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Spontaneous synchronization

What is synchronization?

Synchronization is the adjustment of the

rhythm of active, dissipative oscillators

caused by a weak interaction.

Prerequisite: Each oscillator persists in its
motion thanks to an external source of
energy.



Active oscillators

I generates periodic oscillations

I absence of periodic forces

I dissipative dynamical system

I autonomous differential equation

I limit cycle in phase space



Christiaan Huygens

Christiaan Huygens first observed the synchronization of two
clocks in 1656



Radio communication

... in more recent times

W. J. Eccles and J. H. Vincent (1920) discover synchronization in
a triod.
The theory is then developed by Edward Appleton and Balthasar
Van de Pol (1922-1927) setting the foundations for modern radio
communication.



Flashing fireflies

Englebert Kaempfer observes in Siam (1680) synchronization in
flashing fireflies
Jean-Jacques Dourtous de Mairan discovers circadian rhythms in
the movement of bean leaves (1729).



In absence of coupling



Weak coupling



Synchronization region

∆ω difference in unperturbed frequencies

∆Ω difference in observed frequencies



Phase

ϕ = ϕ0 +
2π

T

∫ θ

0

dθ

θ̇

ϕ = ϕ0 + 2π
t − t0
T



Many phases



Stuart-Landau

Weakly nonlinear dynamics near a bifurcation

dQ

dt
= iωQ + (α− β|Q|2)Q

α, β, ω ∈ R

Q = ρe iθ

ρ, θ ∈ R and θ ∈ [−π, π]

dρ/dt|ρ=ρstable = 0

dρ/dt|ρ<ρstable > 0

, dρ/dt|ρ>ρstable < 0

dθ

dt
= ω.



Coupled Stuart-Landau oscillators

dQi

dt
= iωiQi + (α− β|Qi |2)Qi +

N∑

j=1,j 6=i

KijQj ,

Kij > 0
Three simplifying premises

1. large number of oscillators: N →∞,

2. the coupling Kij ∀ i , j scaling as Kij = K/N with K finite,
implying thereby that every oscillator is coupled weakly and
with equal strength to every other oscillator, and

3. the limit α, β →∞, while keeping α/β fixed and finite, and,
moreover, ωi ∀ i being finite.



Kuramoto limit

Qi = ρie
iθi

Each ρi relaxes over a time of O(1/β) to its limit-cycle value√
α/β.

The long-time dynamics corresponds to self-sustained limit-cycle
oscillations for each oscillator, which is described by the evolution
equation

dθi
dt

= ωi +
K̃

N

N∑

j=1

sin(θj − θi ).

The ωi are N quenched random variables extracted from the
distribution g(ω).
These are the governing dynamical equation of the Kuramoto
model



The Kuramoto transition
Let g(ω) be unimodal and symmetric around the average 〈ω〉 with
width σ.
By going to the comoving frame rotating with frequency 〈ω〉, one
may consider the ωi ’s to have zero mean.
Kuramoto’s order parameter

r(t) = r(t)e iψ(t) ≡ 1

N

N∑

j=1

e iθj (t),

I High K̃ : Synchronized phase , r > 0
I Low K̃ : Incoherent phase, r ≈ 0.

K̃
K̃c

0

1

r



Phase distribution

K̃c

K̃
r = 0 r 6= 0

0



Fixed-point and drifting phases

The dynamics in terms of r(t) and ψ(t)

dθi
dt

= ωi + K̃ r sin(ψ − θi ).

Phase difference φi = θi − ψ.
Two types of oscillators

1. Fixed point φ̇i = 0,φi = arcsin(ωi/K̃ rst) if |ωi | ≤ K̃ rst

2. Drifting φ̇i 6= 0 if |ωi | > K̃ rst

where rst is the stationary value reached by r(t).
Let us introduce ρ(θ, ω, t), the fraction of oscillators with frequency
ω, phase θ at time t in the N →∞ limit, with normalization

∫ π

−π
dθ ρ(θ, ω, t) = 1 ∀ ω, t



Self consistent equation for the order parameter rrs

One observes that ρ(θ, ω, t) converges to a time independent form
ρst(θ, ω) and the stationary order parameter is given by

rst =

∫
dθ

∫
dω g(ω)e iθρst(θ, ω).

The separation between fixed-point and drifting oscillators allows
one to write the stationary distribution in an rrs-dependent form

ρst(θ, ω; rst) =

{
ρfpst if |ω| ≤ K̃ rst
ρdrst if |ω| > K̃ rst

and therefore write a self-consistent equation for the stationary
order parameter rrs

rst =

∫
dθ

∫
dω g(ω)e iθρst(θ, ω; rst).



Solution of the self-consistent equation

Due to the symmetry g(ω) = g(−ω) of the frequency distribution

ρst(−θ,−ω; rst) = ρst(θ, ω; rst)

ρst;rst(θ + π,−ω, ; rst) = ρst(θ, ω; rst)

and guessing the form of ρfpst , ρ
dr
st one can perform the integral in ω

and rewrite the self-consistent equation as

rst = K̃ rst

∫ π/2

−π/2
dθ cos2 θ g(K̃ rst sin θ)

This equation has always the solution rst = 0 and at
K̃ = K̃c = 2/πg(0) a rst 6= 0 solution bifurcates supercritically,
continuously from zero, and reaches rst = 1 in the K̃ →∞. Near
K̃ = K̃c , rst ≈ (K̃ − K̃c)1/2.



The Sakaguchi model

K̃c

K̃
r = 0 r 6= 0

0

Stochastic fluctuations of the ωi in time

dθi
dt

= ωi +
K̃

N

N∑

j=1

sin(θj − θi ) + ηi (t)

< ηi (t) >= 0 , < ηi (t)ηj(t
′) >= 2Dδijδ(t − t ′)

0

r = 0 r 6= 0

K̃

D

K̃c(D)



Kuramoto model with inertia and noise
Two dynamical variables: θi (Phase); vi (Angular velocity)

dθi
dt

= vi

m
dvi
dt

= −γvi + ωi +
K

N

N∑

j=1

sin(θj − θi ) + ηi (t)

where m is the inertia and γ the friction constant and ηi (t) is a
Gaussian white noise.
Motivation:

I An adaptive frequency can explain the slower approach to
synchronization observed in a particular firefly (the Pteropyx
mallacae) Ermentrout (1991)

I Phase dynamics in electric power distribution networks in the
mean-field limit Filatrella, Nielsen and Pedersen

(2008), Rohden, Sorge, Timme and Witthaut (2012),

Olmi and Torcini (2014)



Rescaling
One can analyze the model in the reduced parameter space
(T , σ,m)

dθi
dt

= vi

dvi
dt

= Fi + ηi (t) = − 1√
m
vi + σωi +

1

N

N∑

j=1

sin(θj − θi ) + ηi (t)

where now:

I g(ω) has zero average and unit width
I < ηi (t)ηj(t

′) >= 2T√
m
δijδ(t − t ′)

Two steps

I Subtracting average motion:
θi ⇒ θi+ < ω > t,vi ⇒ vi+ < ω > t, ωi ⇒ ωi+ < ω >

I Rescaling: t ′ = t
√

K/m,v ′i = vi
√

m/K ,1/
√
m′ = γ/

√
Km,

σ′ = γσ/K , T ′ = T/K .



Critical lines at equilibrium (σ = 0) and non equilibrium
(σ > 0)

I Kuramoto: m = T = 0, σ > 0, σc = πg(0)/2

I Sakaguchi: m = 0, T > 0, σ > 0,
2 =

∫∞
−∞ dω g(ω)[T/(T 2 + ω2σ2

c ]

I Brownian Mean Field Model: σ = 0 Hamiltonian system +
heat-bath Chavanis (2013)

0

Kuramoto model

m

T

critical point

Critical line

σ

r = 0

r 6= 0

r = 0
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Phase diagram

Gaussian g(ω)



Hysteresis for Gaussian g(ω)
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Hysteresis for Gaussian g(ω) when approaching the BMF
limit T = 0.5
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Hysteresis for Lorentzian g(ω)
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Coexistence region
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The actual phase transition point lies in between
σinc(m,T ) < σc(m,T ) < σcoh(m,T )



Bistability

For m = 20,T = 0.25,N = 100, and a Gaussian g(ω) with zero
mean and unit width, (left) shows, at σ = 0.195, r vs. time in the
stationary state, while (right) shows the distribution P(r) at
several σ’s around σc = 0.195.



Landau picture
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Below σinc(m,T )

m = 20,T = 0.25,σ = 0.09(left),σ = 0.095(right)



Above σinc(m,T )

m = 20,T = 0.25,σ = 0.11(left),σ = 0.12(right)



Mean-field metastability

∆



Fraction of initial incoherent states reaching the
synchronized state
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Detailed balance
Fokker-Planck equation for the N-body distribution

∂fN(x)

∂t
= −

2N∑

i=1

∂[Ai (x)fN(x)]

∂xi
+

1

2

2N∑

i ,j=1

∂2[Bi ,j(x)fN(x)]

∂xi∂xj

x = (θ1, . . . , θN ; v1, . . . , vN) A(x) = (v1, . . . , vN ;F1, . . . ,FN) Bi ,j = δi ,j2T/
√
m

Detailed balance conditions (Risken)

εiεjBi ,j(εx) = Bi ,j(x) , εiAi (εx)f sN(x) = −Ai (x)f sN(x)+
2N∑

j=1

∂[Bi ,j(x)f sN(x)]

∂xj

where εi = ±1 is the parity with respect to time reversal and f sN is
a stationary solution of the Fokker-Planck equation.
These conditions can be satisfied only when σ = 0 and, as a
consequence f sN ∝ exp(−H/T )



N →∞ continuum limit

Single-particle distribution f (θ, v , ω, t): Fraction of oscillators at
time t and for each ω which have phase θ and angular velocity v
(Periodic in θ and normalized).
Evolution by Kramers equation

∂f

∂t
= −v ∂f

∂θ
+

∂

∂v

( v√
m
− σω − r sin(ψ − θ)

)
f +

T√
m

∂2f

∂v2
,

with self-consistent order parameter

r exp(iψ) =

∫∫∫
dθdvdωg(ω) exp(iθ)f (θ, v , ω, t)

Homogeneous (r = 0) solution

f inc =
1

2π

1√
2πT

exp

(
−(v − σω√m)2

2T

)



Linear stability results
Stability analysis gives σinc :
f (θ, v , ω, t) = f inc(θ, v , ω) + eλtδf (θ, v , ω)

2T

emT
=
∞∑

p=0

(−mT )p(1 + p
mT )

p!

+∞∫

−∞

g(ω)dω

1 + p
mT + i σωT + λ

T
√
m

.

Acebron, Bonilla and Spigler (2000)

I At most one solution with a positive real part.
I Neutral stability ⇒ λ = 0 gives the stability surface
σinc(m,T ).

I Similarly, one can define σcoh(m,T ).
I The two surfaces enclose the first-order transition surface
σc(m,T ).

I Taking proper limits, the surface σinc(m,T ) meets the critical
lines on the (T , σ) and (m,T ) planes.

I The intersection of the surface with the (m, σ) plane gives an
implicit formula for σincnoiseless(m, σ).



Summary of the first part

I Kuramoto model from the point of view of equilibrium and
non equilibrium statistical mechanics

I First-order phase transition in presence of inertia (full phase
diagram).

I In absence of quenched randomness σ = 0 the stationary
probability distribution is the Boltzmann-Gibbs product
measure exp(−(K + U)/T ) = exp(−K/T ) exp(−U/T ). The
phase transition is characterized by the potential energy U
only and it is the same for underdamped or overdamped
dynamics.

I In presence of quenched randomness σ 6= 0 the system is out
of equilibrium and the stationary measure is not a product
measure and the phase transition depends on the damping
coefficient.



A stochastic model of long-range interacting particles
N interacting particles (i = 1, 2, . . . ,N) moving on a unit circle,
with angles θ1.
Microscopic configuration

C = {θi ; i = 1, 2, . . . ,N}
The particles interact via the potential

V(C) =
K

2N

N∑

i ,j=1

[1− cos(θi − θj)]

K = 1 in the following. External fields hi

Vext(C) =
N∑

i=1

hi cos θi

The fields hi ’s may be considered as quenched random variables
with a common distribution P(h).
The net potential energy is therefore

V (C) = V(C) + Vext(C)



The stochastic dynamics
All particles sequentially attempt to move backward (forward) on
the circle

θi → θ′i = θi + fi with probability p

θi → θ′i = θi − fi with probability q=1-p

The fi are quenched random variables, each particles carries its
own fi .
However, particles effectively take up the attempted position with
probability g(∆V (C))∆t

∆V (C) = (1/N)
N∑

j=1

[− cos(θ′i−θj)+cos(θi−θj)]−hi [cos θ′i−cos θi ]

g(z) = (1/2)[1− tanh(βz/2)]

Overdamped motion of particles in contact with a heat-bath at
inverse temperature β and in presence of an external field. For
p 6= q the particles move asymmetrically under the action of an
external drive.



Master equation in continuous time
P = P({θi}; t) be the probability to observe the configuration C = {θi} at time t
and take the limit ∆t → 0

∂P

∂t
=

N∑

i=1

[

+P(. . . , θi − fi , . . . ; t)pg(∆V (C[(θi − fi )→ θi ])) +

+P(. . . , θi + fi , . . . ; t)qg(∆V (C[(θi + fi )→ θi ]))−
−P(. . . , θi , . . . ; t)

{
pg(∆V (C[θi → (θi + fi )])) + qg(∆V (C[(θi )→ (θi − fi )]))

}]

At long times, the system settles into a stationary state Pst({θi}).

I Equilibrium: For p = 1/2, the particles move in a symmetric
manner. The system has an equilibrium stationary state
Peq({θi}) ∝ e−βV ({θi}). Detailed balance is satisfied.

I Non Equilibrium: For p 6= 1/2, the particles have a preferred
direction, The system at long times settles into a nonequilibrium
stationary state, characterized. Detailed balance is violated leading
to nonzero probability currents in phase space.



Fokker-Planck limit and Langevin equation
We assume that fi � 1 ∀ i . Taylor expanding in powers of fi ’s and
retaining terms up to second order

∂P

∂t
= −

N∑

i=1

∂Ji
∂θi

,

where the probability current Ji for the i-th particle is given by

Ji =
[
(2p − 1)fi +

f 2
i β

2

( 1

N

N∑

j=1

sin ∆θji + hi sin θi
)]

P − f 2
i

2

∂P

∂θi
.

The corresponding Langevin equation is

θ̇i = (2p − 1)fi +
f 2
i β

2

( 1

N

N∑

j=1

sin(θj − θi ) + hi sin θi
)

+ fiηi (t),

where ηi (t) is a random noise with

〈ηi (t)〉 = 0, 〈ηi (t)ηj(t
′)〉 = δijδ(t − t ′).



Equilibrium vs. non equilibrium

I Equilibrium: For p = 1/2 the system settles into an
equilibrium stationary state Peq({θi}) which makes Ji = 0
individually for each i .

I Non Equilibrium: For p 6= 1/2, the system reaches a
non-equilibrium stationary state. However, in the special case
when the jump length is the same for all the particles and
there is no external field (fi = f and hi = 0∀ i), one may
make a Galilean transformation, θi → θi + [(2p − 1)f /2]t, so
that in the frame moving with the velocity [(2p − 1)f /2], the
Langevin equation takes a form identical to the one for
p = 1/2, and the stationary state has again the equilibrium
measure Peq({θi}).



The N →∞ limit and the single-particle distribution
In the thermodynamic limit N →∞ with hi = h, let us introduce the
single-particle distribution ρ(θ; f , t), the density of particles with jump length f
which are at location θ on the circle at time t. ρ is periodic
ρ(θ; f , t) = ρ(θ + 2π; f , t) and normalized

∫ 2π

0

dθ ρ(θ; f , t) = 1 ∀ f .

In terms of ρ(θ; f , t), the Langevin equation reads

θ̇ = (2p − 1)f +
f 2β

2

(
my cos θ −mx sin θ + h sin θ

)
+ f η(t),

where

(mx ,my ) =

∫
dθdf (cos θ, sin θ)ρ(θ; f , t)P(f ),

and
〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = δ(t − t ′).

This stochastic dynamics is very similar to the one of the Sakaguchi model.



Single-particle Fokker-Planck equation
The single-particle Fokker-Planck equation satisfied by ρ(θ; f , t) may be obtained
from the Langevin equation

∂ρ

∂t
= − ∂j

∂θ

where the probability current j is given by

j =
[
(2p − 1)f +

f 2β

2

(
my cos θ −mx sin θ + h sin θ

)]
ρ− f 2

2

∂ρ

∂θ
.

The stationary solution ρst is

ρst(θ; f ) = ρ(0; f )e2(2p−1)θ/f +β(mx cos θ+my sin θ−h cos θ)

×


1 + (e−4π(2p−1)/f − 1)

∫ θ

0

dθ′e−2(2p−1)θ′/f−β(mx cos θ′+my sin θ′−h cos θ′)

∫ 2π

0

dθ′e−2(2p−1)θ′/f−β(mx cos θ′+my sin θ′−h cos θ′)




where (mx ,my ) =
∫
dθdf (cos θ, sin θ)ρst(θ; f )P(f ), and the constant ρ(0; f ) is

fixed by the normalization condition.



Numerical results: Equilibrium p = 1/2

Panel (a) f = 0.01, h = 0
Panel (b) f = 0.1, h = 10



Numerical results: Non Equilibrium p = 0.55 f = 0.1

f = 0.1



Numerical results: Non Equilibrium p = 0.55 f = 1

f = 1



Fluctuation theorems: Nonequilibrium work relations

Gas-piston setup with N ∼ 1023 particle (Macroscopic). The piston is
rapidly pushed into the gas and then pulled at the initial position (work is
positive if done against the system)

W > 0

Microscopically (in a gas with few particles), we could observe W < 0,
but, on average

〈W 〉 > 0

The second principle can be formulated as an equality (Jarzynski)

〈e−W/(kBT )〉 = 1

If the piston is manipulated in a time symmetric manner (Crooks)

P(W )

P(−W )
= 〈eW/(kBT )〉



Protocol

t = 0 [λ = A,T ] equilibrium → t = τ λ = B non equilibrium

→ t = τ∗ [λ = B,T ] equilibrium

No external work is done on the system in the time interval
τ < t < τ∗.
Clausius inequality (Second Law of Thermodynamics)

W ≥ ∆F = FB,T − FA,T

where F is the Helmholtz free energy. When the parameter λ is
varied slowly (adiabatic transformation) W = ∆F .

Important: Fluctuation theorems are valid also when
the system is isolated after it is equilibrated at time
t = 0.



Microscopic model

H(x;λ) =
3∑

i=1

p2
i

2m
+

3∑

i=0

U(zk+1 − zk)

where x = (z1, z2, z3, p1, p2, p3) and the boundary conditions are
z0 = 0, z4 = λ(t)

W =

∫
dW =

∫ B

A
dλ
∂H

∂λ
(x, λ) =

∫ t

0
dtλ̇

∂H

∂λ
(x(t), λ(t))

H(x, y, λ) = H(x;λ) + Henv (y) + Hint(x, y)



Boltzmann-Gibbs distributions
If the interaction with the bath Hint is sufficiently weak

peqλ,T (x) =
1

Zλ,T
exp [−H(x;λ)/(kBT )] , Zλ,T =

∫
dx exp [−H(x;λ)/(kBT )]

If Hint is instead ”large”

peqλ,T ∝ exp (−H∗/kBT ) , H∗ (x;λ) = H (x;λ) + φ(x,T )

where φ(x,T ) is the free-energy cost of inserting the system into the thermostat.
The free energy associated with the equilibrium state is

Fλ,T = −kBT lnZλ,T

For a ”swarm” of independent trajectories (x1(t), x2(t), . . ., (0 < t < τ) one can
compute the corresponding work W1,W2, . . ., and determine the distribution
P(W ), which must respect

〈W 〉 =

∫
dWP(W )W ≥ ∆F = FB,T − FA,T



Proof of Jarzynski for an isolated system
After preparing the system in the initial equilibrium state, we disconnect it from
the environment and perform work by varying λ from A to B. The statistics of
work is determined by the statistics over the initial state

〈e−W/(kBT )〉 =

∫
dx(0)peqA,T (x(0))e−W/(kBT )

Since dH

dt
= ∂H

∂t , the work is given by

W = H(x(τ),B)− H(x(0),A)

Changing variables from initial to final

〈e−W/(kBT )〉 =
1

ZA,T

∫
dx(τ)|∂x(τ)/∂x(0)|−1 exp (−H(x(τ);B)/(kBT ))

Using Liouville theorem |∂x(τ)/∂x(0)| = 1, one finally gets

〈e−W/(kBT )〉 =
ZB,T

ZA,T
= e−(FB,T−FA,T )/(kBT )



Hatano-Sasa, Jarzynski and Crooks

Protocol {λ(t)}0≤t≤τ ;λ(0) ≡ λ1, λ(τ) ≡ λ2}

Y ≡
∫ τ

0
dt

dλ(t)

dt

∂Φ

∂λ
(C(t), λ(t)) Φ(C, λ) ≡ − ln ρss(C;λ)

Y is dissipated work.

〈e−Y 〉 = 1.

〈e−βW 〉 = e−β∆F ,

PF(WF)

PR(−WF)
= eβ(WF−∆F ).



Work distributions for homogeneous state
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Work distributions for inhomogeneous state
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Hatano-Sasa distribution
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Summary

I Kuramoto model from the point of view of equilibrium and
non equilibrium statistical mechanics

I First-order phase transition in presence of inertia (full phase
diagram)

I Long-range interactions, the HMF model and the Vlasov
equation

I Check of out-of-equilibrium fluctuations: effective one-body
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View of the gulf of Trieste from SISSA


