṡ ✓(sm � s) ] ,(5)

Native
State

Unfolded
State

X

hX(⌧)i

X(⌧)

s�(X)
z�(X)

FIG. 1:

For sake of convenience and without loss of generality,
throughout this work we assume a definition of the Heav-
iside function such that ✓(0) = 1 In Eq. (5), s(⌧) and
z(⌧) are two external time-dependent functions defined
as follows:

s(⌧) = 1 � ⌧

t

(6)

z(⌧) = z(0) ⌘ 0 (7)

We note that functional deltas along with the initial con-
ditions zm(0) = z(0) and sm(0) = s(0) completely de-
termine the dynamics of the auxiliary variables zm(⌧) =
z(⌧) and sm(⌧) = s(⌧) for all ⌧ 2 [0, t].

Let us now rewrite the external functions s(⌧) and z(⌧)
as follows

s(⌧) = lim
�!1

s�[X, ⌧ ]

⌘ lim
�!1

 
1 �

1
t

R t

0 dt

0
t

0
e

�� ||Cij [X(⌧)]�Cij [X(t0)]||2

R t

0 dt

0
e

��||Cij(X)�Cij [X(t0)]||2

!

(8)

z(⌧) = lim
�!1

z�[X, ⌧ ]

⌘ lim
�!1

✓
� 1

�

log

Z t

0
dt

0
e

��||Cij [X(⌧)]�Cij [X(t0)]||2
◆

(9)

In these expressions Cij(X) are the entries of a contact
map matrix which continuously interpolate between 0
and 1, depending on the distance rij between atoms i

and j:

Cij(X) =

"
1 �

✓
rij

r0

◆10
#

/

"
1 �

✓
rij

r0

◆12
#

, (r0 = 7.5Å).

(10)

The symbol || . . . || in exponents of Eq.s (8) and
(9) denotes the Fröbenius norm, ||Aij � Bij ||2 ⌘

1
N(N�1)/2

PN
i<j=1(Aij�Bij)2. We note that, even though

the definitions of s�[X, ⌧ ] and z�[X, ⌧ ] involve some path

Then sλ and zλ  become Parrinello’s path 
variables with respect to the average 
trajectories in contact map space

rMD biasing  
forces along  
s & z switch on!



Solution strategy: long-time, large-distance limit

Use Renormalization Group formalism to perform coarse-graining and 
lower the time & spatial-resolution power. Obtain an effective theory 
which yields the same results in the long-time long-distance limit: 

P (y, t|x, 0) '
Z

y

x

DR e
�

R t
0 dT


1

4Db
2
Ṙ

2+
⇣

�B
�

⌘2
Cb

4 Ṙ

4+...

�

. . . = O
✓
�B

�

◆2

A ·B =
X

ij

gij AiBjwhere quantum correction  
terms

from the microscopic theory we get

� �B (De Broglie’s thermal wavelentgh)(cut-off)



Diffusion of a quantum excitation:
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semi-classical approximation [35–38]. Indeed, the EFT
approach is defined in terms of external cut-o↵ scales,
which set the resolution power of the theory and are cho-
sen a priori.

VIII. SOLUTION OF THE PATH INTEGRAL
AND RENORMALIZATION

The e↵ective theory defined in Eq. (62) explicitly de-
pends on the cut-o↵ scales �t and � and needs to be
renormalized. This can be done by introducing appropri-
ate counter-terms into the e↵ective action and matching
the prediction of the e↵ective theory against experiment
or more microscopic calculations, at some time-scale t⇤.
Through such a renormalization procedure, the power-
law dependence of the e↵ective coe�cients on the cut-o↵s
�t and � is removed and is replaced by a much weaker
dependence on the renormalization scale t⇤.

To implement this program, let us consider for sake
of simplicity the simple case of isotropic di↵usion (i.e.
g0ij = �ij). The same procedure can be straightforwardly
applied to the general case of anisotropic di↵usion, by
repeating the same analysis component-by-component.

After introducing the renormalizing counter-terms, the
path integral (62) is modified as follows:

P (y, t|x, 0) '
Z

y

x

DR e�Seff [Ṙ]+⇠2(Q2 Ṙ

2+Q4 Ṙ

4),

(63)

where Q2 and Q4 are insofar unknown coe�cients. To
order ⇠2 the renormalized expression for the e↵ective ac-
tion then reads

S̄eff =

Z t

0
dT

"
Ṙ

2

4Dren
+ CrenṘ

4

#
, (64)

where Dren, and Cren are the renormalized coe�cients.
In the following, we show how they can be determined
up to O �

⇠2
�
accuracy.

To this end, we first analytically compute the path in-
tegral given in Eq. (63) to leading-order in a perturbative
expansion in ⇠2. We obtain

P (y, t|x, 0) ' P0(y, t|x, 0;Db
0)

⇥
1 + ⇠2(Cb

2 +Q2)

·
✓
(x� y)2

t
� 6Db

0

◆
� ⇠2(Cb

4 �Q4)

✓
(x� y)4

t3
�

�t� t

�t

20Db
0(x� y)2

t2
+

�t� 2t

�t

60Db 2
0

t

◆�

(65)

where

P0(y, t|x, 0;Db
0) =

e
�x

2

4tDb
0

2
p

tDb
0⇡

(66)

is the unperturbed expression. To implement the renor-
malization, we choose to match the prediction of the two
lowest moments of this distribution, against the results of
experiment or microscopic simulations at some time-scale
t⇤:

h�R

2(t⇤)iexp ⌘ h�R̄

2(t⇤)i = 6Drent
⇤, (67)

h�R

4(t⇤)iexp ⌘ h�R̄

4(t⇤)i = 60D2
rent

⇤2 � Crent
⇤, (68)

where �R = (y � x) and

Dren = D0

h
1 + 4⇠2D0

⇣
Cb

2 +Q2 (69)

�20D0

�t

�
Cb

4 �Q4

� ⌘�
+ o

�
⇠4
�
,

Cren = 1920⇠2D4
0

�
Cb

4 �Q4

�
+ o

�
⇠4
�
, (70)

are the renormalized constants, which are finite combi-
nations of bare e↵ective coe�cients and counter-terms.
Their numerical value is expected to run weakly with the
matching time scale t⇤.
An important observation to make is that the mean-

square displacement h�R

2(t)i retains its linear depen-
dence on time t (Einstein’s law), even when quantum
corrections are taken into account. In contrast, quantum
corrections do a↵ect the time dependence of h�R

4(t)i, by
introducing a linear term, which is absent in the classical
di↵usion limit.
Thus, the renormalized probability density including

the leading-order quantum corrections reads:

P̄ (y, t|x, 0) ' P0(y, t|x, 0;Dren)⇥
1� Cren

✓
(y � x)4

t3Dren
� 20

(y � x)2

t2
+

60Dren

t

◆�
.

(71)

We empahsize that the ⇠2 expansion does not break
down in the long-time limit. This can been seen directly
from the expression (71), which shows that the pertur-
bative corrections decay with time faster than the un-
perturbed term. In particular, the quantum excitation’s
dynamics reduces to the (unperturbed) classical over-
damped di↵usion, in the asymptotic long-time limit, im-
plying that the stochastic collisions contribute to quench
the quantum e↵ects.

IX. HOLE TRANSPORT IN A LONG
HOMO-DNA MOLECULAR WIRE

For illustration purposes, in this section we apply the
e↵ective theory developed above to investigate the dy-
namics of inelastic hole propagation along a long homo-
DNA molecule, which is regarded as an infinite molecular
wire. To this end we first define a microscopic theory and
then match the corresponding e↵ective theory at a given
time scale t⇤ to define the renormalized parameters and
finally use the e↵ective theory to study the long-time and
large-distance dynamics.

The analytic solution (after renormalization):

diffusion of quantum excitation

quantum correction terms

Renormalized constants, to be determined from experiments or micr. sim.s



Illustrative application:  
hole diffusion on DNA wires
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ABSTRACT With most of the early experiments reporting a wide range of elec-
tronic properties for DNA, varying from insulating, semiconducting, and conduct-
ing to even induced superconductivity, the conductivity of DNA still remains a
challenge. To this end, theoretical studies have greatly aided in explaining the
observed conductance behavior of DNA. Theoretical charge-transfer studies of
DNA can be divided into two broad categories, model calculations and ab initio
calculations. In this Perspective, we discuss a few results from both categories and
highlight the importance of bothmethods. The aim is to provide an overviewof the
theoretical methods that are used to study DNA conductivity, highlighting their
strengths and deficiencies.

T he last two decades have seen an active interest in
understanding the electronic structure and properties
of DNA for applications in the field of molecular

electronics and spintronics.1-4 The similar arrangement
of the π orbitals in stacked metallic aromatic organic
crystals, like Bechgaard salts,5 and the π orbitals of DNA
bases encouraged researchers to believe that DNA could
indeed act as a conducting material.6 This interest in
studying DNAconductivity was further fueled by the initial
studies on DNA charge transfer by Barton and co-workers,
who observed evidence for distance-independent charge
transfer between DNA-intercalated transition-metal
complexes.7 These studies were followed by various other
experiments by Henderson et al.,8 Lewis et al.,9 and Geise
et al.,10 which established that superexchange (tunneling)
occurs between guanines (or guanine dimers and trimers)
separated by three or fewer A/T (adenine/thymine) base
pairs, while for larger separations, diffusive hopping domi-
nates the charge-transfer mechanism. This conclusion has
also been supported by a large number of theoretical and
experimental studies, which have been adequately reviewed
earlier.11-17 While charge-transfer experiments seemed
to converge on a general understanding of DNA charge-
transfer properties, direct conductivity measurements
yielded conflicting results. Direct conductivity measure-
ments have attributed a range of electronic properties to
DNA, varying from insulating, semiconducting, and con-
ducting to even induced superconductivity. The aim of this
Perspective is to provide an overview of the various
theoretical methods, which have been used to study the
phenomenon of DNA conductivity and highlight their
strengths and deficiencies. We focus on concepts which
have been found to govern DNAconductivity andmay lead
to improved DNA conductance for realizable molecular
electronics applications. That being said, it is important to
present a brief summary of the experiments that triggered
off the interest in DNA conductivity.

In 1998, Braun et al.18 reported insulating behavior for a
μm long λ-DNA, whose 30 ends were chemically anchored to
Au electrodes via Au-sulfur interactions. No measurable
current was found across the DNAmolecules for bias voltages
ranging from -10 to 10 V. Later, Pablo et al.19 carried out
experiments on a λ-DNA sitting on an insulatingmica surface
and connected by a gold electrode and a SFM (scanning force
microscopy) tip, where they also found no trace of current.
The schematic of the setup is shown in Figure 1a. Note that
both experiments usedλ-DNA,which is 48502base pairs long
and has a mixed sequence. Such a mixed sequence would
lead to disorder-driven localized states preventing flow of
current. Subsequent experiments by Storm et al.,20 with a
varying DNA sequence (λ-DNA, as well as synthetic poly-
(G)-poly(C)), two types of electrodes (Pt and Au), and
different insulating surfaces (SiO2, mica) also reported non-
measurable conductance. However, an analysis of their AFM
images revealed elongated DNA samples, which were no
longer contained in a well-stacked orientation with a base

Direct conductivity measurements
have attributed a range of electronic
properties to DNA, varying from
insulating, semiconducting, and
conducting to even induced

superconductivity.
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t⇤ [ps] 1 5 7.5 10 12.5 15
Dren [Å2/ps]⇥ 102 3,6 ± 0.2 3.0 ± 0.1 2.95 ± 0.05 2,90 ± 0.04 2.87 ± 0.04 2.85 ± 0.03
Cren [Å4/ps]⇥ 106 -1.3 ± 0.1 -2.7 ± 0.3 -3.1 ± 0.3 -3.2 ± 0.4 -3.2 ± 0.4 -3.1 ± 0.4

TABLE I: Renormalized coe�cient in Eqs. (69) and (70) fitted at di↵erent time scales t⇤.

FIG. 1: Time dependence of h�R2(t)i (left panel) and h�R4(t)i (right panel), in the microscopic model (red line) and in our
e↵ective theory (solid black line). The dashed line in the right panel represents the prediction of a purely di↵usive model
(zero-th order contribution in ⇠2 expansion) and the black circles represent the matching point (i.e. the renormalization time
scale is t⇤ = 10 ps). The predictions in the microscopic model have been obtained in 200-base pair long molecule, by averaging
over 800 di↵erent trajectories generated using the algorithm defined in Ref. [20]. Beyond 15 fs these result become a↵ected by
fine-size e↵ects.

We consider a very simple discrete model for the
DNA conformational dynamics introduced in Ref. [39], in
which the molecules vibration are e↵ectively represented
by the one-dimensional harmonic chain:

V (Q) =
NX

n=1



2
(xi � xi�1 � a0)

2
. (72)

In this equation xi denotes the position of the i�th base
pair, while =0.85 eV/Å2 is the spring constant, while
a0 = 3.4 Å is the equilibrium distance between two neigh-
boring bases. In natural units (in which h̄ = c = 1) the
mass of each base pare is M = 2.44 1011 eV.

The transfer integrals at the equilibrium position
f
lm

(Q0) and its derivatives fa
lm

(Q0), entering Eq. (18),
have been fixed in order to match the main features of
the statistical distribution of transfer matrix elements for
a homo-base DNA, computed microscopically in Ref. [11]
from DFT-B electronic-structure calculations performed
on snapshot of atomistic MD trajectories. Namely, we
have set

f0
lm

= ht
lm

i ⌘ t0
�
�
l(m�1) + �

l(m+1)

�� e0�lm, (73)

fa
lm

= �
lm

p
� ⌘ t0

�
�
l(m�1) + �

l(m+1)

�
, (74)

where ht
lm

i and �
lm

denote the average and the variance
of the distribution reported in Ref. [11], leading to

e0 = 4.5 eV, t0 = 0.03 eV, t0 = 0.15 eV/Å.

The system’s temperature was set to T = 300K and nu-
merical simulations were performed on a 200-base pair
molecule.

We have studied the time-evolution of the probabil-
ity density of an electronic hole, initially prepared at the
center of the molecule, using the algorithm introduced
in Ref.[20], in which the stochastic conformational dy-
namics of the molecular wire is coupled to the quantum
dynamics of the electronic hole.
The formalism presented in the previous sections can

be used to define a low-resolution perturbative e↵ective
theory for this molecular wire. In Fig. 1, we show the
matching between the numerical simulations and analytic
calculations in such an e↵ective theory for the observables
h�R2(t)i and h�R4(t)i, fitted at the time scale t⇤ = 10 ps
(represented by a dot on the simulation curves). We note
that the two approaches give consistent results. In par-
ticular, the inclusion of order ⇠2 corrections is necessary
to reproduce the time-evolution of the hR4(t)i moment.
At times larger than 15 ps finite size e↵ects begin to a↵ect
the numerical simulations, and the microscopic model
cannot be used to investigate the long distance propa-
gation.
In Table I we compare di↵erent values of the renormal-

ized coe�cient Dren and Cren corresponding to di↵erent
renormalization time scales t⇤. We observe that the e↵ec-
tive parameters run only weakly with the renormalization
scale t⇤, as expected.

X. SUMMARY AND CONCLUSIONS

In this work, we used the EFT formalism to develop a
rigorous e↵ective description of the dissipative propaga-
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t⇤ [ps] 1 5 7.5 10 12.5 15
Dren [Å2/ps]⇥ 102 3,6 ± 0.2 3.0 ± 0.1 2.95 ± 0.05 2,90 ± 0.04 2.87 ± 0.04 2.85 ± 0.03
Cren [Å4/ps]⇥ 106 -1.3 ± 0.1 -2.7 ± 0.3 -3.1 ± 0.3 -3.2 ± 0.4 -3.2 ± 0.4 -3.1 ± 0.4

TABLE I: Renormalized coe�cient in Eqs. (69) and (70) fitted at di↵erent time scales t⇤.

FIG. 1: Time dependence of h�R2(t)i (left panel) and h�R4(t)i (right panel), in the microscopic model (red line) and in our
e↵ective theory (solid black line). The dashed line in the right panel represents the prediction of a purely di↵usive model
(zero-th order contribution in ⇠2 expansion) and the black circles represent the matching point (i.e. the renormalization time
scale is t⇤ = 10 ps). The predictions in the microscopic model have been obtained in 200-base pair long molecule, by averaging
over 800 di↵erent trajectories generated using the algorithm defined in Ref. [20]. Beyond 15 fs these result become a↵ected by
fine-size e↵ects.

We consider a very simple discrete model for the
DNA conformational dynamics introduced in Ref. [39], in
which the molecules vibration are e↵ectively represented
by the one-dimensional harmonic chain:

V (Q) =
NX

n=1



2
(xi � xi�1 � a0)

2
. (72)

In this equation xi denotes the position of the i�th base
pair, while =0.85 eV/Å2 is the spring constant, while
a0 = 3.4 Å is the equilibrium distance between two neigh-
boring bases. In natural units (in which h̄ = c = 1) the
mass of each base pare is M = 2.44 1011 eV.

The transfer integrals at the equilibrium position
f
lm

(Q0) and its derivatives fa
lm

(Q0), entering Eq. (18),
have been fixed in order to match the main features of
the statistical distribution of transfer matrix elements for
a homo-base DNA, computed microscopically in Ref. [11]
from DFT-B electronic-structure calculations performed
on snapshot of atomistic MD trajectories. Namely, we
have set

f0
lm

= ht
lm

i ⌘ t0
�
�
l(m�1) + �

l(m+1)

�� e0�lm, (73)

fa
lm

= �
lm

p
� ⌘ t0

�
�
l(m�1) + �

l(m+1)

�
, (74)

where ht
lm

i and �
lm

denote the average and the variance
of the distribution reported in Ref. [11], leading to

e0 = 4.5 eV, t0 = 0.03 eV, t0 = 0.15 eV/Å.

The system’s temperature was set to T = 300K and nu-
merical simulations were performed on a 200-base pair
molecule.

We have studied the time-evolution of the probabil-
ity density of an electronic hole, initially prepared at the
center of the molecule, using the algorithm introduced
in Ref.[20], in which the stochastic conformational dy-
namics of the molecular wire is coupled to the quantum
dynamics of the electronic hole.
The formalism presented in the previous sections can

be used to define a low-resolution perturbative e↵ective
theory for this molecular wire. In Fig. 1, we show the
matching between the numerical simulations and analytic
calculations in such an e↵ective theory for the observables
h�R2(t)i and h�R4(t)i, fitted at the time scale t⇤ = 10 ps
(represented by a dot on the simulation curves). We note
that the two approaches give consistent results. In par-
ticular, the inclusion of order ⇠2 corrections is necessary
to reproduce the time-evolution of the hR4(t)i moment.
At times larger than 15 ps finite size e↵ects begin to a↵ect
the numerical simulations, and the microscopic model
cannot be used to investigate the long distance propa-
gation.
In Table I we compare di↵erent values of the renormal-

ized coe�cient Dren and Cren corresponding to di↵erent
renormalization time scales t⇤. We observe that the e↵ec-
tive parameters run only weakly with the renormalization
scale t⇤, as expected.

X. SUMMARY AND CONCLUSIONS

In this work, we used the EFT formalism to develop a
rigorous e↵ective description of the dissipative propaga-

First match with microscopic calculations (renormalization)
Then use the EFT to obtain predictions at long times!
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Using renormalization group methods, we develop a rigorous coarse-grained representation of the dissipative
dynamics of quantum excitations propagating inside open macromolecular systems. We show that, at very low
spatial resolution, this quantum transport theory reduces to a modified Brownian process, in which quantum
delocalization effects are accounted for by means of an effective term in the Onsager-Machlup functional. Using
this formulation, we derive a simple analytic solution for the time-dependent probability of observing the quantum
excitation at a given point in the macromolecule. This formula can be used to predict the migration of natural
or charged quantum excitations in a variety of molecular systems, including biological and organic polymers,
organic crystalline transistors, or photosynthetic complexes. For illustration purposes, we apply this method to
investigate inelastic electronic hole transport in a long homo-DNA chain.
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I. INTRODUCTION

The striking observation of long-lived coherent quantum
energy transport in photosynthetic systems [1], and the per-
spective of realizing nanoscale molecular devices with specific
optoelectronics properties [2], has motivated an increasing
effort towards investigating the propagation of charged and
neutral quantum excitations across many organic [3–7] and
biological [8–18] macromolecules.

In contrast to the electric conduction in metals, quantum
transport in soft condensed matter can be significantly in-
fluenced by the coupling to the molecular vibrations and
to the surrounding environment. Consequently, the natural
theoretical framework to describe the propagation of excitons,
electrons, and holes through macromolecules is that of the
open quantum systems [19].

In this context, theoretical models have been developed
in which the dynamics of the quantum excitation is coarse
grained at the level of a simple one-body Hamiltonian, while
the coupling to the molecular motion and the environment is
collectively represented by means of an effective bosonic bath
(see, e.g., Refs. [9,13,18]). These models provide conceptually
sound and computationally efficient tools to investigate the
general mechanisms which underlie the long-range charge
transport and the loss of quantum coherence in macro-
molecules. On the other hand, the lack of chemical detail makes
it difficult to obtain quantitative predictions on the quantum
transport properties in specific molecular systems.

Complementary theoretical approaches have been devel-
oped which encode much information about the specific
chemical structure of the macromolecule, and hence are in
principle better suited to obtain quantitative predictions. These
models are generally based on combining the Schrödinger
equation for the one-body wave function of the quantum
excitation with molecular dynamics (MD) simulations for the
motion of the atomic coordinates (see, e.g., Refs. [7,11,20]).
The quantum excitation’s dynamics in these models can

*schneider@science.unitn.it
†faccioli@science.unitn.it

be investigated in great detail through extensive numerical
simulations. On the other hand, the lack of analytic insight
makes it difficult to identify the physical mechanisms which
are responsible for the transport dynamics.

In a recent paper [21], we developed a microscopic
theoretical framework to describe quantum transport in macro-
molecules, which combines chemical detail with analytic
insight. This approach is based on a coherent quantum field
path integral representation of the system’s reduced density
matrix. The path integral formalism is convenient because it
allows one to rigorously trace out from the density matrix the
atomic coordinates, hence avoiding computationally expensive
MD simulations. The quantum field theory (QFT) formalism is
adopted because it drastically simplifies the description of the
dynamics of open quantum systems. Indeed, we have shown
that, using QFT, the problem of computing real-time evolution
of observables in an open system can be mapped into the
problem of computing vacuum-to-vacuum Green’s functions
in some virtual system.

In the short-time limit, such a Green’s function can be
computed in perturbation theory by using standard Feynman
diagram techniques based on time-ordered propagators (rather
than a time-directed propagator), without having to perform
any numerical MD simulation. This feature makes the calcu-
lation of the density matrix computationally inexpensive or,
in some cases, even analytic. In addition, the diagrammatic
expansion offers physical insights, e.g., about the specific
processes which are responsible for quantum decoherence and
dissipation.

Unfortunately, such a perturbative approach breaks down in
the long-time regime, when the propagation is dominated by
multiple scattering processes and typically becomes inappli-
cable after 50–100 fs. Hence, the investigation of quantum
transport over larger distances and longer time intervals
using the QFT formalism requires a fully nonperturbative
approach.

In this paper we tackle this problem using the renormaliza-
tion group (RG) formalism to systematically coarse-grain the
dynamics. The result is a rigorous “low-energy” approximation
of our original microscopic QFT that yields the same dynamics
in the limit in which the quantum excitation travels for a long

1098-0121/2014/89(13)/134305(13) 134305-1 ©2014 American Physical Society



Applications to linear optics

Problems to address Bridging the gap with experiments

Calculating linear and non-linear optical spectra

Problems to address:

• field-matter interaction

• define n-exciton states
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• evolution of density matrix

• numerical implementation
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Extracting detailed structural kinetic information from 
near UV CD spectra (with B. Mennucci’s team)
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microscopic model  
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P (Qf , t|Qi) =
Tr[|Qf ihQf |⇢̂(t)]

Tr⇢̂(0)

Conformational dynamics

Advantage:  
computational efficiency  

for rare transitions
Application to: 
Protein folding & conformational 
transitions, chemical reactions

recombination and trapping. The results are shown in Figs.
1–3. In Fig. 2!a", we illustrate the functional dependence of
the ETE, Eq. !11", on temperature for two initial states local-
ized at site 1 or 6, respectively. The overall dependence is
less than 1% for reasonable temperatures. This can be ex-
plained by the relatively small size of the FMO and the ap-
proximately three orders of magnitude separation of lifetime
!1 /!r" and acceptor transfer !1 /"3" timescales. In order to
see this, note that at zero temperature there are only quantum
jumps originated from spontaneous emission of energy into
the phonon bath, leading to relaxation down the energy fun-
nel. This phenomenon in itself leads to a high efficiency of

transport due to the presence of irreversible trapping on a
time scale much faster than the lifetime of the excitation. At
higher temperatures quantum jumps due to stimulated emis-
sion and absorption enter the dynamics. Both processes have
the same rates and a temperature dependence which is deter-
mined by the bosonic distribution function n!#". In the FMO
protein, stimulated emission of excitonic energy helps the

(b)

(a)

FIG. 1. !Color online" The FMO protein. !a" The spatial structure and en-
ergy levels of the complex, where the number at each site represents the
localized site energy and the arrows with numbers denote the couplings
among various bacteriochlorophylls. For clarity, some small couplings are
not shown. The inset depicts the participation of the seven chlorophylls in
the delocalized excitonic states !Ref. 5". !b" The susceptiblities of ETE with
respect to perturbations of intersite jumps and corresponding damping, res-
caled by a factor of 104 and drawn with a cutoff of 2.0. The initial state is
taken to be a mixture of populations at sites 1 and 6. Standard parameters
are ER=35 cm−1, T=295 K, "3=1 ps−1, and !r=1 ns−1. Susceptibilites are
large when interchromophoric couplings are strong and site energies are
similar. The sign of the susceptibility is an indication of the directionality
toward the target site 3.

(b)

(a)

(c)

(d)

FIG. 2. !Color online" ETE as a function of !a" temperature, !b" reorgani-
zation energy !log linear", and !c" transfer rate to the acceptor !log linear".
Transfer time as a function of reorganization energy !d". Blue lines show the
efficiencies starting from an initial state localized at site 1. Red lines how
the efficiencies starting from site 6. The default parameters !shown as ver-
tical lines" are taken to be T=295 K, "3=1 ps−1, !r=1 ns−1, and ER
=35 cm−1. A quantum walk with no environment-assisted jumps corre-
sponds to no reorganization energy in panel !b". The ETE in this case is
15%–30% less than for the parameters obtained experimentally for FMO
demonstrating the effect of the environment-assisted quantum walk.

174106-6 Mohseni et al. J. Chem. Phys. 129, 174106 !2008"
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P (kf , t|ki) =
Tr[ |kf ihki| ⇢̂(t) ]
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proximately three orders of magnitude separation of lifetime
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see this, note that at zero temperature there are only quantum
jumps originated from spontaneous emission of energy into
the phonon bath, leading to relaxation down the energy fun-
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transport due to the presence of irreversible trapping on a
time scale much faster than the lifetime of the excitation. At
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sion and absorption enter the dynamics. Both processes have
the same rates and a temperature dependence which is deter-
mined by the bosonic distribution function n!#". In the FMO
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ergy levels of the complex, where the number at each site represents the
localized site energy and the arrows with numbers denote the couplings
among various bacteriochlorophylls. For clarity, some small couplings are
not shown. The inset depicts the participation of the seven chlorophylls in
the delocalized excitonic states !Ref. 5". !b" The susceptiblities of ETE with
respect to perturbations of intersite jumps and corresponding damping, res-
caled by a factor of 104 and drawn with a cutoff of 2.0. The initial state is
taken to be a mixture of populations at sites 1 and 6. Standard parameters
are ER=35 cm−1, T=295 K, "3=1 ps−1, and !r=1 ns−1. Susceptibilites are
large when interchromophoric couplings are strong and site energies are
similar. The sign of the susceptibility is an indication of the directionality
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the efficiencies starting from site 6. The default parameters !shown as ver-
tical lines" are taken to be T=295 K, "3=1 ps−1, !r=1 ns−1, and ER
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substrate with in-plane electrodes in an FET configuration (Fig. 7). In 

the ideal molecular structure for an OFET, strong π-π stacked building 

blocks should be uniaxially aligned in a direction parallel to the current 

flow in the channel region. The development of appropriate processing 

technologies is essential to the fabrication of unperturbed long-range-

oriented organic semiconductors.

Techniques for the molecular alignment of liquid crystals (LCs)56, 

such as mechanical alignment57,58, Langmuir-Blodgett (LB) 

deposition59-61, liquid-crystalline self-organization62, and alignment on 

specific substrates, have also been applied to the alignment of organic 

semiconductors. The rubbing technique63,64 is the most commonly 

used LC alignment method, and has been used in the alignment of 

the LC semiconducting polymer, (dioctylfluorene)-bithiophene 

copolymer (F8T2). F8T2 films prepared from the nematic liquid-

crystalline phase on rubbed polyimide have an enhanced mobility of up 

to 0.02 cm2/Vs, with anisotropies of ~5-8 for current flow parallel and 

perpendicular to the alignment direction65. Furthermore, for several 

common organic molecules that are not liquid crystalline, such as 

pentacene, copper phthalocyanine, p-sexithiophene, and P3HT, oriented 

thin films can be achieved by crystallization on a rubbed dielectric 

surface. The long axes of the conjugated molecules become highly 

oriented parallel to the substrate along the rubbing direction66,67. 

However, these anisotropic properties of oriented organic 

semiconductors on rubbed surfaces are possible mainly because of the 

surface roughness induced by the rubbing process, rather than the 

uniaxial alignment of the molecules68.

Brinkmann and coworkers69 have demonstrated that a friction-

transferred poly(tetrafluoroethylene), or PTFE, layer can be used 

to produce oriented pentacene and tetracene films. They conclude 

that the orientations of these molecules may be the result of the 

conjunction of topographically directed nucleation at PTFE ledges 

and confinement of the nanocrystal growth by the PTFE mesorelief 

induced by the friction-transfer process. OFETs based on P3HT films 

have also been fabricated on ordered PTFE-treated SiO2 surfaces, 

in which the polymer chain axis is aligned along the PTFE friction-

transfer direction70. In the case of the discotic LC semiconductor 

hexa-peri-benzocoronene (HBC), special columnar stacks parallel to 

the underlying PTFE have been achieved by casting from solution 

onto a friction-transferred, highly ordered PTFE surface71 (Fig. 8a). 

The alignment of organic semiconductors using friction-transferred 

PTFE results in anisotropies in the electrical properties of current 

flow parallel and perpendicular to the alignment direction, but these 

differences may be caused by surface roughness arising from the 

friction-transferred PTFE as much as by the rubbed dielectric surfaces. 

Oriented P3HT films can be prepared directly without using a PTFE 

layer and the friction-transfer technique72,73. P3HT backbones form a 

layered structure with stacking of the thiophene rings normal to the 

film surface, but it does not result in a high charge carrier mobility 

in OFET devices73. One critical point is that rubbed and friction-

Fig. 7 Schematics of the ideal alignment of organic semiconductor building blocks with strong π-π stacking. The diagrams show a P3HT wire. 

Fig. 6 Morphological features and structural characteristics of a single-crystal 
P3HT microwire formed on a Si substrate modified with an OTS dielectric layer. 
(a) Schematic of the self-assembly of P3HT chains along the π-π stacking 
direction into a single-crystal microwire. (b) SEM showing the rectangular 
cross section of a P3HT single-crystal with well-defined facets. (c) Optical 
microscopy image of a P3HT microwire FET. (Reprinted with permission from53. 
© 2006 Wiley-VCH.)

(b)(a)

(c)

REVIEW   Interface engineering in OFETs 
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Figura 1.4: Struttura del P3HT (a destra) e del PBTTT (a sinistra).

1.2 P3HT e PBTTT : studi sperimentali e teo-

rici

Il P3HT (poly(3-hexylthiophene)) è stato uno dei primi semicondutto-

ri organici polimerici ad aver mostrato discrete proprietà elettroniche pur

essendo depositato da soluzione e non per evaporazione termica. Recen-

temente però un altro polimero, il PBTTT (poly(2,5-bis(3-alkylthiophen-2-

yl)thieno[3,2-b]thiophene)) ha attirato grande attenzione perchè ha mostrato

prestazioni migliori rispetto al P3HT. Infatti misure di mobilità delle buche

in transistor ad effetto di campo (FET) utilizzando il P3HT come semicon-

duttore hanno fornito un valore di 0.1 − 0.2 cm2 V −1 s−1 [5] mentre per il

PBTTT si è ottenuto 0.2−0.6 cm2 V −1 s−1 in dispositivi con canali conduttivi

lunghi e 1.0 cm2 V −1 s−1 in dispositivi con canali corti [3].

In genere le prestazioni di dispositivi che utilizzano semiconduttori or-

ganici dipendono fortemente dalle proprietà morfologiche e strutturali dei

polimeri che influenzano fortemente le proprietà di trasporto di carica. In

particolare strutture e configurazioni ordinate sia su scala microscopica che

su scala mesoscopica favoriscono il trasporto determinando un’alta mobilità.

In figura 1.4 sono rappresentati un monomero di P3HT e uno di PBTTT.

Il P3HT è costituito da un anello pentagonale di tiofene, che presenta quattro

atomi di carbonio, quattro atomi di idrogeno e uno di zolfo (C4H4S rappre-
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substrate with in-plane electrodes in an FET configuration (Fig. 7). In 

the ideal molecular structure for an OFET, strong π-π stacked building 

blocks should be uniaxially aligned in a direction parallel to the current 

flow in the channel region. The development of appropriate processing 

technologies is essential to the fabrication of unperturbed long-range-

oriented organic semiconductors.

Techniques for the molecular alignment of liquid crystals (LCs)56, 

such as mechanical alignment57,58, Langmuir-Blodgett (LB) 

deposition59-61, liquid-crystalline self-organization62, and alignment on 

specific substrates, have also been applied to the alignment of organic 

semiconductors. The rubbing technique63,64 is the most commonly 

used LC alignment method, and has been used in the alignment of 

the LC semiconducting polymer, (dioctylfluorene)-bithiophene 

copolymer (F8T2). F8T2 films prepared from the nematic liquid-

crystalline phase on rubbed polyimide have an enhanced mobility of up 

to 0.02 cm2/Vs, with anisotropies of ~5-8 for current flow parallel and 

perpendicular to the alignment direction65. Furthermore, for several 

common organic molecules that are not liquid crystalline, such as 

pentacene, copper phthalocyanine, p-sexithiophene, and P3HT, oriented 

thin films can be achieved by crystallization on a rubbed dielectric 

surface. The long axes of the conjugated molecules become highly 

oriented parallel to the substrate along the rubbing direction66,67. 

However, these anisotropic properties of oriented organic 

semiconductors on rubbed surfaces are possible mainly because of the 

surface roughness induced by the rubbing process, rather than the 

uniaxial alignment of the molecules68.

Brinkmann and coworkers69 have demonstrated that a friction-

transferred poly(tetrafluoroethylene), or PTFE, layer can be used 

to produce oriented pentacene and tetracene films. They conclude 

that the orientations of these molecules may be the result of the 

conjunction of topographically directed nucleation at PTFE ledges 

and confinement of the nanocrystal growth by the PTFE mesorelief 

induced by the friction-transfer process. OFETs based on P3HT films 

have also been fabricated on ordered PTFE-treated SiO2 surfaces, 

in which the polymer chain axis is aligned along the PTFE friction-

transfer direction70. In the case of the discotic LC semiconductor 

hexa-peri-benzocoronene (HBC), special columnar stacks parallel to 

the underlying PTFE have been achieved by casting from solution 

onto a friction-transferred, highly ordered PTFE surface71 (Fig. 8a). 

The alignment of organic semiconductors using friction-transferred 

PTFE results in anisotropies in the electrical properties of current 

flow parallel and perpendicular to the alignment direction, but these 

differences may be caused by surface roughness arising from the 

friction-transferred PTFE as much as by the rubbed dielectric surfaces. 

Oriented P3HT films can be prepared directly without using a PTFE 

layer and the friction-transfer technique72,73. P3HT backbones form a 

layered structure with stacking of the thiophene rings normal to the 

film surface, but it does not result in a high charge carrier mobility 

in OFET devices73. One critical point is that rubbed and friction-

Fig. 7 Schematics of the ideal alignment of organic semiconductor building blocks with strong π-π stacking. The diagrams show a P3HT wire. 

Fig. 6 Morphological features and structural characteristics of a single-crystal 
P3HT microwire formed on a Si substrate modified with an OTS dielectric layer. 
(a) Schematic of the self-assembly of P3HT chains along the π-π stacking 
direction into a single-crystal microwire. (b) SEM showing the rectangular 
cross section of a P3HT single-crystal with well-defined facets. (c) Optical 
microscopy image of a P3HT microwire FET. (Reprinted with permission from53. 
© 2006 Wiley-VCH.)
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Ingredients from quantum chemistry calculations
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Compare to a non-perturbative approach:

‣ Saddle-point level for the coherent fields 

MQ̈i = ��Q̇i �ri( U(Q) + Tr[⇢f(Q)] ) + ⌘i(t)
d

dt
⇢lm(t) = � i

~ [f(Q), ⇢]lm

⇢lm = |lihm| flm(Q) = h�l(Q)|ĤDFT |�m(Q)i

‣ (density matrix) ‣ (hopping matrix elements)

Generalized quantum force
Resulting equations of motions:

‣ One-loop level for atomic coordinates   

(i.e. �0 = �00)

( i.e. O(Q0 �Q00)2 )
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Combining the results
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Implementation in practice: Trotter decomposition 

1 =
Z

dQ

Z
dX

Z 0

@
Y

k,s=1,2

d�k,sd�⇤k,s

2⇡i

1

A e�
P

s=1,2
P

l=1 �l,s�⇤l,s |Q, X, �i hQ, X, �|

Atomic nuclei, heat-bath variables 
in first quantization  

(i.e. use coordinates)

Hopping quantum excitation 
in second quantization  

(i.e. use coherent fields ) 



Structure of the path integral (PI)

P (Qf , kf , t|Qi, ki) =
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Explicit form (exact) 
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coupled evolution of the atomic nuclei 
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“memory” effects in the 
interaction with heat-bath
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Now make two approximations:

Q0(0) = Qi

Q̃(�i�) = Qi
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expand to order o(y2)
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1. The dynamics of the atomic nuclei is classical: 



Now make two approximations:

2. The heat-bath quickly looses its “memory”   

 Molecular dynamics of atomic nuclei => Langevin dynamics

delta-correlated white noise 


B(t)! Bohm(t) =
2k

B

TM�

~ �(t) +
i M�

2
d

dt
�(t),

fluctuation-dissipation relationship
The molecule ultimately attains thermal equilibrium 



The goal of our work:

To develop a rigorous microscopic approach in which the 
conformational and quantum transport dynamics are consistently 
obtained “botton-up” from the same quantum density matrix 

• it is possible to 
derive a very 
accurate variational  
approximation for  
rare event 
problems

payoffs

• It is possible to 
derive analytic 
approaches to 

quantum transport 
(Feynman diagrams)       

• The Renormalization  
Group (RG) offers 
the rigorous 
framework for 
varying the model 
resolutions



OBSERVATION: the path integral is very general!

Electrons in ground-
state it describes MD

For R = R0 + �r

it describes a  
exciton-phonon  

system 

⇢ij(t) =

Z
DR

Z
D ̄D eiS0[ ̄, ] ⇥ e�SOM [R, ̄, ] ⇥ eiI[R, ̄, ]

NB: All coupling constants can be microscopically determined from 
quantum chemistry calculations (overlap integrals)
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Reference State

Zm = Minimum value obtained by Z up to time

Bias potential = kr(Z � Zm)

2

kr = ratchet spring constant
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CAN WE TRUST THE BIAS FUNCTIONAL?

S a Beccara et al., 2015

Unbiased MD Steered MD Bias Functional

 Validation on a toy model

‣ Bias Functional is consistent on a toy model



PI enable to focus on the reactive part!
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Main difference with respect to instantons in QCD: 
here the real challenge is finding the instantons.  

Naive “cooling” is not useful: insufficient exploration of the path 
space
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We introduce a variational approximation to the microscopic dynamics of rare conformational
transitions of macromolecules. Within this framework it is possible to simulate on a small computer
cluster reactions as complex as protein folding, using state of the art all-atom force fields in
explicit solvent. We test this method against MD simulations of the folding of an α and a β protein
performed with the same all-atom force field on the Anton supercomputer. We find that our
approach yields results consistent with those of MD simulations, at a computational cost orders of
magnitude smaller.
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The development of the special-purpose Anton super-
computer has recently opened the way to MD simulations
of biomolecules consisting of several hundred atoms,
covering time intervals in the millisecond range [1]. By
using this facility, Shaw and co-workers characterized the
reversible folding of several small proteins, showing that
the existing all-atom force fields are able to attain the
correct protein native structures [1–3]. Unfortunately,
many biologically important conformational reactions
occur at time scales many orders of magnitude larger than
the millisecond. Hence, it is important to continue the
development of more efficient algorithms to sample the
reactive pathways space (see, e.g., Ref. [4] and references
therein).
In particular, in the dominant reaction pathways (DRP)

approach [5–8], microscopic trajectories XðτÞ, connecting
given initial and final molecular configurations Xi ¼ Xð0Þ
and Xf ¼ XðtÞ, are determined by maximizing their prob-
ability density P½X% in the Langevin dynamics. This
algorithm was first validated against MD using both
simplified and realistic atomistic force fields (see, e.g.,
Ref. [8]). Next, it was applied to characterize in atomistic
detail conformational reactions far too slow to be inves-
tigated by means of plain MD. Notable examples include
the folding of a knotted protein [9] and the latency
transition of several serpins [10].
One crucial limitation of the DRP method is that it can

only be applied in implicit solvent simulations. In this work
we overcome this limitation by introducing a new varia-
tional approximation suitable also for atomistic simulations
in an explicit solvent.
Let (X; Y) represent a point of the system’s configuration

space, where X¼ðx1;…;xNÞ and Y ¼ ðy1;…; yN0Þ denote

the solute and solvent coordinates, respectively. The
Langevin equations for the solvent and solute are

miẍi ¼ −miγi _xi −∇iU þ ηiðtÞ;
mjÿj ¼ −mjγj _yj −∇jU þ ηjðtÞ; ð1Þ

where UðX; YÞ is the potential energy, ηi is a white noise,
and mi and γi denote mass and viscosity, respectively.
We are interested in the probability density for the solute

to make a transition from Xi to Xf in a time t, along a given
path XðτÞ. This is given by the path integral (PI),

P½X% ¼
Z

DYe−SOM½X;Y%−UðXi;YiÞ=kBT; ð2Þ

where SOM½X; Y% is the Onsager-Machlup functional,
to be defined below. Maximizing P½X% with respect to
the path X yields the DRP optimum condition [5–7]:
ðδ=δXÞhSOM½X; Y%iY ¼ 0, where the average h·iY refers
to the PI over YðτÞ.
Unfortunately, computing this average with the accuracy

required for the path optimization is computationally
unfeasible, because of large statistical fluctuations. To
overcome this problem, we need to derive an optimum
criterion that does not involve any average over the solvent
dynamics.
We begin by considering a modified stochastic dynam-

ics, defined by introducing into Eq. (1) an external
(possibly time-dependent) biasing force Fbias

i ðX; tÞ, acting
on the solute atoms only and accelerating the transition to
the product. The probability of a given reactive pathway
XðτÞ in the biased dynamics is given by
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Step 2: Use reweighting and Feynmann-Kac inequality:  

PR!P (t) = P trial
R!P [X̄; t] he�(SOM�Strial)itrial � P trial

R!P [X̄, t] e�hSOM�Strialitrial

(similar to 84’s Dyakonov and Petrov’s paper)

Step 1: define a new biased stoch. dynamics -> new trial path integral 

(biased  stochastic dynamics which encourages to reach the target) 

Ptrial[X̄] = N e�Strial[X̄]
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computer has recently opened the way to MD simulations
of biomolecules consisting of several hundred atoms,
covering time intervals in the millisecond range [1]. By
using this facility, Shaw and co-workers characterized the
reversible folding of several small proteins, showing that
the existing all-atom force fields are able to attain the
correct protein native structures [1–3]. Unfortunately,
many biologically important conformational reactions
occur at time scales many orders of magnitude larger than
the millisecond. Hence, it is important to continue the
development of more efficient algorithms to sample the
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and Xf ¼ XðtÞ, are determined by maximizing their prob-
ability density P½X% in the Langevin dynamics. This
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Ref. [8]). Next, it was applied to characterize in atomistic
detail conformational reactions far too slow to be inves-
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mjÿj ¼ −mjγj _yj −∇jU þ ηjðtÞ; ð1Þ

where UðX; YÞ is the potential energy, ηi is a white noise,
and mi and γi denote mass and viscosity, respectively.
We are interested in the probability density for the solute

to make a transition from Xi to Xf in a time t, along a given
path XðτÞ. This is given by the path integral (PI),
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where SOM½X; Y% is the Onsager-Machlup functional,
to be defined below. Maximizing P½X% with respect to
the path X yields the DRP optimum condition [5–7]:
ðδ=δXÞhSOM½X; Y%iY ¼ 0, where the average h·iY refers
to the PI over YðτÞ.
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We begin by considering a modified stochastic dynam-

ics, defined by introducing into Eq. (1) an external
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only be applied in implicit solvent simulations. In this work
we overcome this limitation by introducing a new varia-
tional approximation suitable also for atomistic simulations
in an explicit solvent.
Let (X; Y) represent a point of the system’s configuration

space, where X¼ðx1;…;xNÞ and Y ¼ ðy1;…; yN0Þ denote

the solute and solvent coordinates, respectively. The
Langevin equations for the solvent and solute are

miẍi ¼ −miγi _xi −∇iU þ ηiðtÞ;
mjÿj ¼ −mjγj _yj −∇jU þ ηjðtÞ; ð1Þ

where UðX; YÞ is the potential energy, ηi is a white noise,
and mi and γi denote mass and viscosity, respectively.
We are interested in the probability density for the solute

to make a transition from Xi to Xf in a time t, along a given
path XðτÞ. This is given by the path integral (PI),

P½X% ¼
Z

DYe−SOM½X;Y%−UðXi;YiÞ=kBT; ð2Þ

where SOM½X; Y% is the Onsager-Machlup functional,
to be defined below. Maximizing P½X% with respect to
the path X yields the DRP optimum condition [5–7]:
ðδ=δXÞhSOM½X; Y%iY ¼ 0, where the average h·iY refers
to the PI over YðτÞ.
Unfortunately, computing this average with the accuracy

required for the path optimization is computationally
unfeasible, because of large statistical fluctuations. To
overcome this problem, we need to derive an optimum
criterion that does not involve any average over the solvent
dynamics.
We begin by considering a modified stochastic dynam-

ics, defined by introducing into Eq. (1) an external
(possibly time-dependent) biasing force Fbias

i ðX; tÞ, acting
on the solute atoms only and accelerating the transition to
the product. The probability of a given reactive pathway
XðτÞ in the biased dynamics is given by
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Step 2: Use reweighting and Feynmann-Kac inequality:  

PR!P (t) = P trial
R!P [X̄; t] he�(SOM�Strial)itrial � P trial

R!P [X̄, t] e�hSOM�Strialitrial

(similar to 84’s Dyakonov and Petrov’s paper)

Step 1: define a new biased stoch. dynamics -> new trial path integral 

(biased  stochastic dynamics which encourages to reach the target) 

Ptrial[X̄] = N e�Strial[X̄]
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the folding of a knotted protein [9] and the latency
transition of several serpins [10].
One crucial limitation of the DRP method is that it can
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where UðX; YÞ is the potential energy, ηi is a white noise,
and mi and γi denote mass and viscosity, respectively.
We are interested in the probability density for the solute

to make a transition from Xi to Xf in a time t, along a given
path XðτÞ. This is given by the path integral (PI),

P½X% ¼
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where SOM½X; Y% is the Onsager-Machlup functional,
to be defined below. Maximizing P½X% with respect to
the path X yields the DRP optimum condition [5–7]:
ðδ=δXÞhSOM½X; Y%iY ¼ 0, where the average h·iY refers
to the PI over YðτÞ.
Unfortunately, computing this average with the accuracy

required for the path optimization is computationally
unfeasible, because of large statistical fluctuations. To
overcome this problem, we need to derive an optimum
criterion that does not involve any average over the solvent
dynamics.
We begin by considering a modified stochastic dynam-

ics, defined by introducing into Eq. (1) an external
(possibly time-dependent) biasing force Fbias

i ðX; tÞ, acting
on the solute atoms only and accelerating the transition to
the product. The probability of a given reactive pathway
XðτÞ in the biased dynamics is given by
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Step 3: 

optimal trial paths: highest probability to occur without a bias

Bias Functional
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