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The goal of this project is to compute the NP renormalization and running of the quark masses 
with Nf=3 QCD with a crucial control on systematics and high accuracy in a large range of 
scales: from the EW scale down to an hadronic scale to make contact with large volume 
simulations. 
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Since this work is a joint project with the one of the running coupling by the                     we 
follow the same strategy they have been using.
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RG Equations

where d0, b0, b1 are the only scheme independent coefficients  

The RG evolution between two scales              is then 
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We than introduce the Renormalization Group Invariant (RGI) quantities,  
formal solution of the RG equations as
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Renormalization Group functions for the coupling and mass are given by 

they admit a perturbative expansion as 
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dḡ

dµ
= �(ḡ)

for             we have the “usual” definition of the SSFs (in the continuum)
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Non-perturbative Renormalization
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There are several ways to compute non-perturbatively renormalization constants 
on the lattice.  
!
!
!
In general, it is possible to distinguish between:  
Infinite Volume

Finite Volume
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The scale is naturally identified by µ = 1/L no need to inject extern momenta.  
Possibility to built a recursion to cover large range of scales  O(⇤QCD) ! O(MW )

Schrödinger Functional (SF) [Lüscher et al. 1992]
[Sint 1993]

e.g. like RI-MOM [Martinelli et al.  Nucl.Phys. B445 (1995)]

m̄(µ) = lim
a!0

Zm(aµ, g0)m(g0)



Schrödinger Functional (SF)
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The observable may contain “boundary fields”

The SF is the functional integral on a hyper cylinder with PBC in spatial directions and  
Dirichlet conditions in time  

Fermionic correlation functions are usually 
computed without BG field.
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ḡ2SF =
@⌘�0[B]|⌘=0

@⌘�[B]|⌘=0

����
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0

BG field

for more details!
SEE TALK BY: !

S.Sint  
(TOMORROW @09:40)



SF Renormalization Scheme

�P (u) = lim
a!0

⌃P (u, g0, L/a)
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The lattice version of the SSF is than defined as the ratio of renormalization constants 
at     and       identifying                   and for L 2L µ = L�1 s = 2
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M.Luscher et al.!
Nucl.Phys. B384 (1992)
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The SF renormalization condition is imposed at vanishing quark mass

M.Luscher et al. 
Nucl.Phys. B582 (2000)

= 0.5

fP (x0)f1

M.Della Morte et al. 
Nucl.Phys. B729 (2005)

the continuum limit is taken  
by keeping            

u = ḡ2(L) = const



SF!
coupling

GF 
coupling

Scheme  
Matching

CLS 
Hadronic !

Simulations

PT!
NNLO

Two Schemes, Two Regions, More fun

⇠ 200MeV⇠ 60GeV
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The computational cost of measuring the SF coupling grows fast at low energies and in 
particular towards the continuum limit. Thus it is challenging to reach the low energy domain 
characteristic of hadronic physics, especially if one aims at maintaining the high precision.

The GF coupling seems to be better suited for this task. The relative precision of the coupling 
in this scheme is typically high and shows a weak dependence on both the energy scale and the 
cutoff. 

for more details!
SEE TALK BY: !

S.Sint  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µ0

for more details!
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Continuum Limit SF-SF ⌃P (u, a/L) = �P (u) + ⇢0(u)(a/L)2

⌃(1)
P (u, a/L) =

⌃P (u, a/L)

1 + �(a/L)u

The 1-loop improved SSF are 
defined as

L/a = [6, 8, 12]

We consider lattices 

at the switching scale 

in order to have a better 
control on the continuum  
extrapolation we consider also  
the step 16 ! 32

2L/a = [12, 16, 24]
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where  �(a/L) are the 1-loop  
SSF cutoff effects.

[Sint and Weisz !
Nucl.Phys. B545 (1999) 529-542]
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ḡ2SF(µ0) = 2.012

8 independent extrapolations

uSF = [1.1100, 1.1844, 1.2565, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120]

we produced the gauge ensemble 
with Wilson plaquette action and 
non-perturbatively O(a)-improved 

Nf=3 fermions

[Dalla Brida et al. PRL 117 (2016)]
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Using 

and with the knowledge of non-perturbative β  
parametrised as 

It is possible to extract from our SSF  
the non-perturbative anomalous dimension 
of the mass

The SSF can be now “re-constructed” and  
compared with a usual polynomial fit 

Continuum SSF (SF-SF)

[Dalla Brida et al. Phys.Rev.Lett. 117 (2016)]
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a few words about Gradient Flow coupling
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ḡGF(L) = N�1(c)
t
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In the continuum 

The analogous can be defined on the lattice in a way not to introduce any O(a) effect. 
Moreover, it is possible to define it in the SF finite volume, fixing the smearing radius 
to be proportional to the volume

In the definition we are explicitly projecting in the Q=0 topological sector 

As mentioned before, at we change definition of the renormalized coupling 

Numerical evidence shows [Fritzsch P. and Ramos A. JHEP 1310 (2013)]  that this coupling  
is more accurate than the SF one in the deep non-perturbative energy region, and then more  
suited for reaching betas from large volume simulations (CLS) 

to the GF coupling.

the switching scale in this other scheme is identified by ḡ2GF(µ0/2) = 2.6723(64)

2

µ0/2 ⇠ 2GeV

[Dalla Brida et al.  Phys.Rev. D95 (2017)]

[Dalla Brida et al.  Phys.Rev. D95 (2017)]

Bari, 13 December 2017



0.650

0.700

0.750

0.800

0.850

0.900

0.950

2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50

�
P
(u
)

u

Global FIT2 (ns = 3;n⇢ = 2)
FITA (ns = 5)

LO perturbative prediction
Continuum data

As for the high-energy region, we proceed by a global analysis. Since we used the same gauge 
ensambles used for the running coupling project [Dalla Brida et al. arXiv:1607.06423 [hep-lat]]                
the correlation is taken into account.
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Pnf

n=0 fnḡ
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In order to isolate the anomalous dimension, we  
recomputed 

as before, using the SSF we are able to write

where, we parametrise the integrand of the evolution function as

and then tau is finally given by
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[Dalla Brida et al.  Phys.Rev. D95 (2017)]

L/a = [8, 12, 16]
2L/a = [16, 24, 32]

Nf=3 O(a)-imp 
fermions and 

LW gauge action 
same enables of 

uGF = [2.1257, 2.3900, 2.7359, 3.2029, 3.8643, 4.4901, 5.3010]

f0 = 1.28(15)

f1 = �0.292(98)

f2 = 0.061(19)

f3 = �0.0029(12)

Continuum SSF (GF-SF)
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NP Mass Anomalous Dimension SF-SF & GF-SF
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⌧(g) = �g2(d0 + d1g
2 + d2g

4 + . . . )
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NP evolution in SF-SF & GF-SF
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Perturbative Matching
Given the non-perturbative anomalous dimension, we checked the “functional approach” to u=0
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Z ḡ(µ0/2)

g
dx


⌧(x)

�(x)

� d0

b0x

�)

We quote as a final result, the running from the lowest scale covered by our non-perturbative simulations 
obtained integrating the non-perturbative anomalous dimension
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Running from  µ0/2 ⇠ 2GeV

M

m̄(µ0/2)
= 1.7505(89)



In order to make the contact with large volumes simulations we spanned the range � 2 [3.4, 3.9]
with several volumes i.e. 10,12,16, 20, 24 in order to keep the renormalized coupling constant at  
a value reachable by our non-perturbative running.  

Notice, that since we are using the anomalous dimension, instead of an SSF recursion, we have much  
more flexibility in fixing the hadronic scale, which does not have to correspond to a scale which is  
proportional to the switching scale by an integer!

Matching with Large Volumes, and computation of light quark masses is ongoing!
17

from chiSF [Dalla Brida M., Korzec T. and Sint S.]ZA(g
2
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Hadronic Matching

� = 6/g20 ZM
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3.70
3.85

M

m̄(µhad)
= uhad = 9.25 $ µ0/19.05(36) = µhad = 221(4)MeV

⇠ 1%
relative  

(total) errors

ZM (g20) =
M

m̄(µhad)

ZA(g20)

ZP (g20 , aµhad)



• We have computed the NP running quark mass for Nf=3 between !
                and             at high precision 
!

• For the first time we dealt with two schemes, providing a strategy for a 
NP matching between them at the intermediate scale of   

• We are also providing for the first time an ”effective” NP anomalous 
dimension for both SF and GF-based schemes allowing to chose        

           in a broad range of values.

Conclusions & Outlook

⇠ 200MeV

⇠ 2GeV

• The next point in the project is the matching with large volume betas 
required for the calculation of the (light) quark masses. 
!

• Along with the mass project we have collected data for applying the 
same strategy to the Tensor current the only other bilinear with an 
independent anomalous dimension. 

!
• Same is going to be applied on the 4-fermion operators ΔF=2

18Bari, 13 December 2017

µhad

⇠ MW
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more on Running and matching
The running from a generic scale μ is given by
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2
(µ))

�d0/(2b0)
exp

(
�
Z ḡ(µ)
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In the specific case of an hadronic scale, it can be factorised as follows

With a usual SSF recursion it would be
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SF Renormalization Scheme

The SF renormalization condition is imposed at vanishing quark mass
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The correlation functions entering the definition above are given by

The lattice version of the SSF is than defined as the ratio of renormalization constants 
at     and       identifying                   and for L 2L µ = L�1

uSF = [1.1100, 1.1844, 1.2565, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120]

M.Luscher et al.  
Nucl.Phys. B582 (2000) 

 
M.Della Morte et al.  

Nucl.Phys. B729 (2005)

s = 2
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M.Luscher et al.

Nucl.Phys. B384 (1992)

uGF = [2.1257, 2.3900, 2.7359, 3.2029, 3.8643, 4.4901, 5.3010, 5.8673, 6.5489]
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Two Schemes, Two Regions, More fun

uSF = [1.1100, 1.1844, 1.2565, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120]

uGF = [2.1257, 2.3900, 2.7359, 3.2029, 3.8643, 4.4901, 5.3010, 5.8673, 6.5489]

g0R = gR

q
�g(gR)

m0
R = mR�m(gR)

�0(g0R) =

⇢
�(gR)

@g0R
@gR

�

⌧ 0(g0R) =

⇢
⌧(gR) + �(gR)

@

@gR
ln�m(gR)

�

gR=gR(g0
R)

The peculiarity of this work is to consider two different renormalization scheme for the couplings

High
Low

d01 = d1 + 2b0�
(1)
m � d0�

(1)
g�(gR)

gR!0⇠ 1 +
1X

k=1

�(k)g2kR

but same renormalization condition for the mass! 

A change of scheme for both coupling and mass can be written  
in terms of the differences of finite parts �

At 1-loop for instance one can easily see how the NLO anomalous dimension vary from one  
scheme to another due to a change of scheme in the renormalized coupling through the finite 
parts �(1)

g

Sint and Weisz 

[Nucl.Phys. B545 (1999) 529-542]

Since we do not know the perturbative finite parts from GF and we do not want to rely on PT  
at                           we perform a NP matching                            2L0 ⇠ mb/2
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⌃P (u, a/L) = �P (u) + ⇢0(u)(a/L)2

L/a = [8, 12, 16]

2L/a = [16, 24, 32]

Due to the large cutoff effect 
induced by the GF coupling 
we use larger lattices respect  
to the ones used in SF
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G
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uGF

Continuum data

FIT2 (nf = 2;n⇢ = 2)

“u-by-u” extrapolations

points NOT exactly on LCP! !
(only a check)

uGF = [2.1257, 2.3900, 2.7359, 3.2029, 3.8643, 4.4901, 5.3010, 5.8673, 6.5489]

not included in our analysis

computation of the 1-loop 
SSF cutoff effects is  
ongoing.

u-by-u GF-SF

[Dalla Brida et al.  
Phys.Rev. D95 (2017)]

Nf=3 O(a)-imp 
fermions and 

LW gauge action 
same enables of 

Nf = 3
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�ctZP ⇡
����
@ZP

@ct

���� (a/L)�ct

@ZP

@ct
= �0.016(15)

@ZP

@ct
= �0.003(26)

@ZP

@ct
= 0.110(14)

�ct = 1� cpertt
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�c̃tZP ⇡
����
@ZP

@c̃t

���� (a/L)�c̃t

@ZP

@c̃t
= 0.022(21)

@ZP

@c̃t
= �0.074(19)

@ZP

@c̃t
= �0.090(4)

�c̃t = 1� c̃pertt
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⇢c =
1

L

@⌃P

@m

����
u,L

⇢c⌃P = ⇢ctol(Lm) tol(Lm) = 0.001

⇢c = �0.15(15)
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Schrödinger Functional (SF)
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A

k

(x)|
x0=0 = C

k

A

k

(x)|
x0=T

= C

0
k

at x0 = T

at x0 = 0

The SF is the functional integral on a hyper cylinder with PBC in spatial directions and  
Dirichlet conditions in time  

[Lüscher et al. 1992]
[Sint 1993]

Z[C 0, ⇢̄0, ⇢0;C, ⇢̄, ⇢]

Z
D[U ]D[ ]D[ ̄]e�S[U, ̄, ]

T

For some choices of C 0
kCk and it can be showed that the induced background field              is an absolute

minimum of the action!

e.g.

Ck =
i

L

0

@
�1 0 0
0 �2 0
0 0 �3

1

A

C 0
k =

i

L

0

@
�0
1 0 0
0 �0

2 0
0 0 �0

3

1

A

�1 = ⌘ � ⇡/3
�2 = �⌘/2
�3 = �⌘/2 + ⇡/3

�0
1 = ��1 � 4⇡/3

�0
2 = ��3 + 2⇡/3

�0
3 = ��2 + 2⇡/3

B0 = 0

Bk = [x0C
0
k + (L� x0)Ck]/L

Bµ(x)

Gauge action minumum!

For the gauge potential we have
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SF gauge coupling

28

[Lüscher et al. 1992]
[Sint 1993]

It is possible to define a coupling as a “response coefficient” to a variation of a  
constant colour electric field 

�[B] = �lnZ[C,C 0]

�[B] ⇠ 1

g20
�0[B] + �1[B] +O(g20)

ḡ2SF =
@⌘�0[B]|⌘=0

@⌘�[B]|⌘=0

����
mq=0

expanding in perturbation theory

G0k = [Ck � C 0
k]/L

By the definition of the effective action of the induced BG field 

we finally have 

Boundary conditions on  
fermion field allow to simulate 
really at vanishing quark masses

Non-perturbative definition of the renormalized gauge coupling, suitable for numerical simulations!

G0k = @0Bk =

Bari, 13 December 2017


