Realistic Nuclear Shell Model and Double-Beta Decay: the STRENGTH project

Nunzio Itaco

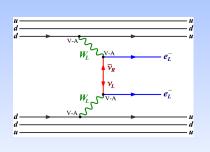
Università della Campania "Luigi Vanvitelli" Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

SM&FT 2017 - The XVII Workshop on Statistical Mechanics and nonpertubative Field Theory

The detection of the $0\nu\beta\beta$ decay is nowadays one of the main targets in many laboratories all around the world, triggered by the search of "new physics" beyond the Standard Model.

Its detection

- would correspond to a violation of the conservation of the leptonic number
- may provide more informations on the nature of neutrinos (neutrino as a Majorana particle, determination of its effective mass, ..).



The neutrinoless double β -decay

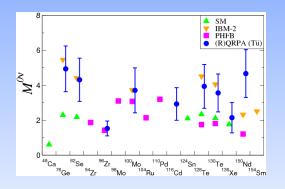
The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element (NME).

This evidences the relevance to calculate the NME

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \langle m_\nu \rangle^2$$

- G^{0\nu\$} is the so-called phase-space factor, obtained by integrating over she single electron energies and angles, and summing over the final-state spins
- $\langle m_{\nu} \rangle = |\sum_k m_k U_{ek}^2|$ effective mass of the Majorana neutrino, U_{ek} being the lepton mixing matrix
- $M^{0\nu} = M_{GT}^{0\nu} \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} M_T^{0\nu}$

The calculation of the NME


To describe the nuclear properties detected in the experiments, one needs to resort to nuclear structure models.

The calculation of the NME

To describe the nuclear properties detected in the experiments, one needs to resort to nuclear structure models.

• The spread of nuclear structure calculations evidences inconsistencies among results obtained with different models

STRENGTH project

STructure and REactions of Nuclei: towards a Global THeory

- started in 2014
- different & complementary expertise in the fields of nuclear structure and reaction dynamics with hadronic probes
- challenges arising from the Radioactive Ion Beam Facilities

- Catania
- LNS Catania
- Milano
- Napoli
- Padova
- Pisa

STRENGTH project: nuclear structure

Development and application of models for nuclear structure studies

- Shell model
- Density functional theory
- Microscopic and algebraic cluster models
- ⇒ effective interactions to account for the reduction of the degrees of freedom explcitly considered to solve the many-body problem

STRENGTH project: nuclear structure

Development and application of models for nuclear structure studies

- Shell model
- Density functional theory
- Microscopic and algebraic cluster models
- ⇒ effective interactions to account for the reduction of the degrees of freedom explcitly considered to solve the many-body problem

STRENGTH project: reaction dynamics

Dynamics of nuclear excitations and reaction mechanisms

- Heavy ion collisions from the Coulomb barrier up to the Fermi energies involving different reaction mechanisms: semi-classical or micorscopic theories
- Collisions dominated by peripheral, direct mechanisms transfer, charge exchange and breakup direct reactions
- Optical potentials for total reaction cross section calculations, elastic scattering and knockout involving light exotic nuclei

STRENGTH project

Some numbers to summarize

 \simeq 280 papers \simeq 220 talks

26 researchers

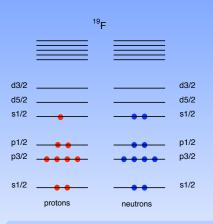
 \simeq 25 thesis

The STRENGTH Units provide a relevant contribution to the nuclear physics community through the organization of meetings, workshops and schools

- GGI lectures on Frontiers in Nuclear and Hadronic Physics, Florence
- Summer school Rewriting nuclear physics textbooks, Pisa
- Incontri Nazionali di Fisica Nucleare
- International SPES Workshops

An example: 19F

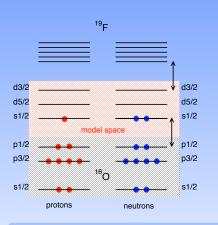
¹⁹F


Luigi Vanvitelli

- 9 protons & 10 neutrons interacting
- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.

An example: ¹⁹F


- 9 protons & 10 neutrons interacting
- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.

An example: 19F

- 9 protons & 10 neutrons interacting
- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.

The shell-model hamiltonian has to take into account in an effective way all the degrees of freedom not explicitly considered

Two alternative approaches

The shell-model hamiltonian has to take into account in an effective way all the degrees of freedom not explicitly considered

Two alternative approaches

- phenomenological
- microscopic

 $V_{NN} \ (+V_{NNN}) \Rightarrow$ many-body theory $\Rightarrow H_{\rm eff}$

Definition

The shell-model hamiltonian has to take into account in an effective way all the degrees of freedom not explicitly considered

Two alternative approaches

- phenomenological
- microscopic

$$V_{NN} \ (+V_{NNN}) \Rightarrow$$
 many-body theory $\Rightarrow H_{\rm eff}$

Definition

The shell-model hamiltonian has to take into account in an effective way all the degrees of freedom not explicitly considered

Two alternative approaches

- phenomenological
- microscopic

$$V_{NN} \ (+V_{NNN}) \Rightarrow$$
 many-body theory $\Rightarrow H_{\rm eff}$

Definition

The shell-model hamiltonian has to take into account in an effective way all the degrees of freedom not explicitly considered

Two alternative approaches

- phenomenological
- microscopic

$$V_{NN} \ (+V_{NNN}) \Rightarrow$$
 many-body theory $\Rightarrow H_{\rm eff}$

Definition

Workflow for a realistic shell-model calculation

- Choose a realistic NN potential (NNN)
- 2 Determine the model space better tailored to study the system under investigation
- Derive the effective shell-model hamiltonian and operators by way of a many-body theory
- Calculate the physical observables (energies, e.m. transition probabilities, ...)

Computational challenges

Model-space size

major shell 50-82 \Rightarrow 10⁹ basis states major shell 50-82 + $g_{9/2}$, $h_{11/2}$ \Rightarrow 10²⁵ basis states !!

3 nucleon force V_{NNN}

- χ PT \Rightarrow V_{NN} + V_{NNN}
- diagonalization ⇒ same # of basis states, but less sparse
 H_{eff}

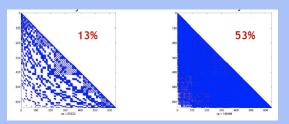
Computational challenges

Model-space size

major shell 50-82 \Rightarrow 10⁹ basis states major shell 50-82 + $g_{9/2}$, $h_{11/2} \Rightarrow$ 10²⁵ basis states !!

3 nucleon force V_{NNN}

- $\chi PT \Rightarrow V_{NN} + V_{NNN}$
- diagonalization \Rightarrow same # of basis states, but less sparse H_{eff}


Computational challenges

Model-space size

major shell 50-82 \Rightarrow 10⁹ basis states major shell 50-82 + $g_{9/2}$, $h_{11/2} \Rightarrow$ 10²⁵ basis states !!

3 nucleon force V_{NNN}

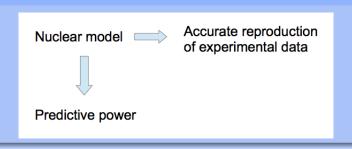
- $\chi PT \Rightarrow V_{NN} + V_{NNN}$
- diagonalization \Rightarrow same # of basis states, but less sparse H_{eff}

²⁰Ne sd-shell 640 stati di base

Shell-model code KSHELL

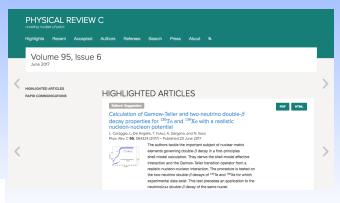
- OpenMP-MPI hybrid
- M scheme & Thick-Restart Lanczos method
- scalability tested up to 8192 cores ⇒ FX10 supercomputer (University of Tokyo)

GALILEO


MARCONI

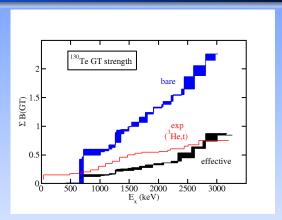
Nuclear models and predictive power

In the last 20 years realistic shell-model calculations have been widely employed with success to explore various regions of the nuclear landscape

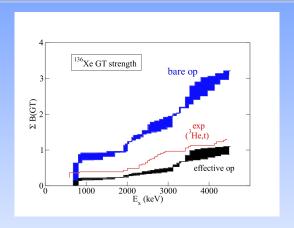


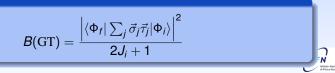
Realistic shell-model calculations

Realistic shell-model calculations for ¹³⁰Te and ¹³⁶Xe

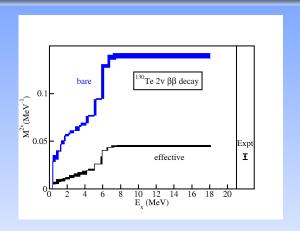

Check this approach calculating observables related to the GT strengths and $2\nu\beta\beta$ decay and compare the results with data.

¹³⁰Te GT⁻ running sums



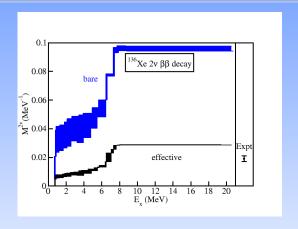

$$B(GT) = \frac{\left| \langle \Phi_f | \sum_j \vec{\sigma}_j \vec{\tau}_j | \Phi_i \rangle \right|^2}{2J_i + 1}$$

¹³⁶Xe GT⁻ running sums



della Campania Luigi Vanvitelli

$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$ nuclear matrix element



$$\textit{M}_{2\nu}^{\text{GT}} = \sum_{n} \frac{\langle 0_{f}^{+} || \vec{\sigma} \tau^{-} || 1_{n}^{+} \rangle \langle 1_{n}^{+} || \vec{\sigma} \tau^{-} || 0_{i}^{+} \rangle}{E_{n} + E_{0}}$$

136 Xe \rightarrow 136 Ba nuclear matrix element

$$\textit{M}_{2\nu}^{\text{GT}} = \sum_{n} \frac{\langle 0_{i}^{+} || \vec{\sigma} \tau^{-} || 1_{n}^{+} \rangle \langle 1_{n}^{+} || \vec{\sigma} \tau^{-} || 0_{i}^{+} \rangle}{E_{n} + E_{0}}$$

Conclusions and perspectives

 RSM calculations provide a satisfactory description of observed GT-strength distributions and 2ν2β NME

Conclusions and perspectives

- RSM calculations provide a satisfactory description of observed GT-strength distributions and $2\nu2\beta$ NME
- \circ $2\nu\beta\beta$
 - Role of real three-body forces and two-body currents (present collaboration with Pisa group)
 - Evaluation of the contribution of three-body correlations (blocking effect)
- \bullet $0\nu\beta\beta$
 - Derivation of the two-body effective operator
 - Calculation of the two-body transition-density matrix elements

Realistic Nuclear Shell Model and Double-Beta Decay: the STRENGTH project

Nunzio Itaco

Università della Campania "Luigi Vanvitelli" Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

SM&FT 2017 - The XVII Workshop on Statistical Mechanics and nonpertubative Field Theory

