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GW150914 : GW astronomy has started

September, 14th 2015, 09:50:45 UT

● 1st GW detected on Earth
● 1st GW from BHs
● 1st BBH merger
● Massive stellar-mass BBH population
● Test of GR in strong/dynamical regime
● 5 BBH events since 2015 

["Observation of Gravitational Waves from a Binary Black Hole Merger" 
LIGO&Virgo collab. Phys. Rev. Lett. 116, 061102 (2016)]

[LVC]

[LVC]



  

GW170817 : Multimessenger astronomy !

August, 17th 2017, 12:41:01 UTC

[LVC]

[“GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral”  
LIGO&Virgo collab. Phys. Rev. Lett. 119, 161101 (2017)]



  

GW170817: Gravitational-waves & light from (likely) 
binary neutron star inspiral 
[“Multi-Messenger Observations of a Binary Neutron Star Merger”
LIGO&Virgo Collab. +50 teams of electromagnetic and neutrino astronomers
Published in Astrophys. J. Lett. 848, L12 (2017)]



  

GW170817: Gravitational-waves & light from (likely) 
binary neutron star inspiral (cont.) 
[“Multi-Messenger Observations of a Binary Neutron Star Merger”
LIGO&Virgo Collab. + 50 teams of electromagnetic and neutrino astronomers
Astrophys. J. Lett. 848, L12 (2017)]



  

GW170817: Gravitational-waves & light from (likely) 
binary neutron star inspiral (cont.) 



  

What did we learn from GW170817 ?

● GW → masses

Source is most likely a binary neutron star system (BNS)

● GW → tidal parameters 

Constraints on NS matter

● GW+sGRB

Connection between BNS and sGRB

● UV/O/IR→ Kilonova 

Radioactive decay of r-process nuclei

Main channel of formation of heavy elements

Matter ejecta from BNS mergers are sites for r-process 
nucleosinthesis (ID from GW)

● EM+GW → Hubble constant

Cosmography, independent measure 

[LVC]



  

Inspiral

merger

postmerger

Time
Gravity field (~M/d)
Velocities (~0.1 c)
Densities

D~200 Mpc (“far away”) from the source:

Collision of neutron stars [Mass~1.4 Msun, Radius~10 km]:

d ~ 150 km

GWs: Tiny signatures of extreme events

d ~ 50 km

Strain, dL/L = h  ~ 10-22

Frequency span 10-1000 Hz (broad band)



  

First numerical relativity simulation of 
neutron star merger with precessing spins: 

the double pulsar case

Baryon mass density
Viz by T.Dietrich



  

First numerical relativity simulation of 
neutron star merger with precessing spins: 

the double pulsar case

Viz by T.Dietrich
Weyl curvature scalar



  

The GW spectrum of binary neutron stars 

● Faithful and complete waveform model (inspiral+merger+postmerger)

● Coverage of the parameter space (mass, spins, EOS, …)

● Precise prediction of the merger remnant (e.g. collapse, black hole)

Open problems:



  

● Effective-one-body model with tides, GSF Resummed approach [Bini+ 2014] 

● Valid from low frequencies to merger, PREDICT the merger waveform 

● Accuracy: uncertainties of the numerical data (improve simulations!)

First waveform model for inspiral → merger
[SB,Nagar,Dietrich,Damour PRL 114 (2015)]

See [Hinderer+ PRL 116 (2016)] for an alternative approach



  

Methods for the GR 2-body problem

 ε= V/c

 ε= m1/m2



  

Numerical relativity in a nutshell

SuperMUC (LRZ, 45M)

Marconi (CINECA, 7M)Stampede (TACC, 4M)Stampede (TACC, 4M)

High-performance-computing (HPC)

GR Formulation and Cauchy problem
+ GR hydrodynamics

Numerical methods for PDEs on adaptive grids

Coordinates and Singularities 



  

Numerical relativity: Cauchy problem in GR

[SB, Hilditch arXiv:0912.2920]

● 3+1 formulation (hyperboloidal slices?)

● Initial data (Lichnerowic, York, ...) 

● Evolution schemes (GHG; ADM →BSSN, Z4c)

● Well posedness (Choquet-Bruhat; Friedrich;  …. 
Gundlach&Martin-Garcia) [need gauge fix]



  

● Crash at tau=pi (geodesic slicing)

● Lapse collapse, slice stretching (1+log, 
shift=0)

Numerical relativity: singularities & crash tests

e.g. [Bruegmann arXiv:9912009]



  

Numerical relativity: singularities & coordinates

[Thierfelder, SB, Hilditch, Bruegmann, Rezzolla 
arXiv:1012.3703 ]

[Brandt&Bruegmann, arXiv:gr-qc/9703066, 
Baker+ arXiv:gr-qc/0511103, 
Campanelli+ arXiv:gr-qc/0511048]

“moving puncture” method for BH and BBH

Gravitational collapse to BH



  

Adaptive mesh refinement (AMR) → resolve multiple scales

Numerical relativity: numerical methods (some)

Stampede (TACC, 8M)

SuperMUC (LRZ, 35M)

Marconi (CINECA, 7M)

Grid based, AMR Berger-Oliger
Method of line w\ Runge-Kutta (Subcycling)
Finite differencing and finite volumes
Numerical relativity specs

- R.H.S. complexity (derivatives and contractions) 
→ stencil (“horizontal”) + pointwise (“vertical”) ops
- High-order operators (large 3D stencils > 5 pts/direction) 
→ communication overhead for distributed computations
- Memory: >~ O(100) 3D grid function per time level 



  

Improved NR GW with high-order WENO schemes
[SB,Dietrich PRD94 064062 (2016)]

● Robust convergence assessment (although not 5th order)

● Large resolution span (643 -1923), no alignment 

● Error budget: significant improvement wrt FV schemes

See also [SB+ arXiv:1205.3403 ] [Radice+ arxiv:1306.6052]

EOS: MS1bEOS: SLy

Phase errorPhase error



  

Spins & tides during merger: phasing

Tides Spin (SO)

[Dietrich, SB, Ujevic, Tichy PRD 95 (2017)]
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First NR-based tidal approximant
Fast, flexible, accurate

[Dietrich, SB, Tichy  arXiv:1706.02969]

Used for GW170817 analysis!

Closed-form tidal approximants from NR



  

Exploring the BNS parameter space

Effective
Spin

Largest exploration of parameter space in 
strong-field regime available to date 

More data: 
[Bernuzzi+ PRL (2015), Dietrich+ PRD91 (2015), SB+ PRD94 (2016), Radice+ PRD94 (2016), 
SB&Dietrich PRD94 (2016), Dietrich+ PRD95 024029 (2017), Radice+ ApJL 842 (2017), ….]

Tidal coupling constat (EOS)

● 130 BNS
● 330 dataset (multiple resolutions)
● >= 10 orbits + post merger
● Variation of M, q, EOS, spins
● Variation of input physics

Mass ratio



  

Effective-One-Body

● Includes test-mass limit (i.e. particle on Schwarzschild)

● Includes post-Newtonian and self-force results

● Uses resummation techniques → predictive strong-field regime

● Includes tidal interactions (→ BNS) [Damour&Nagar PRD 2010]

● Flexible framework, can include NR results (“NR-informed”)

● Most accurate framework to describe compact binary waveforms

[Buonanno&Damour PRD 1999,2000]

See e.g. [Taracchini+ PRD 2014][SB+ PRL 2015][Nagar+ PRD 2015][Hinderer+ 2016] 

Credit: A.Taracchini/AEI



  

Relativistic Tides

[Damour&Nagar arXiv:0911.5041] 

Tidal contribution to (post-) Newtonian dynamics and waveform:

Hamiltonian
(Newtonian limit):

Waveform:

Tidal coupling 
constant

Tides are attractive and 
“act” at small separations

Key point: No other binary parameter (mass, radii, etc) enter separately the formalism

[Hinderer arXiv:0711.2420, 
Damour&Nagar arXiv:0906.0096, 
Binnington&Poisson arXiv:0906.1366] 



  

One parameter to characterize merger dynamics
[SB,Nagar,Balmelli,Dietrich,Ujevic PRL 112 (2014)]
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Tidal polarizability coef. (l=2)

Predict energy emitted in GW for all binaries, range 1-2% M 
(all possible EOS, masses, mas-ratios)

Predict energy emitted for given binary by specifying solely the kappa value



  

Inspiral - merger → postmerger



  

Postmerger models spectrum

HMNS → collapse

Time

● Various models associate f2 to isolated equil. star properties

● Possibility to extract “EOS-related info” (Rx,Mmax,...)

● Conceptually indepedent on inspiral-merger models 

[Bauswein+ arXiv:1106.1616, Hotokezaka+ arXiv:1307.5888, Takami+ arXiv:1403.5672, 
Clark+ arXiv:1509.08522, ...]

[Bauswein+ arxiv:1006.3315]



  

[SB, Dietrich, Nagar PRL 115 (2015)]

Peak frequency correlates to tidal parameter

● Large NR dataset (~100, 3 codes) [+ Hotokezaka+ arXiv:1307.5888, Takami+ arXiv:1403.5672] 

● Postmerger frequencies essentially determined by merger physics

● Conceptually “compatible” with inspiral-merger → Unified model !



  

[SB, Radice, Ott, Roberts, Moesta, Galeazzi PRD94 024023 (2016)]

Remnant HMNS is the loudest GW phase

“EOS-mass1mass2”



  

[SB, Radice, Ott, Roberts, Moesta, Galeazzi PRD94 024023 (2016)]

Remnant HMNS is the loudest GW phase

● Emission is FAST:   τ
GW

~ 20 ms

● Emission is LOUD:  E(HMNS) ~ 2x E(merger)

● Note: explain the f
2
(κ

2
) correlation

Simulations w/ microphysics & neutrinos 
largest-to-date campaign

  



  

● Baryon number density n ~ 3-5 nnuc

● Extra DOF/phase transitions?

● Specific model: Λ-hyperons

[Banik+ arxiv:1404.6173]

Microphysical EOS compatibile with astro 
and nuclear phys constraints

● In general: “softness” effects

Baryon number density
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Merger remnant reaches extreme densities
Can GW observations inform us about EOS changes at those densities?  



  

● Postmerger GW morfology contains unique info

● Detailed and generic models are necessary for DA studies

● High-freq. GW challenging to detect (→ Einstein telescope)

GWs could probe such “softness effects”
[Radice, SB, Del Pozzo, Ott, Roberts  ApJL (2017)]

log(Bayes factor) vs. Source distance

Data-analysis study: distinguishablity



  

GW170817: A binary neutron star system

[LVC]

[LIGO&Virgo collab. Phys. Rev. Lett. 119, 161101 (2017)]



  

LIGO/Virgo/...

Binary neutron star mergers

Fundamental physics
Constraining the Equation of State of matter at supranuclear densities  

Different EOS → different star's structure



  

Example: observing tidal effects in GWs 
tells us about the neutron star matter

Tides depend critically on EOS

Tides determine the wave's phase during merger



  

Example: observing tidal effects in GWs 
tells us about the neutron star matter

Tides depend crucially on EOS

Tides determine the wave's phase during merger



  

Example: observing tidal effects in GWs 
tells us about the neutron star matter

Tides depend crucially on EOS

[Del Pozzo+ PRL 111 (2013)]

Tides determine the wave's phase during merger

Matched filtering 



  

[LIGO&Virgo collab. Phys. Rev. Lett. 119, 161101 (2017)]



Joint constraint on the neutron star equation 
of state from multimessenger observations

[Radice, Perego, Zappa, SB arxiv:1711.03647]

● kN model → lower bound on Mdisk
● Numerical relativity → Mdisk(Lambda)
● EM+NR analysis → lower bound on Lambda
● GW analysis → upper bound on Lambda



  

● Binary neutron stars key sources for GW astronomy

● Unique info about extreme matter 

● GW measurements require precise waveform models

● Building GW models: interface analytical and numerical relativity method

● Strong-field GR-dynamics crucial input for electromagnetic emission models

Summary
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