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Quantum Chromodynamics (QCD)
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QCD units of measure

leV = 16x10719J

1 MeV = 10°eV
1GeV = 10% eV
1fm = 107Y®m
o= 1
c =1

1 = hc ~ 200 MeV x 1 fm
100 MeV ~ 102K
light quarks ~ few MeV
proton ~ 1 GeV
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Thermodynamics of QCD
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Thermodynamics of QCD

» Gross, Wilczek (1973), Politzer (1973) — strong interactions
weaken at high energies
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Thermodynamics of QCD

» Gross, Wilczek (1973), Politzer (1973) — strong interactions
weaken at high energies

» Cabbibo, Parisi (1975), Collins, Perry (1975) conjectured the
phase structure:

T

Fig. 1. Schematic phase diagram of hadronic matter. pp is the
density of baryonic number. Quarks are confined in phase I
and unconfined in phase I1.
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Thermodynamics of QCD
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RHIC experiments
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Relativistic heavy-ion collisions

LHC at CERN.~

» Relativistic heavy-ion collision experiments: RHIC, BNL (Au-Au)
and LHC, CERN (Pb-Pb)
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Relativistic heavy-ion collisions

LHC at CERN -

» Relativistic heavy-ion collision experiments: RHIC, BNL (Au-Au)
and LHC, CERN (Pb-Pb)

» Discovery: Quark-Gluon Plasma (QGP) behaves as almost
perfect fluid, rather than almost ideal gas

» Upcoming experiments: FAIR, NICA
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Relativistic heavy-ion collisions

» Heavy nuclei are collided at almost the speed of light
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Relativistic heavy-ion collisions

» Heavy nuclei are collided at almost the speed of light
» Hadrons melt and the Quark-Gluon Plasma is formed

> The system expands, cools and breaks down into the final state
hadrons which are detected

» Chemical freeze-out: inelastic processes cease

> Kinetic freeze-out: the momenta of the particles stop changing,
free streaming of hadrons
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Relativistic heavy-ion collisions

» Cumulants of the event-by-event multiplicity distributions:

G = (N), G ={((6N)?), C3 = ((5N)?), Co = ((GN)*)=3 ((5N)?)?
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Relativistic heavy-ion collisions

» Cumulants of the event-by-event multiplicity distributions:
2
G = (N), G ={((6N)?), G = ((6N)*), Cs = {(SN)*)—3 ((6N)?)

» Mean, variance, skewness and kurtosis:
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Relativistic heavy-ion collisions

» Cumulants of the event-by-event multiplicity distributions:
2
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Questions to address

» What is the order of the transition to QGP at ug = 07
» What is the transition temperature?

» What are the signatures of deconfinement and chiral symmetry
restoration?

> What is the structure of the phase diagram at ug > 07

» What is the equation of state of QGP?

» What happens to the QCD spectrum close to the transition?
» How do the interactions get screened in the plasma?

» When is the asymptotic regime (weakly interacting gas) is
approached?
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Lattice gauge theory
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Strong coupling constant o

as(Q)

» Asymptotic freedom at high energies!
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Strong coupling constant o
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» Asymptotic freedom at high energies!

» Strongly coupled at low energies — Lattice QCD?

LGross, Wilczek: Politzer (1973)
*Wilson (1974)
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Lattice gauge theory

» Start with the path integral quantization, Euclidean signature:

;/D[@/)]D[&]D[A] Oexp(—Se(T, V, i),

(0)

Z(T,V, i)

SE(T7 Va ﬁ)
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Lattice gauge theory

» Start with the path integral quantization, Euclidean signature:
1 - ~
©) = 5 [ PWIDIIDIA O exp(-Se(T. V. ).

2T V.0 = /MMM@MN%WﬁdﬂVﬂ»

1/T
Se(T,\V.ji) = — / dxo/d3x£E(ﬁ),
0 14
LE(D) = Lo+ Y. nerdeyotr

f=u,d,s

» Introduce a (non-perturbative!) regulator — minimum space-time
“resolution” scale a, i.e. lattice, Wilson (1974)
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Lattice gauge theory

» Start with the path integral quantization, Euclidean signature:
1 - ~
©) = 5 [ PWIDIIDIA O exp(-Se(T. V. ).

2T V.0 = /Mmmﬁmﬂwwﬁdﬂvﬂ»

1/T
Se(T,\V.ji) = — / dxo/d3x£E(ﬁ),
0 14
LE(D) = Lo+ Y. nerdeyotr

f=u,d,s

» Introduce a (non-perturbative!) regulator — minimum space-time
“resolution” scale a, i.e. lattice, Wilson (1974)

» The lattice spacing a acts as a UV cutoff, ppax ~ 7/a

» The integrals can be evaluated with importance sampling

methods
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Challenges

> Broken symmetries — e.g., Lorentz, chiral
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Challenges

> Broken symmetries — e.g., Lorentz, chiral

» Grassmann fields (fermions) cannot be sampled, integrate them
out:

z = [ DuppIpile Setv-siiv

= /D[U]eSG[U]det|/\/I[U]|

» The effective action is highly non-local, Monte Carlo sampling is
costly

» The computational cost is determined by the condition number
of the fermion matrix, which scales with the inverse lightest
quark mass

» Sign problem at ug >0
» Real-time properties are hard to access
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Results at g =0

A. Bazavov (MSU) SM&FT 2017 December 14, 2017 17 / 35



Early lattice results

First study of the deconfinement transition in SU(2) pure gauge

theory:
» McLerran, Svetitsky (1981) T. = 200 MeV, Polyakov loop (left)

> Kuti et al. (1981) T, = 160 + 30 MeV,
» Engels et al. (1981) T, =210 + 10 MeV, energy density (right)
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Fig. 2. Magnetization curves for Ny = 3. We display (L) i
rather than (L) to remove effects of domain nucleation as f 5 it 20 25 30 gt

shown in fig. 1. Points for ¥y = 5 and for Ny = 7 are joined
to guide the eye.

A. Bazavov (MSU)

Fig. 3. Energy density of gluon matter versus 4/g?, at fixed lattice size Ng = 2, after about 500 iterations.

SM&FT 2017

December 14, 2017



Chiral symmetry restoration

- TOoInZ
<¢¢>f = V 8mf ) X(T) =
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Chiral symmetry restoration
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Chiral symmetry restoration
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The chiral crossover temperature at ug = 0 (Borsanyi et al. [BW]
(2010), Bazavov et al. [HotQCD] (2012))

T. =154+ 9 MeV
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Curvature of the chiral crossover line

» Change in the chiral crossover temperature with ug

T(us) = To(0) (1 o (T‘C‘fo))z)
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Curvature of the chiral crossover line

» Change in the chiral crossover temperature with ug

T(us) = To(0) (1 o (T’:fo))z)

» The curvature has been estimated:

k2 = 0.0066(7), Kaczmarek et al. (2011), Endrodi et al. (2011)
k2 = 0.0135(20), Bonati et al. (2015)

ko = 0.0149(21), Belweid et al. (2015)

ko = 0.020(4), Cea et al. (2016)

> See talk by F. Negro today

v

v VvYyy
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Deconfinement

» The chemical potentials for conserved charges B, Q, S:
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Deconfinement

» The chemical potentials for conserved charges B, Q, S:
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> The pressure can be expanded in Taylor series
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Deconfinement

» The chemical potentials for conserved charges B, Q, S:

Hu

Hd

Hs
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3NB 31“07
1 1

§NB - gMQ — USs

> The pressure can be expanded in Taylor series

P 1
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InZ(T,V,
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> The generalized susceptibilities are evaluated at vanishing

chemical potential

Xijk
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Deconfinement: fluctuations

s
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» Strangeness (left) and baryon number (right) fluctuations®

» Up to ~ 150 MeV fluctuations can be described in terms of

hadronic degrees of freedom

*Bazavov et al. [HotQCD] (2012)
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Deconfinement: equation of state

» The equation of state has been recently calculated in the
continuum limit at the physical quark masses (Borsanyi et al.
[BW] (2014), Bazavov et al. [HotQCD] (2014))
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—cg non-int. limit
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025 1
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Results at g > 0
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How to access pz > 07

» Direct Monte Carlo simulations are not possible due to the sign
problem
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How to access g > 07

» Direct Monte Carlo simulations are not possible due to the sign
problem

» Method 1: Taylor expansion (Allton et al. (2002)), evaluate
various derivatives at u =0, e.g.

= ; <Tr (MEMY — (M M)?) + (TT(MJlMZ))2>
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How to access g > 07

» Direct Monte Carlo simulations are not possible due to the sign
problem
» Method 1: Taylor expansion (Allton et al. (2002)), evaluate
various derivatives at u =0, e.g.
T

W= <Tr (MM — (M7IML)?) + (Tr(MJlML))2>

» Method 2: Perform simulations at imaginary chemical potential,
then evaluate the derivatives of P(iu) (Lombardo (1999), de
Forcrand, Philipsen (2002))
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Constrained series expansions

» The number densities can also be represented with Taylor

expansions:
nx 8P/ T4
= ohx X=B,Q,5
X
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Constrained series expansions

» The number densities can also be represented with Taylor
expansions:
nx . 6P/ T4
T3 Opix

, X=B,Q,5

> In heavy-ion collisions there are additional constraints:

n
ns =0, ﬁ:o.zx
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Constrained series expansions

» The number densities can also be represented with Taylor
expansions:
nx . 6P/ T4
T3 Opix

, X=B,Q,5

> In heavy-ion collisions there are additional constraints:

n
ns =0, ﬁ:o.zx

» These constraints can be fulfilled by

fe(T,ue) = qu(Mis+ q(T)ig + qs(T)iag + -
fs(T.pe) = su(T)ie +ss(T)ig + ss(T)ig
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Freeze-out parameters

» Consider the ratios of cumulants:

3
@_ Q7% X3 po_ Mo xi
R31 - ) R12
v Q 2 a
Q X1 Q X2
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Freeze-out parameters

» Consider the ratios of cumulants:

3 Q Q
R3QI_SQUQ_X3 RS—MQ—Xl
— X3 -2 X
Mo @ B X3

> These ratios can be evaluated on the lattice for constrained
system and serve as thermometer (left) and baryometer (right)
(Bazavov et al. (2012))
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The equation of state at O(1%)

» Consider g = ps = 0 then the pressure is given by*

AP 1 x8(T) 1 x8(T)

1 B A2 A4
—_ = — T 1+ —
7r = 2%l )“B< 128" T 360 5Ty >

iz +

“Bazavov et al. [HotQCD] (2017)
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The equation of state at O(1%)

» Consider g = ps = 0 then the pressure is given by*
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The equation

[P(Tug)-P(TOIT*
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» The contribution to the pressure due to finite chemical potential

(left) and the baryon number density (right)
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The equation of state at O(1%)

140 160 180 200 220 240 260 280

» The total pressure (left) and energy density (right) at various
values of the baryon chemical potential
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The equation of state at O(u

T T T
P ng=0, ng/ng=0.4

[P(T,ug)-P(TO)IT*
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> The contribution to the pressure due to finite chemical potential
(left) and the baryon number density (right) for strangeness

neutral systems:
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Constraints on the critical point
» For ng = pts = 0 the net baryon-number susceptibility is

(0.9]
1 .
X2B(T7 1B) = Z wX?sz%n
n=0 ’
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Constraints on the critical point
» For ng = pts = 0 the net baryon-number susceptibility is

(0.9]
1 N
XZB(T7 /’LB) = Z (2n)|XZBn+2/’LZBn
n=0 ’
» The radius of convergence
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Constraints on the critical point

» For ng = pts = 0 the net baryon-number susceptibility is

(e 9]

1 .
X2B(T7 1B) = Z wX?sz%n
n=0 ’

» The radius of convergence

> We observe x&/xE < 3 for 135 < T < 155 MeV = r)\ > 2
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QCD phase diagram
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QCD phase diagram
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Conclusion

» Studying the QCD phase diagram requires non-perturbative
tools, such as lattice QCD

> In recent years lattice simulations at the physical light quark
mass with controlled systematic uncertainties became feasible

» At g = 0 the chiral crossover temperature is T, = 154(9) MeV

» The cumulants of conserved charges have been calculated on the
lattice up to the sixth order

» Ratios of cumulants can be compared to the experimental
measurements to determine the freeze-out parameters

» The QCD equation of state has been recently calculated up to
O(u)

> The critical point is disfavored in the 135 < T < 155 MeV range
up to ug/ T =2
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