Summary of LQCD123/QCDLAT activities

G.M. de Divitiis^a, M. Di Carlo^b, P. Dimopoulos^{ac},
M. Firrotta^a, R. Frezzotti^a, M. Garofalo^a, D. Giusti^d,
J. Koponen^a, V. Lubicz^d, G. Martinelli^b, L. Riggio^d,
<u>G.C. Rossi^{ac}</u>, G. Salerno^d, F. Sanfilippo^d,
S. Simula^d, N. Tantalo^a, C. Tarantino^d, A. Vladikas^a

^aUniversity of Roma Tor Vergata and INFN - Roma (Italy) ^bSapienza University of Roma and INFN - Roma (Italy) ^cCentro Fermi - Roma (Italy) ^dUniversity of Roma Tre and INFN - Roma (Italy)

BARI - December 15th, 2017

Outline

- Down to the physical pion mass
- Flavour physics and SM precision tests
- Including electromagnetism
- Dynamical generation of elementary particle masses
- Improving $N_f = 3$ Wilson fermions

- Disclaimer
 - Slides & info have been provided to me by the LQCD123 & QCDLAT people

Down to the physical pion mass - I

• $N_f = 2 + 1 + 1$ simulations with twisted clover fermions (ETMC)

- generating O(a)-improved configurations
- first low energy results: the pion sector

$N_f = 2 + 1 + 1$ simulations						
a (fm)	Vol	M _π (MeV)	# traj's	# traj's Total 2017	CPU (Mchs) 2017	Machine 2017
0.096 ″ ″	$\begin{array}{c} 48^{3} \times 96 \\ 32^{3} \times 64 \\ 24^{3} \times 48 \\ 24^{3} \times 48 \end{array}$	170 250 300 350	2.2 k 2.6 k 5.2 k 5.0 k	0.3 k 2.6 k 5.2 k 5.0 k	0.5 4.1 4.0 3.8	Juqueen Marconi Marconi Marconi
0.080 ″	$64^3 \times 128$ $48^3 \times 96$	139 250	3.0 k 0.5 k	3.0 k 0.5 k	45.0 3.2	SuperMUC Marconi

Down to the physical pion mass - II

- $N_f = 4$ simulations for RC calculations
 - mass independent renormalization scheme

• Z_A, Z_V, Z_P, \ldots

$N_f = 4$ simulations						
<i>a</i> (fm)	# ensembles	Vol	# traj's	# traj's 2017	CPU (Mchs) 2017	Machine 2017
				2017	2017	2017
0.096	5	$24^{3} \times 48$	3.0 k	2.0 k	0.5	BG/Q Turing
,				3.0 k	U.8	Bern cluster
"		"		3.UK	0.4	Zeurnen
				1.0 K	0.2	warconi
0.080	5	$24^{3} \times 48$	3.0 k	5.5 k	1.3	BG/Q Turing
"		"		2.5 k	0.6	Bern cluster
"	1	32 ³ ×64	2.5 k	1.0 k	0.7	Bern cluster
$N_f = 4$ inversions (RI/S-MOM)						

<i>a</i> (fm)	# ensembles	Vol	# gauges per ens.	CPU (Mchs) 2017	Machine 2017
0.080	2×5	24 ³ ×48	200	1.2	Marconi

SM precision tests

Lattice QCD and the phenomenology of Flavor Physics

* The interpretation of experimental data typically requires the precise knowledge of several hadronic parameters

* Lattice QCD provides a first principle approach to the calculation of all the non-perturbative effects of strong interactions

The goal is to achieve a theoretical precision comparable to the experimental one

quantity	FLAG-3 average	FLAG-3 error (%)	relevance
$\alpha_{MS}^{(5)}(M_z)$	0.1182 (12)	1.0	QCD parameter
m _{ud} (MeV)	3.373 (80)	2.4	QCD parameter
m _s (MeV)	93.9 (1.1)	1.2	QCD parameter
f_{κ^*}/f_{π^*}	1.193 (3)	0.25	$V_{us} \ from \ K_{\ell 2}$
$f_{\cdot}^{\kappa_{\pi}}(0)$	0.9704 (33)	0.34	$V_{us} \ from \ K_{\ell 3}$
$\hat{B}_{_{K}}$	0.763 (10)	1.3	$K - \overline{K}$ oscillations
f_{D_s} (MeV)	248.83 (1.27)	0.5	V _{cs} (V _{cd})
f_{B_s} (MeV)	224 (5)	2.2	$B_s \rightarrow \mu^+ \mu^-$
$f_{B_s} \sqrt{\hat{B}_{B_s}}$ (MeV)	270 (16)	5.9	$B - \overline{B}$ oscillations
ξ	1.239 (46)	3.7	$B - \overline{B}$ oscillations

Flavor Lattice Averaging Group (FLAG): 3rd review EPJC (2017)

BARI - December 15th, 2017

G.C. Rossi

1 11

SM precision tests

Two main LQCD activities in RM3

* vector and scalar form factors $f_{+,0}(q^2)$ for the semileptonic decays $K \to \pi \ell v_{\ell}$ and $D \to \pi (K) \ell v_{\ell}$ relevant for V_{us} and $V_{cd(s)}$

* more challenging the form factors for the semileptonic decays $B \rightarrow \pi (K, D, D^*) \ell v_{\ell}$ relevant for $V_{ub} (V_{cb})$ and $[R(D), R(D^*)]$

- the physical b-quark cannot be simulated on present lattices
- ETMC has developed the "ratio method" to deal with the extrapolation from the physical charm to the physical beauty for many observables

JHEP 04 (2010), JHEP 01 (2012) JHEP 03 (2014), PRD 93 (2016)

 the computation of form factors is very demanding as for the memory requirements: V*T = (48)* 96, 15 light and heavy quark masses from the c- to the b-quark, 10 values of injected quark momenta (via non-periodic boundary conditions), 4 stochastic sources per gauge conf. ==> ~ 1200 propagators of ~ 6 GB each

~ 70 TB of memory ===> ~ 80 nodes of Marconi A2 (KNL)

Including electromagnetism - The problem

EM and isospin breaking relevant at 1 % accuracy

- Insertion method expansion in α_{em} and $|m_u m_q|/\lambda_{QCD}L$
 - IR divergencies in intermediate steps
 - Real and virtual photons
- Full QED+QCD simulation with C*-bc's
 - Gauge field zero mode (with pbc's)
 - Charged state propagation (Gauss' law)
- Computational bottlenecks
 - Finite size effects
 - Electro-unquenching

RM3 C* - I C* - II C* - III

Including electromagnetism - Insertion method

* Electromagnetic and strong Isospin Breaking effects due to the up/down quark mass difference and quark electric charges

 RM123/Soton group has developed a new, efficient method to evaluate e.m. and IB effects on hadron masses (IR divergency free) and on hadron decay rates (intermediate IR divergencies)

JHEP 04 (2012) PRD 87 (2013) PRD 91 (2015)

BARI - December 15th, 2017

G.C. Rossi

Including electromagnetism - C* bc's

RC* collaboration 1/3

b.lucini, a.patella, a.ramos, n.t, JHEP 1602(2016) 076

consider C^{*} boundary conditions (first suggested by wise and polley 91)

$$\psi_f(x + L\mathbf{k}) = C^{-1}\bar{\psi}_f^T(x)$$

$$\bar{\psi}_f(x + L\mathbf{k}) = -\psi_f^T(x)C$$

$$A_{\mu}(x + L\mathbf{k}) = -A_{\mu}(x) , \qquad U_{\mu}(x + L\mathbf{k}) = U_{\mu}^{*}(x) ,$$

- the gauge field is anti-periodic ($|\mathbf{p}|_{min} = \pi/L$): no zero modes by construction!
- · this means no large gauge transformations and

$$Q = \int_{L^3} d^3 x \, \rho(x) \; = \; \frac{1}{e} \int_{L^3} d^3 x \, \partial_k E_k(x) \neq 0$$

• a fully gauge invariant formulation is possible: the electrostatic potential, $\Phi(x)$, is unique and well defined with anti-periodic boundary conditions

$$\Psi_f(t, \boldsymbol{x}) = e^{-iq_f \int d^3 y \, \Phi(\boldsymbol{y} - \boldsymbol{x}) \partial_k A_k(t, \boldsymbol{y})} \, \psi_f(t, \boldsymbol{x}) \;, \qquad \partial_k \partial_k \Phi(\boldsymbol{x}) = \delta^3(\boldsymbol{x})$$

Including electromagnetism - C^* -bc's

RC* collaboration 2/3

m.hansen, b.lucini, a.ramos, a.patella, n.t. in preparation

· the mass of, say, the charged kaon can be extracted from the fully gauge invariant correlator

$$\sum_{\boldsymbol{x}} \langle \bar{\Psi}_s \gamma_5 \Psi_u(t, \boldsymbol{x}) \, \bar{\Psi}_u \gamma_5 \Psi_s(0) \rangle = \frac{Z_{K+}(L)}{2M_{K+}(L)} e^{-M_{K+}(L)t} + \mathcal{O}\left[e^{-\Delta(L)t}\right]$$

• full unquenched simulations of QCD+QED_C (QCD parameters from CLS):

BARI - December 15th, 2017 G.C. Rossi Summary of LQCD123/QCDLAT activities

Including electromagnetism - C^* bc's

RC* collaboration 3/3

- our results clearly demonstrate the numerical feasibility of a non-perturbative fully gauge-invariant calculation of charged hadrons masses within the framework of local constructive quantum field theory
- the numerical signal for charged correlators with gauge-invariant interpolating operators is as good as in the neutral sector!
- much more numerical work will be needed to obtain results at the physical values of the quark masses, in the continuum and infinite volume limits...
- this is a long-term project of the RC* collaboration: download the openQ*D code to simulate QCD+QED_C from http://rcstar.web.cern.ch
- these results have been obtained by using 60307 node hours on the KNL partition, i.e. 4.1×10^6 core hours

BARI - December 15th, 2017

G.C. Rossi

Dynamical Generation of Elementary Masses

- Elementary particle masses are (conjectured to be) dynamically generated in a critical model where
 - in PT fermions are kept massless by a global symmetry (χ)
 - chiral fermion symmetry ($ilde{\chi}$) is only broken at the UV scale
- Consider the (χ -invariant) theory Frezzotti Rossi, PRD 92 (2015) 054505 $\mathcal{L}_{toy}(Q, A, \Phi) = \mathcal{L}_{kln}(Q, A, \Phi) + \mathcal{V}(\Phi) + \mathcal{L}_{YUk}(Q, \Phi) + \mathcal{L}_{Wll}(Q, A, \Phi)$ • $\mathcal{L}_{kln}(Q, A, \Phi) = \frac{1}{4} F^{\alpha}_{\mu\nu} F^{\alpha}_{\mu\nu} + \bar{Q}_{L} \gamma_{\mu} \mathcal{D}_{\mu} Q_{L} + \bar{Q}_{R} \gamma_{\mu} \mathcal{D}_{\mu} Q_{R} + \frac{1}{2} Tr[\partial_{\mu} \Phi^{\dagger} \partial_{\mu} \Phi]$ • $\mathcal{V}(\Phi) = \frac{\mu_{0}^{2}}{2} Tr[\Phi^{\dagger}\Phi] + \frac{\lambda_{0}}{4} (Tr[\Phi^{\dagger}\Phi])^{2}$ • $\mathcal{L}_{YUk}(Q, \Phi) = \eta (\bar{Q}_{L} \Phi Q_{R} + \bar{Q}_{R} \Phi^{\dagger} Q_{L})$ • $\mathcal{L}_{Wll}(Q, A, \Phi) = \frac{b^{2}}{2} \rho (\bar{Q}_{L} \overleftarrow{\mathcal{D}}_{\mu} \Phi \mathcal{D}_{\mu} Q_{R} + \bar{Q}_{R} \overleftarrow{\mathcal{D}}_{\mu} \Phi^{\dagger} \mathcal{D}_{\mu} Q_{L})$
- Put the theory on a lattice and check the conjecture

DGEM simulation strategy

• Determine in Wigner phase (single well $\mathcal{V}(\Phi)$) the value of the Yukawa coupling, η_{cr} , at which fermionic chiral transformations

 $(\tilde{\chi})$ are a symmetry of \mathcal{L}_{toy} by enforcing the WTI

• 0 = $\partial_0 \langle \tilde{V}_0^3(x) \tilde{D}^3(0) \rangle = (\eta - \eta_{cr}) \langle \tilde{D}^3(x) \tilde{D}^3(0) \rangle + (\text{lat. artefacts})$

• i.e. look for
$$\eta$$
 such that $r_{WI}(\eta) \equiv \frac{-\delta(-\theta C^{\prime})}{\langle \tilde{D}^{3}(x)\tilde{D}^{3}(0) \rangle} \Big|_{W} = 0$

- At η_{cr} in Nambu–Goldstone phase (double well $\mathcal{V}(\Phi)$) compute
- $2m_{PCAC}(\eta_{cr}) \equiv \frac{\partial_0 \langle \tilde{A}_0^1(x) P^1(0) \rangle}{\langle P^1(x) P^1(0) \rangle} \Big|_{NG}$ (at η_{cr} Higgs quark mass = 0)
- From $\partial_0 \langle \tilde{A}_0^1(x) P^1(0) \rangle = 2m_{PCAC}(\eta_{cr}) \langle P^1(x) P^1(0) \rangle + (\text{lat. artefacts})$
- we interpret $m_{PCAC}(\eta_{cr})
 eq 0$ as a DG quark mass $ightarrow M_{PS}^2
 eq 0$
- An alternative to the Higgs mechanism?

(Ξ) < Ξ)</p>

DGEM simulation results - η_{cr} (Wigner phase)

BARI - December 15th, 2017

G.C. Rossi

Int @ m_{π} Flavour EM DGEM *b*-coeff CPU Thanks I II III IV V

DGEM simulation results - M_{PS}^2 (NG phase)

Recall

• η_{cr} (where $\tilde{\chi}$ -symmetry was enforced) $\rightarrow m_{PCAC}(\eta_{cr}) \neq 0$

• η^{\star} is where $m_{PCAC}(\eta^{\star}) = 0$

BARI - December 15th, 2017

G.C. Rossi

DGEM (quenched) simulation cost

DGEM inversions 2017						
β	Vol	# inversions (gauge \times scalar)	CPU (Mchs)	Machine		
5.75 ″	16 ³ ×40 16 ³ ×32	6.0 k 6.0 k	2.0 2.0	Marconi "		
5.85	16 ³ ×40	10.0 k	3.4	"		
5.95	20 ³ ×48	2.0 k	0.7	"		

ъ

b-coeff's for O(a) improvement of Wilson fermions

Finite volume & mass independent renormalization scheme

Finite volume and masses fixed by renormalized couplings

$$\left(\mu = 1/L, \frac{M}{\Lambda}\right) = \text{fixed} \iff \boxed{\left(g_{\text{R}}^{2}(L), m_{\text{R}}(1/L)L\right) = \text{constant}}$$

Finite volume requires boundary conditions:

LOCD123 & OCDLAT

Schrödinger functional (SF) cylinder $L^3 \times T$ periodic bc in spatial directions, Dirichlet bc in temporal direction

Improvement b-coefficients

In O(a) improved & mass-independent schemes bare quantities must be renormalized with mass-dependent terms

$$\begin{split} g_{\rm R}^2 &= Z_{\rm g}(\tilde{g}_0^2, a\mu) \, \tilde{g}_0^2 & \qquad \tilde{g}_0^2 = (1 + b_{\rm g}(g_0^2) am_q) \, g_0^2 \\ m_{\rm R} &= Z_{\rm m}(\tilde{g}_0^2, a\mu) \, \tilde{m} & \qquad \tilde{m} = (1 + b_{\rm m}(g_0^2) am_q) \, m_q \\ X_{\rm R} &= Z_{\rm X}(\tilde{g}_0^2, a\mu) \, \tilde{X} & \qquad \tilde{X} = (1 + b_{\rm X}(g_0^2) am_q) \, X_{\rm I} \end{split}$$

b-coeff's for O(a) improvement of Wilson fermions

Improvement condition

• (non-singlet) PCAC relation free of O(a) violations

$$\left| \tilde{\partial}_{\mu} \left\langle A_{R} \, {}^{ij}_{\mu}(x) \, \mathcal{O}^{ji} \right\rangle = (m_{\mathrm{R},i} + m_{\mathrm{R},j}) \, \left\langle P_{R} \, {}^{ij}(x) \, \mathcal{O}^{ji} \right\rangle + O(a^{2})$$

Standard renormalization pattern of improved lattice operators (for $\hat{m}^{(sea)} \sim 0$)

$$\begin{array}{ll} A^{ij}_{\mu}=\bar{\psi}_i\gamma_{\mu}\gamma_5\psi_j\,,\quad P^{ij}=\bar{\psi}_i\gamma_5\psi_j\\ m_{q,ij}=\frac{1}{2}(m_{q,i}+m_{q,j}),\quad m_{q,i}=m_{0,i}-m_c=\frac{1}{2a}(\frac{1}{\kappa_i}-\frac{1}{\kappa_c}) \end{array}$$

LQCD123 & QCDLAT

G.C. Rossi

Improvement b-coefficients

BARI - December 15th, 2017

Numerical definitions of $b_{\rm A} - b_{\rm P}$, $b_{\rm m}$, Z

$$\boxed{m_{ij}(x_0) = \frac{\tilde{\partial}_0 f_{\mathrm{A}}^{ij}(x_0) + ac_{\mathrm{A}}\partial_0^*\partial_0 f_{\mathrm{P}}^{ij}(x_0)}{2 f_{\mathrm{P}}^{ij}(x_0)} \begin{cases} f_{\mathrm{A}}^{ij}(x_0) \equiv -a^3 \sum_{\mathbf{x}} \left\langle A_{\mathrm{D}}^{ij}(x) \mathcal{O}^{ji} \right\rangle \\ f_{\mathrm{P}}^{ij}(x_0) \equiv -a^3 \sum_{\mathbf{x}} \left\langle P^{ij}(x) \mathcal{O}^{ji} \right\rangle \\ \mathcal{O}^{ji} \equiv a^6 \sum_{\mathbf{u},\mathbf{v}} \zeta_j(\mathbf{u}) \gamma_5 \zeta_j(\mathbf{v}) \end{cases}}$$

$$R_{\rm AP} = \frac{2(2m_{12} - m_{11} - m_{22})}{(m_{11} - m_{22})(am_{q,1} - am_{q,2})} = b_{\rm A} - b_{\rm P} + O(am_{q,1} + am_{q,2})$$

$$R_{\rm m} = \frac{4(m_{12} - m_{33})}{(m_{11} - m_{22})(am_{q,1} - am_{q,2})} = b_{\rm m} + O(am_{q,1} + am_{q,2})$$

$$R_{Z} = \frac{m_{11} - m_{22}}{m_{q,1} - m_{q,2}} + (R_{\rm AP} - R_{\rm m})(am_{11} + am_{22}) = Z + O(a \operatorname{tr} \hat{m}^{(\text{sea})})$$
$$Z = Z(g_0) = \frac{Z_{\rm m}(g_0,1)Z_{\rm p}(g_0,1)}{Z_{\rm A}(g_0)}$$

 $L \approx 1.2 \, {\rm fm}$ $Lm_{11} \approx 0.0$ $Lm_{22} \approx 0.25, \, 0.5, \, 0.75, \, 1.0$ $m_{0,3} = \frac{1}{2}(m_{0,1} + m_{0,2})$

LQCD123 & QCDLAT

Improvement b-coefficients

BARI - December 15th, 2017

G.C. Rossi

Summary of LQCD123/QCDLAT activities

▲ 臣 ▶ | ▲ 臣 ▶

3

Contractions on Galileo cluster at CINECA: 0.17MCH

- $L \approx 1.2 \, \text{fm}$, $Lm_{11} \approx 0.0$, $Lm_{22} \approx 0.25$, 0.5, 0.75, 1.0
- *a* ≈ 0.09 fm → 0.045 fm

Parameters span the common range of bare couplings in large volume simulations of 3–flavour lattice QCD

Allocated CPU time

PRACE 2016_143304

"Lattice QCD simulations at the physical point with

 $N_f = 2 + 1 + 1$ dynamical flavors"

• 48 Mchs on Marconi A2

LQCD123 2017

- 34.3 Mchs on Marconi A2
- 1.5 Mchs on Marconi A1

Thanks for the attention

BARI - December 15th, 2017 G.C. Rossi Summary of LQCD123/QCDLAT activities

ъ