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Quantum Gravity: open problem in theoretical physics:
Manifest difficulties:

e Standard perturbation theory fails to renormalize GR:

dimensionful parameters in the Einstein action % and % give

rise to divergences from the High-Energy (short-scales) sector.
e Gravitational quantum effects unreachable by experiments:

Ep; = /% c? ~ 10'°GeV (big bang or black holes)

Two lines of direction in QG approaches

e non-conservative: introduce new short-scale physics “by hand”

e conservative: do not give up on the Einstein theory

Causal Dynamical Triangulations (CDT): conservative
approach of non-perturbative renormalization of the Einstein
gravity, based on Monte-Carlo simulations.

[Ambjorn et al. 1203.3591]



Configuration space of CDT

Regge calculus of triangulations.

Causal structure enforced by a 7
foliation of spatial slices of constant 2D T/ N/\/ w

roper time.
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Regge formalism: action discretization

Also the EH action must be discretized accordingly (g, — T):
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where V_ is the k-volume of the simplex ok,
Wick-rotation iS5y () = —Sguc(—a)

= Monte-Carlo sampling P[T] = £ exp (—Seuc[T])



Non-perturbative renormalization of GR

CDT program:

Find in the phase diagram of CDT a second order critical point
with diverging correlation length at non-zero couplings

= continuum limit

Actually possible in the Asymptotic Safety Scenario:
3 UV non-gaussian fixed point in the phase diagram of GR
(Weinberg's conjecture).

Strong evidences of the existence of such FP have been pointed
also by Functional Renormalization Group techniques.
[Reuter 1202.2274].



Phase diagram of CDT in 4D
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Problem: lack of geometric observables

Observables currently employed in CDT

e Spatial volume per slice: Vi(t)
(number of spatial tetrahedra at the slice labeled by t)
e Order parameters for transitions:
o conj(ko) = No/Ny for the A|Cys transition
o conj(A) = (NS*Y — 6No)/Nj for the B|C, transition
e OP, for the Cp|Cys transition
[Ambjorn et al. 1704.04373]

e Fractal dimensions:

e spectral dimension
e Hausdorff dimension

No observable characterizing geometries at all lattice scales!!



Proposed solution: spectral analysis
Analysis of eigenvalues and eigenvector of the Laplace-Beltrami

operator (LB): —V?

e Spectral analysis on smooth manifolds (M, g,,,.):

—Vf=— |g""0,f) = Af, with boundary conditions
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Can one hear the shape of a drum?

A= 6 15 15 26

Example:
disk drum
A= 31 41 41 49 49



Spectral graph analysis on CDT spatial slices

Observation

One can define graphs associated to spatial slices of triangulations.

e spatial tetrahedra become vertices
of associated graph

e adjacency relations between
tetrahedra become edges

e The Laplace matrix can be defined
on the graph associated to spatial
slices as described previously

e Eigenvalue problem Lf = Af solved
by numerical routines

R

2D slice and its dual graph



Laplacian embedding

The first k LB eigenvectors {e(v)}/_,are coordinates for an
optimal embedding in RX.

example: torus

(a) 2D embedding (b) 3D projected embedding



Laplacian embedding of spatial slices in Cys phase

t -1 0 1

2D

3D

The first three eigenstates are not enough to probe the geometry
of substructures



Result: spectral clustering of Cys spatial slices

Spectral clustering: recursive application of min-cut procedure

Qualitative picture (2D)

Observation: fractality
Self-similar filamentous structures in Cys phase (S3 topology)



Other evidences of fractality: spectral dimension Dsg

Computed from the return probability for random-walks on
manifold or graph: P,(7) o = Ds(1) = —2%’;’7&)
e Usual integer value on regular spaces: e.g. Ds(7) = d on R?
e 7-independent fractional value on true fractals
e 7-dependent fractional value on multi-fractals (not
self-similar)

Equivalent definition of return probability: P, = ﬁ Dok e At

= Nice interpretation of return probability in terms of diffusion
processes (random-walks): smaller eigenvalues <+ slower modes.

The smallest non-zero eigenvalue \; represents the algebraic
connectivity of the graph.



The spectral dimension on Cys slices

Compare P, obtained by explicit diffusion processes or by the LB
eigenspectrum
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fractional value Ds(7) ~ 1.6 = fractal distribution of space.

A spectral analysis of the full spacetime is required.



Comparing spectral gap A\; of Cys and B phases

wri (T ~Cys phase spectral gap (absent)
I B phase spectral gap
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3D embedding of slice in B
r ) ) phase (V = 40k, \; ~ 0.11)
Histogram of eigenspectra for C phase slices

0000

Observation
Unlike Cys phase, B phase has high spectral gap = high
connectivity (spectral dimension shows multi-fractal behaviour).

== A1 can be used as an alternative order parameter of the B|C
transition.



Spectral gap as new order parameter

Spectral gap across B/Cp/Cys line (ko = 2.2)
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Conclusions
Many other results have been obtained by spectral analyzing CDT
slices (a paper will soon pop up, so stay tuned!)

Future work

e Implement the spectral analysis of the full spacetime
triangulations (not merely spatial slices)
== more involved coding based on Finite Element Methods.

e Apply spectral methods to perform Fourier analysis of any
local function, like scalar curvature or matter fields living on
triangulation’s simplexes.

e Analyze phase transitions in CDT using spectral observables
instead of the ones currently employed.

Expectations

Provide CDT of more meaningful observables to characterize
geometries of full spacetimes, especially giving a definition of
correlation length = powerful tool for continuum limit analysis!



Thank you for the attention!



Additional slides



Regge formalism:
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Monte-Carlo method: sum over causal geometries

Configuration space in CDT: triangulations with causal structure

Lorentzian (causal) structure - ~ A
on 7T enforced by means of a \
foliation of spatial slices of ‘

T -

constant proper time.

Path-integral over causal geometries/triangulations 7 using
Monte-Carlo sampling by performing local updates. E.g., in 2D:

T O

flipping timelike link creating/removing vertex




Continuum limit

Continuum limit

The system must forget the lattice
discreteness: second-order critical
point with divergent correlation
length £ = £/a— o0

Asymptotic freedom (e.g. QCD):

Asymptotic safety (maybe QG):

g.=lim g(a) #0
a—0
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Wick-rotated action in 4D
At the end of the day [Ambjorn et al., arXiv:1203.3591]:

ScoT = —koNo + kalNg + A(Ns + N§4’1) — 6/N\o)

e New parameters: (ko, ka, AA), related respectively to G, A and
a.

e New variables: Ny, N; and Nz(f’l), counting the total numbers
of vertices, pentachorons and type-(4,1)/(1,4) pentachorons
respectively (7 dependence omitted).

It is convenient to “fix" the total spacetime volume Ny = V' by
fine-tuning ks = actually free parameters (ko, A, V).

Simulations at different volumes V allow finite-size scaling analysis.



Cys: de Sitter phase

e Time-extended distribution of the triangulation/Universe (blob)

e Average of blob profiles over configurations has the same
distribution of the de Sitter cosmological model: the best
description of the physical Universe dominated by dark energy!

e Fluctuations of spatial volume interpreted as quantum effects

Lorentzian: — xg + X12 + x22 + xs? + X} — R?
() analytic continuation by -
Euclidean: + xg + X12 + x22 + xs? + x} — R2 =

De Sitter spatial volume distribution




Dimensional reduction in CDT
Spectral dimension as diffusion process on the full spacetime:

il

Dimensional reduction from 4-dimensions at large scales to
2-dimensions at shorter ones, observed in many QG approaches.
['t Hooft, arXiv:gr-qc/9310026; Carlip, arXiv:1605.05694]



Standard definitions of order parameters in CDT

Recall 4D action: S = —koNo + kaNg + A(Ng + Ny’l) —6N\p)

e ACys transition: conj(ko) = %2
(@.1)_
e BCp, transition: conj(A) = MTf’VO

e (C,Cys transition:

OP, — % HOmax(to) — Omax(to + 1)\ n ’Omax(to) — Omax(to — 1)

I

where Opax(t) is the highest coordination number for vertices
in the slice t, and ty is the slice label maximizing Opax
amongst slices, that is Omax (to) = max¢ Omax(t)



B/ C order parameter (CDT standard)
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Standard OP across B/Cy/Cys line (ko = 2.2)
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Histogram of OP near transition point (kg = 2.2, A = 0.022)



Spectral graph analysis

Graph: tuple G = (V, E) where
V' set of vertices v
E set of edges, unordered pairs of adjacent vertices
e=(v1,wv)

Laplace matrix acting on functions
of vertices f = (f(v)) € RIVI:

L=D-A

e D, , ="order of the vertex v
(number of departing edges)”

o Ay v, =1if (v1, ) € E, zero otherwise



Interpretations of the first eigenvalue and eigenvector

Fiedler value and vector

First (non-null) eigenvalue A\; and associated eigenvector e.

The Fiedler value, or spectral gap, A1 measures the connectivity

of the graph: the larger, the more connections between vertices.
Applications of the Fiedler vector e;:

e Min-cut: minimal set of edges
disconnecting the graph if cut

e Fiedler ordering on regular graphs (like
CDT slices): core of the Google Search
engine, and paramount reason for the
Google's rise to success.

e many others...




Laplacian embedding

Laplacian embedding: embedding of graph in k-dimensional
(Euclidean) space, solution to the optimization problem:

k 5 o S o
min{ SO [F(v) - W) | Fo - FP =6, fs.1:ovs,p:1,...,k},
L fc Y (v,w)eE s=1

where for each vertex v € V the value f*(v) is its s-th coordinate
in the embedding.

The solution {f*(v)}X_; is exactly the (orthonormal) set of the

first k eigenvectors of the Laplace matrix {es(v)}_;!



3D Laplacian embedding of T3 torus
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