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Quantum Gravity: open problem in theoretical physics:
Manifest difficulties:

• Standard perturbation theory fails to renormalize GR:
dimensionful parameters in the Einstein action 1

G and Λ
G give

rise to divergences from the High-Energy (short-scales) sector.

• Gravitational quantum effects unreachable by experiments:

EPl =
√

~c
G c2 ' 1019GeV (big bang or black holes)

Two lines of direction in QG approaches

• non-conservative: introduce new short-scale physics “by hand”

• conservative: do not give up on the Einstein theory

Causal Dynamical Triangulations (CDT): conservative
approach of non-perturbative renormalization of the Einstein
gravity, based on Monte-Carlo simulations.
[Ambjorn et al. 1203.3591]



Configuration space of CDT

• Regge calculus of triangulations.

• Causal structure enforced by a
foliation of spatial slices of constant
proper time.

• Vertices “live” in slices.

• d-simplexes fill spacetime between
slices.

• Curvature encoded in deficit angles
around d − 2 simplexes.



Regge formalism: action discretization

Also the EH action must be discretized accordingly (gµν → T ):

SEH [gµν ] =
1

16πG

[∫
ddx

√
|g |R︸ ︷︷ ︸

Total curvature

−2Λ

∫
ddx

√
|g |︸ ︷︷ ︸

Total volume

]

⇓ discretization ⇓

SRegge [T ] =
1

16πG

[ ∑
σ(d−2)∈T

2εσ(d−2)Vσ(d−2) − 2Λ
∑
σ(d)∈T

Vσ(d)

]
,

where Vσ(k) is the k-volume of the simplex σ(k).

Wick-rotation iSLor (α)→ −SEuc(−α)

=⇒ Monte-Carlo sampling P[T ] ≡ 1
Z exp (−SEuc [T ])



Non-perturbative renormalization of GR

CDT program:

Find in the phase diagram of CDT a second order critical point
with diverging correlation length at non-zero couplings
=⇒ continuum limit

Actually possible in the Asymptotic Safety Scenario:
∃ UV non-gaussian fixed point in the phase diagram of GR
(Weinberg’s conjecture).

Strong evidences of the existence of such FP have been pointed
also by Functional Renormalization Group techniques.
[Reuter 1202.2274].



Phase diagram of CDT in 4D

phase spatial volume per slice

A:

B:

CdS/Cb:

−−−−−−−→
T

Main CDT result
The average of profiles in CdS phase fits well
with a de Sitter cosmological model!
(S4 in Euclidean space)



Problem: lack of geometric observables

Observables currently employed in CDT

• Spatial volume per slice: Vs(t)
(number of spatial tetrahedra at the slice labeled by t)

• Order parameters for transitions:
• conj(k0) = N0/N4 for the A|CdS transition

• conj(∆) = (N
(4,1)
4 − 6N0)/N4 for the B|Cb transition

• OP2 for the Cb|CdS transition
[Ambjorn et al. 1704.04373]

• Fractal dimensions:
• spectral dimension
• Hausdorff dimension

No observable characterizing geometries at all lattice scales!!



Proposed solution: spectral analysis
Analysis of eigenvalues and eigenvector of the Laplace-Beltrami
operator (LB): −∇2

• Spectral analysis on smooth manifolds (M, gµν):

−∇2f ≡ − 1√
|g |
∂µ(
√
|g |gµν∂ν f ) = λf , with boundary conditions

Can one hear the shape of a drum?

Example:
disk drum



Spectral graph analysis on CDT spatial slices

Observation
One can define graphs associated to spatial slices of triangulations.

• spatial tetrahedra become vertices
of associated graph

• adjacency relations between
tetrahedra become edges

• The Laplace matrix can be defined
on the graph associated to spatial
slices as described previously

• Eigenvalue problem L~f = λ~f solved
by numerical routines

2D slice and its dual graph



Laplacian embedding

The first k LB eigenvectors {el(v)}kl=1are coordinates for an
optimal embedding in Rk .

example: torus

(a) 2D embedding (b) 3D projected embedding



Laplacian embedding of spatial slices in CdS phase

tr -1 0 1

2D

3D

The first three eigenstates are not enough to probe the geometry
of substructures



Result: spectral clustering of CdS spatial slices

Spectral clustering: recursive application of min-cut procedure

Qualitative picture (2D)

Observation: fractality

Self-similar filamentous structures in CdS phase (S3 topology)



Other evidences of fractality: spectral dimension DS

Computed from the return probability for random-walks on

manifold or graph: Pr (τ) ∝ τ−
DS
2 =⇒ DS(τ) ≡ −2d log Pr (τ)

d log τ .

• Usual integer value on regular spaces: e.g. DS(τ) = d on Rd

• τ -independent fractional value on true fractals

• τ -dependent fractional value on multi-fractals (not
self-similar)

Equivalent definition of return probability: Pr = 1
|V |
∑

k e
−λnt

=⇒ Nice interpretation of return probability in terms of diffusion
processes (random-walks): smaller eigenvalues ↔ slower modes.
The smallest non-zero eigenvalue λ1 represents the algebraic
connectivity of the graph.



The spectral dimension on CdS slices

Compare Pr obtained by explicit diffusion processes or by the LB
eigenspectrum

fractional value DS(τ) ' 1.6 =⇒ fractal distribution of space.

A spectral analysis of the full spacetime is required.



Comparing spectral gap λ1 of CdS and B phases

Histogram of eigenspectra for C phase slices

3D embedding of slice in B
phase (V = 40k , λ1 ' 0.11)

Observation
Unlike CdS phase, B phase has high spectral gap =⇒ high
connectivity (spectral dimension shows multi-fractal behaviour).

=⇒ λ1 can be used as an alternative order parameter of the B|C
transition.



Spectral gap as new order parameter



Conclusions
Many other results have been obtained by spectral analyzing CDT
slices (a paper will soon pop up, so stay tuned!)

Future work

• Implement the spectral analysis of the full spacetime
triangulations (not merely spatial slices)
=⇒ more involved coding based on Finite Element Methods.

• Apply spectral methods to perform Fourier analysis of any
local function, like scalar curvature or matter fields living on
triangulation’s simplexes.

• Analyze phase transitions in CDT using spectral observables
instead of the ones currently employed.

Expectations

Provide CDT of more meaningful observables to characterize
geometries of full spacetimes, especially giving a definition of
correlation length =⇒ powerful tool for continuum limit analysis!



Thank you for the attention!



Additional slides



Regge formalism: curvature for equilateral triangles (2D)



Monte-Carlo method: sum over causal geometries

Configuration space in CDT: triangulations with causal structure

Lorentzian (causal) structure
on T enforced by means of a
foliation of spatial slices of
constant proper time.

Path-integral over causal geometries/triangulations T using
Monte-Carlo sampling by performing local updates. E.g., in 2D:

flipping timelike link creating/removing vertex



Continuum limit

Continuum limit
The system must forget the lattice
discreteness: second-order critical
point with divergent correlation
length ξ̂ ≡ ξ/a→∞

Asymptotic freedom (e.g. QCD):

~gc ≡ lim
a→0

~g(a) = ~0

Asymptotic safety (maybe QG):

~gc ≡ lim
a→0

~g(a) 6= ~0



Wick-rotated action in 4D

At the end of the day [Ambjörn et al., arXiv:1203.3591]:

SCDT = −k0N0 + k4N4 + ∆(N4 + N
(4,1)
4 − 6N0)

• New parameters: (k0, k4,∆), related respectively to G , Λ and
α.

• New variables: N0, N4 and N
(4,1)
4 , counting the total numbers

of vertices, pentachorons and type-(4, 1)/(1, 4) pentachorons
respectively (T dependence omitted).

It is convenient to “fix” the total spacetime volume N4 = V by
fine-tuning k4 =⇒ actually free parameters (k0,∆,V ).

Simulations at different volumes V allow finite-size scaling analysis.



CdS : de Sitter phase

• Time-extended distribution of the triangulation/Universe (blob)

• Average of blob profiles over configurations has the same
distribution of the de Sitter cosmological model: the best
description of the physical Universe dominated by dark energy!

• Fluctuations of spatial volume interpreted as quantum effects

Lorentzian: − x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = R2

⇓ analytic continuation ⇓
Euclidean: + x2

0 + x2
1 + x2

2 + x2
3 + x2

4 = R2

De Sitter spatial volume distribution

V
(dS)
s (t) = Vtot

2
3
4

1

s̃(Vtot)
1
4

cos3

(
t

s̃(Vtot)
1
4

)



Dimensional reduction in CDT
Spectral dimension as diffusion process on the full spacetime:

Dimensional reduction from 4-dimensions at large scales to
2-dimensions at shorter ones, observed in many QG approaches.
[’t Hooft, arXiv:gr-qc/9310026; Carlip, arXiv:1605.05694]



Standard definitions of order parameters in CDT

Recall 4D action: S = −k0N0 + k4N4 + ∆(N4 + N
(4,1)
4 − 6N0)

• ACdS transition: conj(k0) ≡ N0
N4

• BCb transition: conj(∆) ≡ N
(4,1)
4 −6N0

N4

• CbCdS transition:

OP2 =
1

2

[∣∣∣Omax

(
t0

)
− Omax

(
t0 + 1

)∣∣∣+
∣∣∣Omax

(
t0

)
− Omax

(
t0 − 1

)∣∣∣] ,
where Omax(t) is the highest coordination number for vertices
in the slice t, and t0 is the slice label maximizing Omax

amongst slices, that is Omax

(
t0

)
= maxt Omax

(
t
)

.



B/C order parameter (CDT standard)

Standard OP across B/Cb/CdS line (k0 = 2.2)

Histogram of OP near transition point (k0 = 2.2,∆ = 0.022)



Spectral graph analysis

Graph: tuple G = (V ,E ) where

V set of vertices v

E set of edges, unordered pairs of adjacent vertices
e = (v1, v2)

Laplace matrix acting on functions
of vertices ~f = (f (v)) ∈ R|V |:

L = D − A

• Dv ,v =“order of the vertex v
(number of departing edges)”

• Av1,v2 = 1 if (v1, v2) ∈ E , zero otherwise



Interpretations of the first eigenvalue and eigenvector

Fiedler value and vector
First (non-null) eigenvalue λ1 and associated eigenvector e1.
The Fiedler value, or spectral gap, λ1 measures the connectivity
of the graph: the larger, the more connections between vertices.

Applications of the Fiedler vector e1:

• Min-cut: minimal set of edges
disconnecting the graph if cut

• Fiedler ordering on regular graphs (like
CDT slices): core of the Google Search
engine, and paramount reason for the
Google’s rise to success.

• many others...

0.34

−0.20

−0.39

−0.38

0.18

−0.34

0.32

0.42 −0.22

0.26

min-cut



Laplacian embedding

Laplacian embedding: embedding of graph in k-dimensional
(Euclidean) space, solution to the optimization problem:

min
~f 1,...,~f k

{ ∑
(v ,w)∈E

k∑
s=1

[f s(v)− f s(w)]2 | ~f s · ~f p = δs,p, ~f
s ·~1 = 0 ∀s, p = 1, . . . , k

}
,

where for each vertex v ∈ V the value f s(v) is its s-th coordinate
in the embedding.

The solution {f s(v)}ks=1 is exactly the (orthonormal) set of the
first k eigenvectors of the Laplace matrix {es(v)}ks=1!



3D Laplacian embedding of T 3 torus

T 3 ∼= T 2 × S1 ∼= S1 × S1 × S1


	Appendix

