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HPC in turbulence

2D Turbulence & 
Conformal Invariance

Pseudo-spectral method
Lattice-Boltzmann method
Immerse-boundary method

MPI-openMP decompositions

turbulent convection

rotating turbulence

A tool for investigating conditions non accessible 
to experiments:
• the effect of dimensionality (2D, quasi-2D, nD)
• role of conservation laws (more or less than the

physical ones)
• role of boundary conditions (and absence)

Complementary to experiments (lower Re, full statistics)



HPC projects and related activities
EUROPEAN JOINT DOCTORATE STIMULATE 2018-2022
HPC-LEAP High Performance Computing in Life sciences, Engineering and Physics 
SUPERCOMPUTING GRANTS
PRACE 2012 (22 Mh) No.04-806 Eulerian and Lagrangian Turbulence over a reduced fractal skeleton
PRACE 2014 (55 Mh) No.09-2256 Effect of Helicity and Rotation in Turbulent flows: Eulerian and Lagrangian 
statistics
PRACE 2015 (22 Mh) Anisotropic Homogeneous Turbulence
PRACE 2016 (25 Mh) How stratification, rotation and confinement impact on the turbulent mixing
PRACE 2018 (30 Mh) Rayleigh-Taylor tubulence in complex fluids
ISCRA @ CINECA

ISCRA A : 2010, 2011, 2013
ISCRA B : 2011, 2013, 2016 
ISCRA C : 2015

OPEN ACCESS DATABASE
TURBASE
62 different datasets produced by 38 organizations
Developed within the EuHIT project

COMMUNITY SERVICES
EUDAT
Collaborative Data Infrastructure for “sharing data across borders and disciplines”
funded by EU FP7 and H2020



Why turbulence ?

jet grid turbulence DNS

Universality of small scale statistics (for               )
Kolmogorov spectrum

L=10 cm L=10 m (Onera) DNS L=100 km

Classical non-linear field theory, out of equilibrium,
non-perturbative with non Gaussian, anomalous fluctuations

E(k) ' "2/3k�5/3
Re ! 1



Anomalous scaling

Empirical evidence that PDFs of velocity
increments are not self-similar in the
inertial range of scales

No single exponent to characterize
velocity structure functions

with
⇣p 6= p/3

Experimental data at Rl=850
From G.Boffetta, A.Mazzino, A.Vulpiani,
J. Phys. A. Math. Theor. 41 363001 (2008)
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h=1/3 global scaling exponent
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Multifractal model [G. Parisi & U. Frisch, 1983] �ru ⌘ (u(x+ r)� u(x)) · r
r

Idea: replace global scaling exponent h=1/3 with a local exponent h 
distributed with probability P(h)

�ru ⇠ rh P (h) ⇠ r3�D(h)

h(�ru)pi ⇠
Z

dhrph+3�D(h) ⇠ r⇣(p)Structure functions

by saddle point ⇣(p) = min
h

[ph+ 3�D(h)]

D(h) is not obtained by NS, but several phenomenological models for D(h)

R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, J. Phys. A: Math.Gen.17, 3521 (1984)
Z.S. She, E. Leveque, Phys. Rev. Lett. 72, 336 (1994)

The MF model is a consistent framework for computing different statistical 
quantities in fully developed turbulence (one example follows)

with                  i.e.⇣(3) = 1 D(h)  3h+ 2

D(h): dimension of the
set on which h is realized



Single point time irreversibility in turbulence

M. Cencini, L. Biferale, G. Boffetta, M. De Pietro, Phys. Rev. Fluids 2, 104604 (2017)



Navier-Stokes and time-irreversibility

Dissipative anomaly:
Viscous dissipation rate remains

finite in the inviscid limit

lim
⌫!0

⌫h(ru)2i = " 6= 0

D
=

"L
/U

3

Y. Kaneda et al., Phys. Fluids 15, L21 (2003)

Turbulence at high Reynolds numbers is time irreversible Re =
UL

⌫
! 1

t ! �t

u ! �u
time reversible

@tu+ u ·ru = �rp+ ⌫r2u+ f

@tu+ u ·ru = �rp

time irreversible

Euler

NS



Navier-Stokes and time-irreversibility

Dissipative anomaly

“An inviscid-equation symmetry—in this case, time-reversal invariance—remains broken even as the
symmetry- breaking viscosity becomes vanishingly small.
A trained eye viewing a movie of steady turbulence run backwards can tell that something is indeed wrong!”

G. Falkovich, K.R. Sreenivasan, Phys. Today 59, 43 (2006)

lim
⌫!0

⌫h(ru)2i = " 6= 0



Time irreversibility in the Lagrangian frame

d

dt
h|v2(t)� v1(t)|2i = �4"

v2

v1
R

for particles at separation R in the inertial range

Two point, one (initial) time X2

X1

�v(t) = v2(t)� v1(t)

R(t) = x2(t)� x1(t)

Taylor expansion of particle separation

asymmetric relative dispersion at short time

(anti-Richardson dispersion)

hR2(�t)i � hR2(t)i = 4"t3 +O(t5)

hR2(t)i = R2(0) + h�v(0)2it2 + h�v(0) · �a(t)it3 +O(t4)

= R2(0) + h�v(0)2it2 � 2"t3 +O(t4)

BIT dispersion is faster than FIT

R(t)

R(-t)



Single particle statistics

v(0)

v(t)
Velocity increments along a Lagrangian trajectory
are time reversible: for 

in stationary turbulence

This is not true for increments of energy along a Lagrangian trajectory

t ! �t

v(t)� v(0) ! �v(�t) + v(0) = v(t)� v(0)

E(t) =
1

2
|v(t)|2

W (t) = E(t)� E(0)

Experimental and numerical data show
that energy of a Lagrangian tracer
increases slower than decreases:
PDF of W(t) is negatively skewed

H. Xu, A. Pumir, G. Falkovich, E. Bodenschatz, M. Shats,
H. Xia, N. Francois, G. Boffetta, PNAS 111, 7558 (2014)



Statistics of Lagrangian power

p = lim
t!0

W (t)

t
=

dE

dt
= v · a

Change of kinetic energy along a trajectory
(single particle, single time)

�hp3i
"3

' R2
�

H. Xu, A. Pumir, G. Falkovich, E. Bodenschatz, M. Shats,
H. Xia,  N. Francois, G. Boffetta, PNAS 111, 7558 (2014)

hp2i
"2

' R4/3
�

Asimmetry grows with Reynolds

Skewness: 
S =

hp3i
hp2i3/2

' const < 0

hpi = 0



Anomalous scaling of Lagrangian power

Dimensional prediction
p = v · a
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Anomalous scaling due to “flight-crash” events



Prediction by the Multifractal Model

Lagrangian multifractal model

with ⌧ ' r
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Prediction for acceleration statistics
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with gives

By integrating over P(h) one obtains hpqi ' "qR↵(q)
�

↵(q) = sup
h


2
(1� 2h)q � 3 +D(h)

1 + h

�
where D(h) is given
from Eulerian statistics

MF model has no information
on asymmetry (no sign)

M.Borgas, Proc. R. Soc. London A 342, 379 (1993)
G.Boffetta, F.De Lillo, S.Musacchio., Phys. Rev. E 66, 066307 (2002)

L.Biferale, G.Boffetta, A.Celani, B.J.Devenish, A.Lanotte, F.Toschi
Phys. Rev. Lett. 93, 064502 (2004). 



Numerical simulations Set N
DNS1 2048 544
DNS1 1024 176
DNS1 512 115
DNS2 1024 171
DNS2 512 104
DNS2 256 65
DNS2 128 39

R�

Symmetric and asymmetric power statistics

Sq =
h|p|qi
"q

Aq =
h|p|q�1pi

"q
A1 = 0

A2 ⇠ S2 ⇠ R1.17
� �A3 ⇠ S3 ⇠ R2.10

�



Anomalous scaling

Sq =
h|p|qi
"q

Aq =
h|p|q�1pi

"q

H. Xu, et al, PNAS
111, 7558 (2014)

S =
hp3i

hp2i3/2

S̃ =
hp3i
h|p|3i

Symmetric and asymmetric moments have same scaling exponents
(in the explored range of Reynolds numbers)



Conclusions and open questions

Multifractal model is able to predict the (anomalous) scaling exponents
of the power as a function of Rl as observed in experiments and simulations.

What about 2D ? Simulations indicate same scaling in Rl but here 
there is no intermittency.

Numerical simulations in Shell Models (much higher Re) show that symmetric
and asymmetric moments have different scaling.
Is this true also for NS equation ?
Are there other mechanisms which become dominant at high Re ?
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