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Status of αs(mZ)

αs(mZ) is a fundamental parameter of the Standard Model;

Important input for LHC physics: accuracy < 1% is required!

Current status & world averages:

αs(mZ) =


0.1174(16) PDG 2016 (phenomenology)
0.1188(11) PDG 2016 (lattice)
0.1184(12) FLAG2 2013 (lattice)
0.1182(12) FLAG3 2016 (lattice)

Reducing the error to ∆αs(mZ) ≈ 0.0006 (ie. 0.5%)is a challenge!



5/ 21



6/ 21

ALPHA collaboration project
Build on CLS effort [Bruno et al, JHEP 1502 (2015) 043]:

Nf = 2 + 1 state of the art lattice QCD simulations

nonperturbatively O(a) improved Wilson quarks & Lüscher-Weisz gauge action;

open boundary conditions (avoids topology freezing)

Use 3 input parameters from experiment, e.g.

FK ,mπ ,mK ⇒ mu = md,ms, g0

⇒ everything else becomes a prediction, for instance

α
(Nf=3)
s (1000× FK) (in any renormalization scheme)

Final goal: α(Nf=5)
s (mZ) in the MS-scheme

Controlled systematics: avoid the use of perturbation theory except at high
energies of O(mZ)!

Solve the problem of large scale differences using recursive finite volume
techniques (“step-scaling”).

Has been accomplished in Nf = 3 QCD (s. next page)

⇒ αs(mZ) currently still requires perturbative matching from Nf = 3 to Nf = 5
across the charm and bottom thresholds!
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Result for αs(mZ) by the ALPHA collaboration
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Scale setting:
fπK = 1

3 (2fK + fπ) = 147.6 (PDG),
evaluated on CLS gauge configurations in
terms of t0 [Bruno, Korzec, Schaefer (2017)]

Λ(3)
MS

= 341(12) MeV

⇒ αs(mZ) = 0.1185(8)(3)

perturbation theory (PT) is only
used at high energies µPT

2 couplings are traced
non-perturbatively:

GF (“gradient flow”) from
hadronic to intermediate energies
(µ0 ≈ 4 GeV);
SF (“Schrödinger functional”)
from µ0 to high energies µPT

This talk will focus on the high energy running in the SF scheme!
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Non-perturbatively defined finite volume couplings

Wanted: QCD observables, O, which ...

are gauge invariant & non-perturbatively defined through the (Euclidean) QCD
path integral:

〈O〉 = Z−1
∫

D[A,ψ, ψ]O[A,ψ, ψ] exp {−S}

depend on a single scale µ = 1/L, with L4 the space-time volume. Other
dimensionful parameters (momenta, distances,..) are scaled with L or set to
zero (quark masses);

can be expanded perturbatively in αs(µ) = ḡ2(L)/(4π):

〈O〉 = c0 + c1αs(µ) + c2α
2
s(µ) + . . .

⇒ give rise to non-perturbatively defined couplings:

αO(µ)
def= 〈O〉 − c0

c1
= αs(µ) + c′1α

2
s(µ) + c′2α

3
s(µ) + . . .
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Example: a family of SF couplings

Dirichlet b.c.’s in Euclidean time, abelian boundary values Ck, C′k:

Ak(x)|x0=0 = Ck(η, ν), Ak(x)|x0=L = C′k(η, ν)

⇒ induce family of abelian, spatially constant background fields Bµ with
parameters η, ν (→ 2 abelian generators of SU(3)):

Bk(x) = Ck(η, ν) +
x0

L

(
C′k(η, ν)− Ck(η, ν)

)
, B0 = 0.

Induced background field is unique up to gauge equivalence

Effective action

e−Γ[B] =
∫

D[A,ψ, ψ]e−S[A,ψ,ψ], Γ[B] = 1
g2

0
Γ0[B] + Γ1[B] + O(g2

0)

Define family of SF couplings, parameter ν:

1
ḡ2
ν(L)

def= ∂ηΓ[B]
∂ηΓ0[B]

∣∣∣∣
η=0

=
〈∂ηS〉
∂ηΓ0[B]

∣∣∣∣
η=0

=
1

ḡ2(L)
− νv̄(L)

⇒ response of the system to a change of a colour electric background field.
[Narayanan et al. ’92]
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Testing perturbation theory: use the Λ-parameter I

Non-perturbatively defined coupling ḡ2(L) implies non-perturbative definition of
β-function:

β(ḡ)
def= −L

∂ḡ(L)
∂L

, β(g) = −b0g3 − b1g5 + . . .

with universal coefficients b0, b1 (i.e. bi, i ≥ 2 scheme dependent)

b0 = (11− 2
3 Nf )/(4π)2, b1 = (102− 38

3 Nf )/(4π)4 .

Exact solution of Callan-Symanzik equation [L∂/∂L+ β(ḡ)∂/∂ḡ]LΛ = 0

LΛ = ϕ (ḡ(L))

ϕ (ḡ) =
[
b0ḡ

2
]− b1

2b2
0 e−

1
2b0ḡ2 exp

{
−
∫ ḡ

0
dg

[ 1
β(g)

+
1

b0g3 −
b1

b20g

]}
Scheme dependence of Λ almost trivial:

g2
X(µ) = g2

Y(µ) + cXYg
4
Y(µ) + ... ⇒

ΛX
ΛY

= ecXY/2b0

⇒ use Λ = ΛSF,ν = 0 as reference.
Note: ΛMS is now non-perturbatively defined by Λ = 0.3829× ΛMS (for
Nf = 3)
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Testing perturbation theory: use the Λ-parameter II

Introduce a reference scale 1/L0 through:

ḡ2(L0) = 2.012 ⇒
1

ḡ2
ν(L0)

=
1

2.012
− ν × 0.1199(10) (s. later)

Consider
L0Λ = L0/L︸︷︷︸

known

× Λ/Λν︸︷︷︸
exp(−ν×1.25516)

× ϕν (ḡν(L))

Non-perturbative results for 1/L0 ≤ µ ≤ 1/L (s. below)

Perturbation theory for µ > 1/L by replacing βν(g)→ βν,3-loop(g) in:

ϕν (ḡν(L)) ∝ exp
{
−
∫ ḡν(L)

0
dg

[ 1
βν(g)

+
1

b0g3 −
b1

b20g

]}
βν,3-loop(g) = −b0g3 − b1g5 − b2,ν g7,

b2,ν = (−0.06(3)− ν × 1.26)/(4π)3 [Bode, Weisz, Wolff ’99]

N.B.: L0Λ must be independent of L and ν ⇒ excellent test of PT!
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Non-perturbative running in steps and determination of L0/L

Vary scale by factor 2, define step-scaling function [Lüscher, Weisz, Wolff ’91]:

σ(u) = ḡ2(2L)
∣∣
u=ḡ2(L)

,

Connection to β-function: ∫ √σ(u)

√
u

dg

β(g)
= − ln 2

σ(u) can be constructed as the continuum limit of lattice approximants (s.
below)

Once σ(u) is available for a range of values u ∈ [umin, u0]

⇒ iteratively step up the energy scale:

u0 = ḡ2(L0), un = σ(un+1) = ḡ2(Ln) = ḡ2(2−nL0), n = 0, 1, ...

⇒ scale ratios are L0/Ln = 2n, where n is the number of steps.
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Lattice approximants Σ(u, a/L) for σ(u)

choose g0 and L/a = 4,
measure ḡ2(L) = u (defines
value of u)

double the lattice and measure

Σ(u, 1/4) = ḡ2(2L)

now choose L/a = 6 and tune
g′0 such that ḡ2(L) = u is
satisfied

double the lattice and measure

Σ(u, 1/6) = ḡ2(2L)

. . .

σ(u) = lim
a/L→0

Σ(u, a/L)

.

change u and repeat...
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Step scaling function for ν = 0

Σ(u, a/L) = ḡ2(2L)|ḡ2(L)=u), σ(u) = lim
a/L→0

Σ(u, a/L)

Simulate for a range of u-values ∈ [1, 2.012] on lattices with L/a = 4, 6, 8, 12.

Double lattice size and measure Σ(u, a/L) = ḡ2(2L)

analyze Σ(u, a/L) directly

Alternatively, reduce cutoff effects perturbatively up to 2-loop order:

δ(u, a/L) =
Σ(u, a/L)− σ(u)

σ(u)
= δ1(L/a)u+ δ2(L/a)u2 + O(u3)

δ1,2(L/a) are known [Bode, Weisz & Wolff ’99]

⇒ cutoff effects in

Σ′(u, a/L) =
Σ(u, a/L)

1 + δ1(L/a)u+ δ2(L/a)u2

start at order u4!
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Continuum extrapolation of Σ(u, a/L)

Example for global fit ansatz:

Σ(u, a/L) = u+ s0u
2 + s1u

3 + c1u
4 + c2u

5 + ρ1u
4 a

2

L2 + ρ2u
5 a

2

L2

s0, s1 fixed to perturbative values: s0 = 2b0 ln 2, s1 = s20 + 2b1 ln 2

4 parameters: c1, c2, ρ1, ρ2; 19 data points, χ2/d.o.f. ≈ 1
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Treatment of lattice effects linear in a

Main disadvantage of SF boundary conditions:

cutoff effects linear in a generated by the boundaries.

Counterterms are tr(F0kF0k) and ψD0ψ, localized at the boundaries x0 = 0, L

can be cancelled by tuning the counterterm coefficients ct and c̃t.

In PT: ct known to 2-loops and c̃t to one-loop order

To avoid terms linear in a in the continuum extrapolations, we

measure the sensitivity at the larger couplings to a variation of ct and c̃t;
interpolate with the perturbative behaviour ⇒ model for sensitivity
estimate the effect of imperfect tuning by shifting all data in either direction with
∆ct and ∆c̃t taken to be the last known order in PT.
carry out the continuum limit with O(a2) terms only and add the differences in
the central values in quadrature to the error.
the error is subdominant in all cases.
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Result for L0Λ

All results agree at α = 0.1, we quote

L0Λ = 0.0303(8) error < 3% !

For ν = 0.3 this result could be inferred from larger values of α, but not for
ν = −0.5!

As expected, all results have corrections ∝ α2; effective coefficients can vary
dramatically

⇒ Some luck is required to pick a “good scheme”, i.e. with small higher order
corrections.
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Continuum results v̄ = ω(u) = v1 + u× v2 + . . .

Continuum extrapolation analogous to σ(u), but much more data between
L/a = 6 to L/a = 24 covering a factor 4 in resolution!

consider 2 continuum parameterizations (v1, v2 are known from PT):
ω(u) = v1 + v2u+ d1u

2 + d2u
3 + d3u

4

ω(u) = v1 + d1u+ d2u
2 + d3u

3 + d4u
4

L0Λ calculation for ν 6= 0 requires v̄(L0) = ω(2.012) = 0.1199(10)
(u = 2.012⇔ α = 0.16)

Observe large deviation from perturbation theory at α = 0.19:(
ω(ḡ2)− v1 − v2ḡ

2
)
/v1 = −3.7(2)α2

The coefficient is too large for PT to be trustworthy at these couplings!
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Alternative test via the MS-scheme I

Idea: First match the SF coupling to the MS-scheme then evaluate the Λ-parameter
using up to 5-loop order PT available for this scheme.

Relation between couplings, allowing for a scale factor s:

4πα
MS

(s/L) = ḡ2
MS

(L/s) = ḡ2
ν(L) + pν1(s)ḡ4

ν(L) + pν2(s)ḡ6
ν(L) + O(ḡ8)

Same as earlier, except now in the MS scheme:

ΛMSL0 = sL0
L
ϕ

MS

[
ḡ
MS

(L/s)
]

= s 2nϕ
MS

[√
ḡ2
ν(L) + pν1(s)ḡ4

ν(L) + pν2(s)ḡ6
ν(L)

]
,

expect to see independence of the number of steps n, scale factor s and
parameter ν.

Look at ν = 0, depdendence on n and s.

Note: The neglected order for Λ:

∆g2 dϕ
dg2 ∝ ∆g2 {gβ(g)}−1 = ∆g2 ×O(g−4)

⇒ truncation error: O(g8)×O(g−4) = O(g4) = O(α2).
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Alternative test via the MS-scheme II

α(sq) = αν(q) + cν1(s)α2
ν + cν2(s)α3

ν(q) + ..., pνi = cνi /(4π)i

PRELIMINARY
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arXiv: 1604.06193
ν = 0, s = 6.0

ν = 0, s = 2.612
ν = 0, s = 1.0
ν = 0, s = 0.5

Choice of scale factor is important, coefficients can get large.

“fastest apparent convergence” principle: c1(s∗) = 0 which means
s∗ = ΛMS/Λ ≈ 2.612 seems like a good idea.
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Conclusions and outlook

Perturbative calculations are subject to errors which are difficult to estimate

Lattice QCD provides a testing ground for perturbation theory at high
energies/small volumes

finite volume becomes essential part of observables
⇒ infinite volume calculations are of limited use;

PT remains feasible with careful choice of b.c.’s.
finite volume protects against infrared/renormalon problems; for SF coupling find
a secondary minimum with an action gap of 5π/(6α) ≈ 2.62/α

⇒ negligible here, e.g. exp(−2.62/0.2 ≈ 2× 10−6.

Similar studies are possible with quark masses (cf. David Preti’s talk)

Gradient flow couplings:

requires perturbative calculations
⇒ could be done using NSPT [Dalla Brida & Hesse ’13, Dalla Brida & Luscher ’17]

BUT: Perturbation theory at low scales often can and should be avoided by
using recursive finite size scaling techniques!

Thank you!


