QCD phase diagram

Alexei Bazavov
Michigan State University
December 14, 2017
in collaboration with
H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann, Y. Maezawa, S. Mukherjee, H. Ohno, P. Petreczky, H. Sandmeyer, P. Steinbrecher, C. Schmidt, S. Sharma, W. Soeldner, M. Wagner

Introduction

Thermodynamics of QCD

RHIC experiments

Lattice gauge theory
Challenges
Results at $\mu_{B}=0$
Chiral symmetry restoration and deconfinement
The equation of state
Results at $\mu_{B}>0$
Freeze-out parameters
The equation of state at $O\left(\mu_{B}^{6}\right)$
Constraints on the critical point
Conclusion

Quantum Chromodynamics (QCD)

- Standard Model of Particle Physics:
 strong and electro-weak interactions

Quantum Chromodynamics (QCD)

- Standard Model of Particle Physics: strong and electro-weak interactions
- Strong interactions: Quantum Chromodynamics (QCD)

Quantum Chromodynamics (QCD)

- Standard Model of Particle Physics: strong and electro-weak interactions
- Strong interactions: Quantum Chromodynamics (QCD)
- Confinement, chiral symmetry breaking

Quantum Chromodynamics (QCD)

- Standard Model of Particle Physics: strong and electro-weak interactions
- Strong interactions: Quantum Chromodynamics (QCD)
- Confinement, chiral symmetry breaking
- Zero-temperature: properties of individual hadrons

Quantum Chromodynamics (QCD)

- Standard Model of Particle Physics: strong and electro-weak interactions
- Strong interactions: Quantum Chromodynamics (QCD)
- Confinement, chiral symmetry breaking
- Zero-temperature: properties of individual hadrons
- Finite-temperature: collective behavior, thermodynamics

Quantum Chromodynamics (QCD)

- Standard Model of Particle Physics: strong and electro-weak
 interactions
- Strong interactions: Quantum Chromodynamics (QCD)
- Confinement, chiral symmetry breaking
- Zero-temperature: properties of individual hadrons
- Finite-temperature: collective behavior, thermodynamics
- The QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} G_{\mu \nu}^{c} G^{\mu \nu, c}+\sum_{f=u, d, s} \bar{\psi}_{f}^{c}\left(i \gamma^{\mu} D_{\mu}^{c d}-m_{f} \delta^{c d}\right) \psi_{f}^{d}
$$

QCD units of measure

$$
\begin{aligned}
1 \mathrm{eV} & =1.6 \times 10^{-19} \mathrm{~J} \\
1 \mathrm{MeV} & =10^{6} \mathrm{eV} \\
1 \mathrm{GeV} & =10^{9} \mathrm{eV} \\
1 \mathrm{fm} & =10^{-15} \mathrm{~m} \\
\hbar & =1 \\
c & =1 \\
1 & =\hbar c \simeq 200 \mathrm{MeV} \times 1 \mathrm{fm} \\
100 \mathrm{MeV} & \sim 10^{12} \mathrm{~K} \\
\text { light quarks } & \sim \mathrm{few} \mathrm{MeV} \\
\text { proton } & \sim 1 \mathrm{GeV}
\end{aligned}
$$

Thermodynamics of QCD

Thermodynamics of QCD

- Gross, Wilczek (1973), Politzer (1973) - strong interactions weaken at high energies

Thermodynamics of QCD

- Gross, Wilczek (1973), Politzer (1973) - strong interactions weaken at high energies
- Cabbibo, Parisi (1975), Collins, Perry (1975) conjectured the phase structure:

Fig. 1. Schematic phase diagram of hadronic matter. ρ_{B} is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

Thermodynamics of QCD

- Gross, Wilczek (1973), Politzer (1973) - strong interactions weaken at high energies
- Cabbibo, Parisi (1975), Collins, Perry (1975) conjectured the phase structure:

Fig. 1. Schematic phase diagram of hadronic matter. ρ_{B} is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

RHIC experiments

Relativistic heavy-ion collisions

- Relativistic heavy-ion collision experiments: RHIC, BNL (Au-Au) and LHC, CERN (Pb-Pb)

Relativistic heavy-ion collisions

- Relativistic heavy-ion collision experiments: RHIC, BNL (Au-Au) and LHC, CERN (Pb-Pb)
- Discovery: Quark-Gluon Plasma (QGP) behaves as almost perfect fluid, rather than almost ideal gas

Relativistic heavy-ion collisions

- Relativistic heavy-ion collision experiments: RHIC, BNL (Au-Au) and LHC, CERN (Pb-Pb)
- Discovery: Quark-Gluon Plasma (QGP) behaves as almost perfect fluid, rather than almost ideal gas
- Upcoming experiments: FAIR, NICA

Relativistic heavy-ion collisions

- Heavy nuclei are collided at almost the speed of light

Relativistic heavy-ion collisions

- Heavy nuclei are collided at almost the speed of light
- Hadrons melt and the Quark-Gluon Plasma is formed

Relativistic heavy-ion collisions

- Heavy nuclei are collided at almost the speed of light
- Hadrons melt and the Quark-Gluon Plasma is formed
- The system expands, cools and breaks down into the final state hadrons which are detected

Relativistic heavy-ion collisions

- Heavy nuclei are collided at almost the speed of light
- Hadrons melt and the Quark-Gluon Plasma is formed
- The system expands, cools and breaks down into the final state hadrons which are detected
- Chemical freeze-out: inelastic processes cease

Relativistic heavy-ion collisions

- Heavy nuclei are collided at almost the speed of light
- Hadrons melt and the Quark-Gluon Plasma is formed
- The system expands, cools and breaks down into the final state hadrons which are detected
- Chemical freeze-out: inelastic processes cease
- Kinetic freeze-out: the momenta of the particles stop changing, free streaming of hadrons

Relativistic heavy-ion collisions

- Cumulants of the event-by-event multiplicity distributions:

$$
C_{1}=\langle N\rangle, C_{2}=\left\langle(\delta N)^{2}\right\rangle, C_{3}=\left\langle(\delta N)^{3}\right\rangle, C_{4}=\left\langle(\delta N)^{4}\right\rangle-3\left\langle(\delta N)^{2}\right\rangle^{2}
$$

Relativistic heavy-ion collisions

- Cumulants of the event-by-event multiplicity distributions:

$$
C_{1}=\langle N\rangle, C_{2}=\left\langle(\delta N)^{2}\right\rangle, C_{3}=\left\langle(\delta N)^{3}\right\rangle, C_{4}=\left\langle(\delta N)^{4}\right\rangle-3\left\langle(\delta N)^{2}\right\rangle^{2}
$$

- Mean, variance, skewness and kurtosis:

$$
M=C_{1}, \quad \sigma^{2}=C_{2}, \quad S=\frac{C_{3}}{\left(C_{2}\right)^{\frac{3}{2}}}, \quad \kappa=\frac{C_{4}}{\left(C_{2}\right)^{2}}
$$

Relativistic heavy-ion collisions

- Cumulants of the event-by-event multiplicity distributions:

$$
C_{1}=\langle N\rangle, C_{2}=\left\langle(\delta N)^{2}\right\rangle, C_{3}=\left\langle(\delta N)^{3}\right\rangle, C_{4}=\left\langle(\delta N)^{4}\right\rangle-3\left\langle(\delta N)^{2}\right\rangle^{2}
$$

- Mean, variance, skewness and kurtosis:

$$
M=C_{1}, \quad \sigma^{2}=C_{2}, \quad S=\frac{C_{3}}{\left(C_{2}\right)^{\frac{3}{2}}}, \quad \kappa=\frac{C_{4}}{\left(C_{2}\right)^{2}}
$$

Questions to address

- What is the order of the transition to QGP at $\mu_{B}=0$?
- What is the transition temperature?
- What are the signatures of deconfinement and chiral symmetry restoration?
- What is the structure of the phase diagram at $\mu_{B}>0$?
- What is the equation of state of QGP?
- What happens to the QCD spectrum close to the transition?
- How do the interactions get screened in the plasma?
- When is the asymptotic regime (weakly interacting gas) is approached?

Questions to address

- What is the order of the transition to QGP at $\mu_{B}=0$?
- What is the transition temperature?
- What are the signatures of deconfinement and chiral symmetry restoration?
- What is the structure of the phase diagram at $\mu_{B}>0$?
- What is the equation of state of QGP?
- What happens to the QCD spectrum close to the transition?
- How do the interactions get screened in the plasma?
- When is the asymptotic regime (weakly interacting gas) is approached?

Lattice gauge theory

Strong coupling constant α_{s}

- Asymptotic freedom at high energies ${ }^{1}$

[^0]${ }^{2}$ Wilson (1974)

Strong coupling constant α_{s}

- Asymptotic freedom at high energies ${ }^{1}$
- Strongly coupled at low energies - Lattice QCD²

[^1]${ }^{2}$ Wilson (1974)

Lattice gauge theory

- Start with the path integral quantization, Euclidean signature:

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \mathcal{O} \exp \left(-\mathcal{S}_{E}(T, V, \vec{\mu})\right) \\
\mathcal{Z}(T, V, \vec{\mu}) & =\int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp \left(-\mathcal{S}_{E}(T, V, \vec{\mu})\right) \\
\mathcal{S}_{E}(T, V, \vec{\mu}) & =-\int_{0}^{1 / T} d x_{0} \int_{V} d^{3} \times \mathcal{L}^{E}(\vec{\mu}) \\
\mathcal{L}^{E}(\vec{\mu}) & =\mathcal{L}_{Q C D}^{E}+\sum_{f=u, d, s} \mu_{f} \bar{\psi}_{f} \gamma_{0} \psi_{f}
\end{aligned}
$$

Lattice gauge theory

- Start with the path integral quantization, Euclidean signature:

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \mathcal{O} \exp \left(-\mathcal{S}_{E}(T, V, \vec{\mu})\right) \\
\mathcal{Z}(T, V, \vec{\mu}) & =\int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp \left(-\mathcal{S}_{E}(T, V, \vec{\mu})\right) \\
\mathcal{S}_{E}(T, V, \vec{\mu}) & =-\int_{0}^{1 / T} d x_{0} \int_{V} d^{3} \times \mathcal{L}^{E}(\vec{\mu}) \\
\mathcal{L}^{E}(\vec{\mu}) & =\mathcal{L}_{Q C D}^{E}+\sum_{f=u, d, s} \mu_{f} \bar{\psi}_{f} \gamma_{0} \psi_{f}
\end{aligned}
$$

- Introduce a (non-perturbative!) regulator - minimum space-time "resolution" scale a, i.e. lattice, Wilson (1974)

Lattice gauge theory

- Start with the path integral quantization, Euclidean signature:

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \mathcal{O} \exp \left(-\mathcal{S}_{E}(T, V, \vec{\mu})\right) \\
\mathcal{Z}(T, V, \vec{\mu}) & =\int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp \left(-\mathcal{S}_{E}(T, V, \vec{\mu})\right) \\
\mathcal{S}_{E}(T, V, \vec{\mu}) & =-\int_{0}^{1 / T} d x_{0} \int_{V} d^{3} \times \mathcal{L}^{E}(\vec{\mu}) \\
\mathcal{L}^{E}(\vec{\mu}) & =\mathcal{L}_{Q C D}^{E}+\sum_{f=u, d, s} \mu_{f} \bar{\psi}_{f} \gamma_{0} \psi_{f}
\end{aligned}
$$

- Introduce a (non-perturbative!) regulator - minimum space-time "resolution" scale a, i.e. lattice, Wilson (1974)
- The lattice spacing a acts as a UV cutoff, $p_{\max } \sim \pi / a$

Lattice gauge theory

- Start with the path integral quantization, Euclidean signature:

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \mathcal{O} \exp \left(-\mathcal{S}_{E}(T, V, \vec{\mu})\right) \\
\mathcal{Z}(T, V, \vec{\mu}) & =\int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp \left(-\mathcal{S}_{E}(T, V, \vec{\mu})\right) \\
\mathcal{S}_{E}(T, V, \vec{\mu}) & =-\int_{0}^{1 / T} d x_{0} \int_{V} d^{3} \times \mathcal{L}^{E}(\vec{\mu}) \\
\mathcal{L}^{E}(\vec{\mu}) & =\mathcal{L}_{Q C D}^{E}+\sum_{f=u, d, s} \mu_{f} \bar{\psi}_{f} \gamma_{0} \psi_{f}
\end{aligned}
$$

- Introduce a (non-perturbative!) regulator - minimum space-time "resolution" scale a, i.e. lattice, Wilson (1974)
- The lattice spacing a acts as a UV cutoff, $p_{\max } \sim \pi / a$
- The integrals can be evaluated with importance sampling methods

Challenges

- Broken symmetries - e.g., Lorentz, chiral

Challenges

- Broken symmetries - e.g., Lorentz, chiral
- Grassmann fields (fermions) cannot be sampled, integrate them out:

$$
\begin{aligned}
Z & =\int \mathcal{D}[U] \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] e^{-\mathcal{S}_{G}[U]-\mathcal{S}_{F}[\bar{\psi}, \psi, U]} \\
& =\int \mathcal{D}[U] e^{-\mathcal{S}_{G}[U]} \operatorname{det}|M[U]|
\end{aligned}
$$

Challenges

- Broken symmetries - e.g., Lorentz, chiral
- Grassmann fields (fermions) cannot be sampled, integrate them out:

$$
\begin{aligned}
Z & =\int \mathcal{D}[U] \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] e^{-\mathcal{S}_{G}[U]-\mathcal{S}_{F}[\bar{\psi}, \psi, U]} \\
& =\int \mathcal{D}[U] e^{-\mathcal{S}_{G}[U]} \operatorname{det}|M[U]|
\end{aligned}
$$

- The effective action is highly non-local, Monte Carlo sampling is costly
- The computational cost is determined by the condition number of the fermion matrix, which scales with the inverse lightest quark mass

Challenges

- Broken symmetries - e.g., Lorentz, chiral
- Grassmann fields (fermions) cannot be sampled, integrate them out:

$$
\begin{aligned}
Z & =\int \mathcal{D}[U] \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] e^{-\mathcal{S}_{G}[U]-\mathcal{S}_{F}[\bar{\psi}, \psi, U]} \\
& =\int \mathcal{D}[U] e^{-\mathcal{S}_{G}[U]} \operatorname{det}|M[U]|
\end{aligned}
$$

- The effective action is highly non-local, Monte Carlo sampling is costly
- The computational cost is determined by the condition number of the fermion matrix, which scales with the inverse lightest quark mass
- Sign problem at $\mu_{B}>0$

Challenges

- Broken symmetries - e.g., Lorentz, chiral
- Grassmann fields (fermions) cannot be sampled, integrate them out:

$$
\begin{aligned}
Z & =\int \mathcal{D}[U] \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] e^{-\mathcal{S}_{G}[U]-\mathcal{S}_{F}[\bar{\psi}, \psi, U]} \\
& =\int \mathcal{D}[U] e^{-\mathcal{S}_{G}[U]} \operatorname{det}|M[U]|
\end{aligned}
$$

- The effective action is highly non-local, Monte Carlo sampling is costly
- The computational cost is determined by the condition number of the fermion matrix, which scales with the inverse lightest quark mass
- Sign problem at $\mu_{B}>0$
- Real-time properties are hard to access

Results at $\mu_{B}=0$

Early lattice results

First study of the deconfinement transition in $S U(2)$ pure gauge theory:

- McLerran, Svetitsky (1981) $T_{c}=200 \mathrm{MeV}$, Polyakov loop (left)
- Kuti et al. (1981) $T_{c}=160 \pm 30 \mathrm{MeV}$,
- Engels et al. (1981) $T_{c}=210 \pm 10 \mathrm{MeV}$, energy density (right)

Fig. 2. Magnetization curves for $N_{t}=3$. We display $\langle | L\rangle$ rather than (L) to remove effects of domain nucleation as shown in fig. 1. Points for $N_{x}=5$ and for $N_{x}=7$ are joined to guide the eye.

Fig. 3. Energy density of gluon matter versus $4 / \mathrm{g}^{2}$, at fixed lattice size $N_{\beta}=2$, after about 500 iterations.

Chiral symmetry restoration

$$
\langle\bar{\psi} \psi\rangle_{f}=\frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial m_{f}}, \quad \chi(T)=\frac{\partial\langle\bar{\psi} \psi\rangle_{f}}{\partial m_{f}}
$$

Chiral symmetry restoration

$$
\langle\bar{\psi} \psi\rangle_{f}=\frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial m_{f}}, \quad \chi(T)=\frac{\partial\langle\bar{\psi} \psi\rangle_{f}}{\partial m_{f}}
$$

Chiral symmetry restoration

$$
\langle\bar{\psi} \psi\rangle_{f}=\frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial m_{f}}, \quad \chi(T)=\frac{\partial\langle\bar{\psi} \psi\rangle_{f}}{\partial m_{f}}
$$

The chiral crossover temperature at $\mu_{B}=0$ (Borsanyi et al. [BW] (2010), Bazavov et al. [HotQCD] (2012))

$$
T_{c}=154 \pm 9 \mathrm{MeV}
$$

Curvature of the chiral crossover line

- Change in the chiral crossover temperature with μ_{B}

$$
T_{c}\left(\mu_{B}\right)=T_{c}(0)\left(1-\kappa_{2}\left(\frac{\mu_{B}}{T_{c}(0)}\right)^{2}\right)
$$

Curvature of the chiral crossover line

- Change in the chiral crossover temperature with μ_{B}

$$
T_{c}\left(\mu_{B}\right)=T_{c}(0)\left(1-\kappa_{2}\left(\frac{\mu_{B}}{T_{c}(0)}\right)^{2}\right)
$$

- The curvature has been estimated:
- $\kappa_{2}=0.0066(7)$, Kaczmarek et al. (2011), Endrodi et al. (2011)
- $\kappa_{2}=0.0135(20)$, Bonati et al. (2015)
- $\kappa_{2}=0.0149(21)$, Belweid et al. (2015)
- $\kappa_{2}=0.020(4)$, Cea et al. (2016)
- See talk by F. Negro today

Deconfinement

- The chemical potentials for conserved charges B, Q, S :

$$
\begin{aligned}
\mu_{u} & =\frac{1}{3} \mu_{B}+\frac{2}{3} \mu_{Q} \\
\mu_{d} & =\frac{1}{3} \mu_{B}-\frac{1}{3} \mu_{Q} \\
\mu_{s} & =\frac{1}{3} \mu_{B}-\frac{1}{3} \mu_{Q}-\mu_{S}
\end{aligned}
$$

Deconfinement

- The chemical potentials for conserved charges B, Q, S :

$$
\begin{aligned}
\mu_{u} & =\frac{1}{3} \mu_{B}+\frac{2}{3} \mu_{Q} \\
\mu_{d} & =\frac{1}{3} \mu_{B}-\frac{1}{3} \mu_{Q} \\
\mu_{s} & =\frac{1}{3} \mu_{B}-\frac{1}{3} \mu_{Q}-\mu_{S}
\end{aligned}
$$

- The pressure can be expanded in Taylor series

$$
\frac{P}{T^{4}}=\frac{1}{V T^{3}} \ln \mathcal{Z}\left(T, V, \hat{\mu}_{u}, \hat{\mu}_{d}, \hat{\mu}_{S}\right)=\sum_{i, j, k=0}^{\infty} \frac{\chi_{i j k}^{B Q S}}{i!j!k!} \hat{\mu}_{B}^{i} \hat{\mu}_{Q}^{j} \hat{\mu}_{S}^{k}
$$

Deconfinement

- The chemical potentials for conserved charges B, Q, S :

$$
\begin{aligned}
\mu_{u} & =\frac{1}{3} \mu_{B}+\frac{2}{3} \mu_{Q} \\
\mu_{d} & =\frac{1}{3} \mu_{B}-\frac{1}{3} \mu_{Q} \\
\mu_{s} & =\frac{1}{3} \mu_{B}-\frac{1}{3} \mu_{Q}-\mu_{S}
\end{aligned}
$$

- The pressure can be expanded in Taylor series

$$
\frac{P}{T^{4}}=\frac{1}{V T^{3}} \ln \mathcal{Z}\left(T, V, \hat{\mu}_{u}, \hat{\mu}_{d}, \hat{\mu}_{S}\right)=\sum_{i, j, k=0}^{\infty} \frac{\chi_{i j k}^{B Q S}}{i!j!k!} \hat{\mu}_{B}^{i} \hat{\mu}_{Q}^{j} \hat{\mu}_{S}^{k}
$$

- The generalized susceptibilities are evaluated at vanishing chemical potential

$$
\chi_{i j k}^{B Q S} \equiv \chi_{i j k}^{B Q S}(T)=\left.\frac{\partial P(T, \hat{\mu}) / T^{4}}{\partial \hat{\mu}_{B}^{i} \partial \hat{\mu}_{Q}^{j} \partial \hat{\mu}_{S}^{k}}\right|_{\hat{\mu}=0} \quad, \quad \hat{\mu} \equiv \frac{\mu}{T}
$$

Deconfinement: fluctuations

- Strangeness (left) and baryon number (right) fluctuations ${ }^{3}$
- Up to $\sim 150 \mathrm{MeV}$ fluctuations can be described in terms of hadronic degrees of freedom

[^2]
Deconfinement: equation of state

- The equation of state has been recently calculated in the continuum limit at the physical quark masses (Borsanyi et al. [BW] (2014), Bazavov et al. [HotQCD] (2014))

Results at $\mu_{B}>0$

How to access $\mu_{B}>0$?

- Direct Monte Carlo simulations are not possible due to the sign problem

How to access $\mu_{B}>0$?

- Direct Monte Carlo simulations are not possible due to the sign problem
- Method 1: Taylor expansion (Allton et al. (2002)), evaluate various derivatives at $\mu=0$, e.g.

$$
\chi_{2}^{u}=\frac{T}{V}\left\langle\operatorname{Tr}\left(M_{u}^{-1} M_{u}^{\prime \prime}-\left(M_{u}^{-1} M_{u}^{\prime}\right)^{2}\right)+\left(\operatorname{Tr}\left(M_{u}^{-1} M_{u}^{\prime}\right)\right)^{2}\right\rangle
$$

How to access $\mu_{B}>0$?

- Direct Monte Carlo simulations are not possible due to the sign problem
- Method 1: Taylor expansion (Allton et al. (2002)), evaluate various derivatives at $\mu=0$, e.g.

$$
\chi_{2}^{u}=\frac{T}{V}\left\langle\operatorname{Tr}\left(M_{u}^{-1} M_{u}^{\prime \prime}-\left(M_{u}^{-1} M_{u}^{\prime}\right)^{2}\right)+\left(\operatorname{Tr}\left(M_{u}^{-1} M_{u}^{\prime}\right)\right)^{2}\right\rangle
$$

- Method 2: Perform simulations at imaginary chemical potential, then evaluate the derivatives of $P(i \mu)$ (Lombardo (1999), de Forcrand, Philipsen (2002))

Constrained series expansions

- The number densities can also be represented with Taylor expansions:

$$
\frac{n_{X}}{T^{3}}=\frac{\partial P / T^{4}}{\partial \hat{\mu}_{X}}, \quad X=B, Q, S
$$

Constrained series expansions

- The number densities can also be represented with Taylor expansions:

$$
\frac{n_{X}}{T^{3}}=\frac{\partial P / T^{4}}{\partial \hat{\mu}_{X}}, \quad X=B, Q, S
$$

- In heavy-ion collisions there are additional constraints:

$$
n_{S}=0, \frac{n_{Q}}{n_{B}}=0.4
$$

Constrained series expansions

- The number densities can also be represented with Taylor expansions:

$$
\frac{n_{X}}{T^{3}}=\frac{\partial P / T^{4}}{\partial \hat{\mu}_{X}}, \quad X=B, Q, S
$$

- In heavy-ion collisions there are additional constraints:

$$
n_{S}=0, \frac{n_{Q}}{n_{B}}=0.4
$$

- These constraints can be fulfilled by

$$
\begin{aligned}
\hat{\mu}_{Q}\left(T, \mu_{B}\right) & =q_{1}(T) \hat{\mu}_{B}+q_{3}(T) \hat{\mu}_{B}^{3}+q_{5}(T) \hat{\mu}_{B}^{5}+\ldots, \\
\hat{\mu}_{S}\left(T, \mu_{B}\right) & =s_{1}(T) \hat{\mu}_{B}+s_{3}(T) \hat{\mu}_{B}^{3}+s_{5}(T) \hat{\mu}_{B}^{5}+\ldots
\end{aligned}
$$

Freeze-out parameters

- Consider the ratios of cumulants:

$$
R_{31}^{Q}=\frac{S_{Q} \sigma_{Q}^{3}}{M_{Q}}=\frac{\chi_{3}^{Q}}{\chi_{1}^{Q}}, \quad R_{12}^{Q}=\frac{M_{Q}}{\sigma_{Q}^{2}}=\frac{\chi_{1}^{Q}}{\chi_{2}^{Q}}
$$

Freeze-out parameters

- Consider the ratios of cumulants:

$$
R_{31}^{Q}=\frac{S_{Q} \sigma_{Q}^{3}}{M_{Q}}=\frac{\chi_{3}^{Q}}{\chi_{1}^{Q}}, \quad R_{12}^{Q}=\frac{M_{Q}}{\sigma_{Q}^{2}}=\frac{\chi_{1}^{Q}}{\chi_{2}^{Q}}
$$

- These ratios can be evaluated on the lattice for constrained system and serve as thermometer (left) and baryometer (right) (Bazavov et al. (2012))

The equation of state at $O\left(\mu_{B}^{6}\right)$

- Consider $\mu_{Q}=\mu_{S}=0$ then the pressure is given by ${ }^{4}$

$$
\frac{\Delta P}{T^{4}}=\frac{1}{2} \chi_{2}^{B}(T) \hat{\mu}_{B}^{2}\left(1+\frac{1}{12} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B}(T)} \hat{\mu}_{B}^{2}+\frac{1}{360} \frac{\chi_{6}^{B}(T)}{\chi_{2}^{B}(T)} \hat{\mu}_{B}^{4}+\ldots\right)
$$

[^3]
The equation of state at $O\left(\mu_{B}^{6}\right)$

- Consider $\mu_{Q}=\mu_{S}=0$ then the pressure is given by ${ }^{4}$

$$
\frac{\Delta P}{T^{4}}=\frac{1}{2} \chi_{2}^{B}(T) \hat{\mu}_{B}^{2}\left(1+\frac{1}{12} \frac{\chi_{4}^{B}(T)}{\chi_{2}^{B}(T)} \hat{\mu}_{B}^{2}+\frac{1}{360} \frac{\chi_{6}^{B}(T)}{\chi_{2}^{B}(T)} \hat{\mu}_{B}^{4}+\ldots\right)
$$

[^4]
The equation of state at $O\left(\mu_{B}^{6}\right)$

- The contribution to the pressure due to finite chemical potential (left) and the baryon number density (right)

The equation of state at $O\left(\mu_{B}^{6}\right)$

- The total pressure (left) and energy density (right) at various values of the baryon chemical potential

The equation of state at $O\left(\mu_{B}^{6}\right)$

- The contribution to the pressure due to finite chemical potential (left) and the baryon number density (right) for strangeness neutral systems:

$$
n_{S}=0, \frac{n_{Q}}{n_{B}}=0.4
$$

Constraints on the critical point

- For $\mu_{Q}=\mu_{S}=0$ the net baryon-number susceptibility is

$$
\chi_{2}^{B}\left(T, \mu_{B}\right)=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} \chi_{2 n+2}^{B} \hat{\mu}_{B}^{2 n}
$$

Constraints on the critical point

- For $\mu_{Q}=\mu_{S}=0$ the net baryon-number susceptibility is

$$
\chi_{2}^{B}\left(T, \mu_{B}\right)=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} \chi_{2 n+2}^{B} \hat{\mu}_{B}^{2 n}
$$

- The radius of convergence

$$
r_{2 n}^{\chi} \equiv \sqrt{\frac{2 n(2 n-1) \chi_{2 n}^{B}}{\chi_{2 n+2}^{B}}}
$$

Constraints on the critical point

- For $\mu_{Q}=\mu_{S}=0$ the net baryon-number susceptibility is

$$
\chi_{2}^{B}\left(T, \mu_{B}\right)=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} \chi_{2 n+2}^{B} \hat{\mu}_{B}^{2 n}
$$

- The radius of convergence

$$
r_{2 n}^{\chi} \equiv \sqrt{\frac{2 n(2 n-1) \chi_{2 n}^{B}}{\chi_{2 n+2}^{B}}}
$$

- We observe $\chi_{6}^{B} / \chi_{4}^{B}<3$ for $135<T<155 \mathrm{MeV} \Rightarrow r_{4}^{\chi} \geqslant 2$

QCD phase diagram

QCD phase diagram

Conclusion

- Studying the QCD phase diagram requires non-perturbative tools, such as lattice QCD
- In recent years lattice simulations at the physical light quark mass with controlled systematic uncertainties became feasible
- At $\mu_{B}=0$ the chiral crossover temperature is $T_{c}=154(9) \mathrm{MeV}$
- The cumulants of conserved charges have been calculated on the lattice up to the sixth order
- Ratios of cumulants can be compared to the experimental measurements to determine the freeze-out parameters
- The QCD equation of state has been recently calculated up to $O\left(\mu_{B}^{6}\right)$
- The critical point is disfavored in the $135<T<155 \mathrm{MeV}$ range up to $\mu_{B} / T=2$

[^0]: ${ }^{1}$ Gross, Wilczek; Politzer (1973)

[^1]: ${ }^{1}$ Gross, Wilczek; Politzer (1973)

[^2]: ${ }^{3}$ Bazavov et al. [HotQCD] (2012)

[^3]: ${ }^{4}$ Bazavov et al. [HotQCD] (2017)

[^4]: ${ }^{4}$ Bazavov et al. [HotQCD] (2017)

