Out-of-equilibrium physics in spontaneous synchronization

STEFANO RUFFO

SISSA, Trieste, Italy

SMFT 2017, december 13-15 2017, Bari

December 14, 2017

References

- S. Gupta, T. Dauxois and S. Ruffo, A stochastic model of long-range interacting particles, J. Stat. Mech.: Theory and Exp., P11003 (2013).
- S. Gupta, A. Campa and S. Ruffo, Nonequilibrium first-order transition in coupled oscillator systems with inertia and noise, Phys. Rev. E, 89, 022123 (2014)
- S. Gupta, A. Campa and S. Ruffo, Kuramoto model of synchronization: equilibrium and nonequilibrium aspects, J. Stat. Mech.: Theory and Exp., R08001 (2014)
- A. Campa, S. Gupta and S. Ruffo, Nonequilibrium inhomogeneous steady state distribution in disordered, mean-field rotator systems, J. Stat. Mech.:Theory and Exp. P05011 (2015)
- S. Gupta, T. Dauxois and S. Ruffo, Out of equilibrium fluctuations in stochastic long-range interacting systems, Europhysics Letters 113, 60008 (2016)

Coworkers

Alessandro Campa Thierry Dauxois Shamik Gupta

Plan

- Spontaneous synchronization
- Kuramoto and Sakaguchi models, the role of noise
- Inertia and the connection with statistical mechanics
- Equilibrium and out-of-equilibrium
- Complete phase diagram: First and second order phase transition
- Hysteresis and bistability
- Linear stability analysis
- Intermezzo on HMF
- A stochastic discrete model
- Out of equilibrium fluctuations
- Summary

Spontaneous synchronization

What is synchronization?

Synchronization is the adjustment of the rhythm of active, dissipative oscillators caused by a weak interaction.

Prerequisite: Each oscillator persists in its motion thanks to an external source of energy.

Active oscillators

- generates periodic oscillations
- absence of periodic forces
- dissipative dynamical system
- autonomous differential equation
- limit cycle in phase space

Christiaan Huygens

Christiaan Huygens first observed the synchronization of two clocks in 1656

Radio communication

... in more recent times

W. J. Eccles and J. H. Vincent (1920) discover synchronization in a triod.
The theory is then developed by Edward Appleton and Balthasar Van de Pol (1922-1927) setting the foundations for modern radio communication.

Flashing fireflies

Englebert Kaempfer observes in Siam (1680) synchronization in flashing fireflies Jean-Jacques Dourtous de Mairan discovers circadian rhythms in the movement of bean leaves (1729).

In absence of coupling

Weak coupling

$$
\omega_{1}<\Omega<\omega_{2}
$$

Synchronization region

$\Delta \omega$ difference in unperturbed frequencies
$\Delta \Omega$ difference in observed frequencies

Phase

$$
\begin{aligned}
\varphi & =\varphi_{0}+\frac{2 \pi}{T} \int_{0}^{\theta} \frac{d \theta}{\dot{\theta}} \\
\varphi & =\varphi_{0}+2 \pi \frac{t-t_{0}}{T}
\end{aligned}
$$

Many phases

Stuart-Landau

Weakly nonlinear dynamics near a bifurcation

$$
\frac{\mathrm{d} Q}{\mathrm{~d} t}=i \omega Q+\left(\alpha-\beta|Q|^{2}\right) Q
$$

$\alpha, \beta, \omega \in \mathbb{R}$

$$
Q=\rho e^{i \theta}
$$

$\rho, \theta \in \mathbb{R}$ and $\theta \in[-\pi, \pi]$

$$
\begin{aligned}
& \mathrm{d} \rho /\left.\mathrm{d} t\right|_{\rho=\rho_{\text {stable }}}=0 \\
& \mathrm{~d} \rho /\left.\mathrm{d} t\right|_{\rho<\rho_{\text {stable }}}>0 \\
& \mathrm{~d} \rho /\left.\mathrm{d} t\right|_{\rho>\rho_{\text {stable }}}<0
\end{aligned}
$$

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=\omega .
$$

Coupled Stuart-Landau oscillators

$$
\frac{\mathrm{d} Q_{i}}{\mathrm{~d} t}=i \omega_{i} Q_{i}+\left(\alpha-\beta\left|Q_{i}\right|^{2}\right) Q_{i}+\sum_{j=1, j \neq i}^{N} K_{i j} Q_{j},
$$

$K_{i j}>0$
Three simplifying premises

1. large number of oscillators: $N \rightarrow \infty$,
2. the coupling $K_{i j} \forall i, j$ scaling as $K_{i j}=K / N$ with K finite, implying thereby that every oscillator is coupled weakly and with equal strength to every other oscillator, and
3. the limit $\alpha, \beta \rightarrow \infty$, while keeping α / β fixed and finite, and, moreover, $\omega_{i} \forall i$ being finite.

Kuramoto limit

$$
Q_{i}=\rho_{i} e^{i \theta_{i}}
$$

Each ρ_{i} relaxes over a time of $O(1 / \beta)$ to its limit-cycle value $\sqrt{\alpha / \beta}$.
The long-time dynamics corresponds to self-sustained limit-cycle oscillations for each oscillator, which is described by the evolution equation

$$
\frac{\mathrm{d} \theta_{i}}{\mathrm{~d} t}=\omega_{i}+\frac{\tilde{K}}{N} \sum_{j=1}^{N} \sin \left(\theta_{j}-\theta_{i}\right)
$$

The ω_{i} are N quenched random variables extracted from the distribution $g(\omega)$.
These are the governing dynamical equation of the Kuramoto model

The Kuramoto transition

Let $g(\omega)$ be unimodal and symmetric around the average $\langle\omega\rangle$ with width σ.
By going to the comoving frame rotating with frequency $\langle\omega\rangle$, one may consider the ω_{i} 's to have zero mean.
Kuramoto's order parameter

$$
\mathbf{r}(t)=r(t) e^{i \psi(t)} \equiv \frac{1}{N} \sum_{j=1}^{N} e^{i \theta_{j}(t)}
$$

- High \tilde{K} : Synchronized phase , $r>0$
- Low \tilde{K} : Incoherent phase, $r \approx 0$.

Phase distribution

$\underset{\widetilde{K}_{c}}{r=0} \widetilde{r} \underset{K}{r=0}$

asynchrony

(partial) synchrony

full synchrony

Fixed-point and drifting phases

The dynamics in terms of $r(t)$ and $\psi(t)$

$$
\frac{\mathrm{d} \theta_{i}}{\mathrm{~d} t}=\omega_{i}+\tilde{K} r \sin \left(\psi-\theta_{i}\right)
$$

Phase difference $\phi_{i}=\theta_{i}-\psi$.
Two types of oscillators

1. Fixed point $\dot{\phi}_{i}=0, \phi_{i}=\arcsin \left(\omega_{i} / \tilde{K} r_{s t}\right)$ if $\left|\omega_{i}\right| \leq \tilde{K} r_{s t}$
2. Drifting $\dot{\phi}_{i} \neq 0$ if $\left|\omega_{i}\right|>\tilde{K} r_{s t}$
where $r_{\text {st }}$ is the stationary value reached by $r(t)$.
Let us introduce $\rho(\theta, \omega, t)$, the fraction of oscillators with frequency ω, phase θ at time t in the $N \rightarrow \infty$ limit, with normalization

$$
\int_{-\pi}^{\pi} \mathrm{d} \theta \rho(\theta, \omega, t)=1 \forall \omega, t
$$

Self consistent equation for the order parameter r_{rs}

One observes that $\rho(\theta, \omega, t)$ converges to a time independent form $\rho_{\text {st }}(\theta, \omega)$ and the stationary order parameter is given by

$$
r_{\mathrm{st}}=\int \mathrm{d} \theta \int \mathrm{~d} \omega g(\omega) e^{i \theta} \rho_{\mathrm{st}}(\theta, \omega)
$$

The separation between fixed-point and drifting oscillators allows one to write the stationary distribution in an $r_{\text {rs }}$-dependent form

$$
\rho_{\mathrm{st}}\left(\theta, \omega ; r_{\mathrm{st}}\right)=\left\{\begin{array}{l}
\rho_{\mathrm{st}}^{f \mathrm{p}} \text { if }|\omega| \leq \tilde{K} r_{\mathrm{st}} \\
\rho_{\mathrm{st}}^{d r} \text { if }|\omega|>\tilde{K} r_{\mathrm{st}}
\end{array}\right.
$$

and therefore write a self-consistent equation for the stationary order parameter $r_{\text {rs }}$

$$
r_{\mathrm{st}}=\int \mathrm{d} \theta \int \mathrm{~d} \omega g(\omega) e^{i \theta} \rho_{\mathrm{st}}\left(\theta, \omega ; r_{\mathrm{st}}\right)
$$

Solution of the self-consistent equation

Due to the symmetry $g(\omega)=g(-\omega)$ of the frequency distribution

$$
\begin{aligned}
& \rho_{\mathrm{st}}\left(-\theta,-\omega ; r_{\mathrm{st}}\right)=\rho_{\mathrm{st}}\left(\theta, \omega ; r_{\mathrm{st}}\right) \\
& \rho_{\mathrm{st} ; \mathrm{r}_{\mathrm{st}}}\left(\theta+\pi,-\omega, ; r_{\mathrm{st}}\right)=\rho_{\mathrm{st}}\left(\theta, \omega ; r_{\mathrm{st}}\right)
\end{aligned}
$$

and guessing the form of $\rho_{\mathrm{st}}^{f p}, \rho_{\mathrm{st}}^{d r}$ one can perform the integral in ω and rewrite the self-consistent equation as

$$
r_{\mathrm{st}}=\tilde{K} r_{\mathrm{st}} \int_{-\pi / 2}^{\pi / 2} \mathrm{~d} \theta \cos ^{2} \theta g\left(\tilde{K} r_{\mathrm{st}} \sin \theta\right)
$$

This equation has always the solution $r_{\text {st }}=0$ and at $\tilde{K}=\tilde{K}_{c}=2 / \pi g(0)$ a $r_{\text {st }} \neq 0$ solution bifurcates supercritically, continuously from zero, and reaches $r_{\text {st }}=1$ in the $\tilde{K} \rightarrow \infty$. Near $\tilde{K}=\tilde{K}_{c}, r_{\mathrm{st}} \approx\left(\tilde{K}-\tilde{K}_{c}\right)^{1 / 2}$.

The Sakaguchi model

Stochastic fluctuations of the ω_{i} in time

$$
\begin{aligned}
\frac{d \theta_{i}}{d t} & =\omega_{i}+\frac{\tilde{K}}{N} \sum_{j=1}^{N} \sin \left(\theta_{j}-\theta_{i}\right)+\eta_{i}(t) \\
<\eta_{i}(t)> & =0,<\eta_{i}(t) \eta_{j}\left(t^{\prime}\right)>=2 D \delta_{i j} \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

Kuramoto model with inertia and noise

Two dynamical variables: θ_{i} (Phase); v_{i} (Angular velocity)

$$
\begin{aligned}
& \frac{d \theta_{i}}{d t}=v_{i} \\
& m \frac{d v_{i}}{d t}=-\gamma v_{i}+\omega_{i}+\frac{K}{N} \sum_{j=1}^{N} \sin \left(\theta_{j}-\theta_{i}\right)+\eta_{i}(t)
\end{aligned}
$$

where m is the inertia and γ the friction constant and $\eta_{i}(t)$ is a Gaussian white noise.
Motivation:

- An adaptive frequency can explain the slower approach to synchronization observed in a particular firefly (the Pteropyx mallacae) Ermentrout (1991)
- Phase dynamics in electric power distribution networks in the mean-field limit Filatrella, Nielsen and Pedersen (2008), Rohden, Sorge, Timme and Witthaut (2012), Olmi and Torcini (2014)

Rescaling

One can analyze the model in the reduced parameter space (T, σ, m)

$$
\begin{aligned}
\frac{d \theta_{i}}{d t} & =v_{i} \\
\frac{d v_{i}}{d t} & =F_{i}+\eta_{i}(t)=-\frac{1}{\sqrt{m}} v_{i}+\sigma \omega_{i}+\frac{1}{N} \sum_{j=1}^{N} \sin \left(\theta_{j}-\theta_{i}\right)+\eta_{i}(t)
\end{aligned}
$$

where now:

- $g(\omega)$ has zero average and unit width
- $<\eta_{i}(t) \eta_{j}\left(t^{\prime}\right)>=\frac{2 T}{\sqrt{m}} \delta_{i j} \delta\left(t-t^{\prime}\right)$

Two steps

- Subtracting average motion:

$$
\theta_{i} \Rightarrow \theta_{i}+<\omega>t, v_{i} \Rightarrow v_{i}+<\omega>t, \omega_{i} \Rightarrow \omega_{i}+<\omega>
$$

- Rescaling: $t^{\prime}=t \sqrt{K / m}, v_{i}^{\prime}=v_{i} \sqrt{m / K}, 1 / \sqrt{m^{\prime}}=\gamma / \sqrt{K m}$, $\sigma^{\prime}=\gamma \sigma / K, T^{\prime}=T / K$.

Critical lines at equilibrium $(\sigma=0)$ and non equilibrium $(\sigma>0)$

- Kuramoto: $m=T=0, \sigma>0, \sigma_{c}=\pi g(0) / 2$
- Sakaguchi: $m=0, T>0, \sigma>0$, $2=\int_{-\infty}^{\infty} d \omega g(\omega)\left[T /\left(T^{2}+\omega^{2} \sigma_{c}^{2}\right]\right.$
- Brownian Mean Field Model: $\sigma=0$ Hamiltonian system + heat-bath Chavanis (2013)

Phase diagram

Gaussian $g(\omega)$

Hysteresis for Gaussian $g(\omega)$

Adiabatically tuned σ

Hysteresis for Gaussian $g(\omega)$ when approaching the BMF limit $T=0.5$

Adiabatically tuned σ

Hysteresis for Lorentzian $g(\omega)$

Adiabatically tuned σ

Coexistence region

The actual phase transition point lies in between $\sigma^{i n c}(m, T)<\sigma_{c}(m, T)<\sigma^{c o h}(m, T)$

Bistability

For $m=20, T=0.25, N=100$, and a Gaussian $g(\omega)$ with zero mean and unit width, (left) shows, at $\sigma=0.195, r$ vs. time in the stationary state, while (right) shows the distribution $P(r)$ at several σ 's around $\sigma_{c}=0.195$.

Landau picture

Below $\sigma^{\text {inc }}(m, T)$

$$
m=20, T=0.25, \sigma=0.09 \text { (left) }, \sigma=0.095 \text { (right) }
$$

Above $\sigma^{\text {inc }}(m, T)$

$m=20, T=0.25, \sigma=0.11$ (left),$\sigma=0.12$ (right)

Mean-field metastability

Fraction of initial incoherent states reaching the synchronized state

$$
m=20, T=0.25, \sigma=0.11
$$

Detailed balance

Fokker-Planck equation for the N-body distribution

$$
\frac{\partial f_{N}(\mathbf{x})}{\partial t}=-\sum_{i=1}^{2 N} \frac{\partial\left[A_{i}(\mathbf{x}) f_{N}(\mathbf{x})\right]}{\partial x_{i}}+\frac{1}{2} \sum_{i, j=1}^{2 N} \frac{\partial^{2}\left[B_{i, j}(\mathbf{x}) f_{N}(\mathbf{x})\right]}{\partial x_{i} \partial x_{j}}
$$

$\mathbf{x}=\left(\theta_{1}, \ldots, \theta_{N} ; v_{1}, \ldots, v_{N}\right) \mathbf{A}(\mathbf{x})=\left(v_{1}, \ldots, v_{N} ; F_{1}, \ldots, F_{N}\right) B_{i, j}=\delta_{i, j} 2 T$
Detailed balance conditions (Risken)
$\epsilon_{i} \epsilon_{j} B_{i, j}(\epsilon \mathbf{x})=B_{i, j}(\mathbf{x}), \epsilon_{i} A_{i}(\epsilon \mathbf{x}) f_{N}^{s}(\mathbf{x})=-A_{i}(\mathbf{x}) f_{N}^{s}(\mathbf{x})+\sum_{j=1}^{2 N} \frac{\partial\left[B_{i, j}(\mathbf{x}) f_{N}^{s}(\mathbf{x})\right]}{\partial x_{j}}$
where $\epsilon_{i}= \pm 1$ is the parity with respect to time reversal and f_{N}^{s} is a stationary solution of the Fokker-Planck equation.
These conditions can be satisfied only when $\sigma=0$ and, as a consequence $f_{N}^{s} \propto \exp (-H / T)$

$N \rightarrow \infty$ continuum limit

Single-particle distribution $f(\theta, v, \omega, t)$: Fraction of oscillators at time t and for each ω which have phase θ and angular velocity v (Periodic in θ and normalized).
Evolution by Kramers equation

$$
\frac{\partial f}{\partial t}=-v \frac{\partial f}{\partial \theta}+\frac{\partial}{\partial v}\left(\frac{v}{\sqrt{m}}-\sigma \omega-r \sin (\psi-\theta)\right) f+\frac{T}{\sqrt{m}} \frac{\partial^{2} f}{\partial v^{2}}
$$

with self-consistent order parameter

$$
r \exp (i \psi)=\iiint d \theta d v d \omega g(\omega) \exp (i \theta) f(\theta, v, \omega, t)
$$

Homogeneous ($r=0$) solution

$$
f^{\mathrm{inc}}=\frac{1}{2 \pi} \frac{1}{\sqrt{2 \pi T}} \exp \left(-\frac{(v-\sigma \omega \sqrt{m})^{2}}{2 T}\right)
$$

Linear stability results

Stability analysis gives $\sigma^{i n c}$:
$f(\theta, v, \omega, t)=f^{\text {inc }}(\theta, v, \omega)+e^{\lambda t} \delta f(\theta, v, \omega)$

$$
\frac{2 T}{e^{m T}}=\sum_{p=0}^{\infty} \frac{(-m T)^{p}\left(1+\frac{p}{m T}\right)}{p!} \int_{-\infty}^{+\infty} \frac{g(\omega) d \omega}{1+\frac{p}{m T}+i \frac{\sigma \omega}{T}+\frac{\lambda}{T \sqrt{m}}}
$$

Acebron, Bonilla and Spigler (2000)

- At most one solution with a positive real part.
- Neutral stability $\Rightarrow \lambda=0$ gives the stability surface $\sigma^{\text {inc }}(m, T)$.
- Similarly, one can define $\sigma^{\mathrm{coh}}(m, T)$.
- The two surfaces enclose the first-order transition surface $\sigma_{c}(m, T)$.
- Taking proper limits, the surface $\sigma^{\text {inc }}(m, T)$ meets the critical lines on the (T, σ) and (m, T) planes.
- The intersection of the surface with the (m, σ) plane gives an implicit formula for $\sigma_{\text {noiseless }}^{\text {inc }}(m, \sigma)$.

Summary of the first part

- Kuramoto model from the point of view of equilibrium and non equilibrium statistical mechanics
- First-order phase transition in presence of inertia (full phase diagram).
- In absence of quenched randomness $\sigma=0$ the stationary probability distribution is the Boltzmann-Gibbs product measure $\exp (-(K+U) / T)=\exp (-K / T) \exp (-U / T)$. The phase transition is characterized by the potential energy U only and it is the same for underdamped or overdamped dynamics.
- In presence of quenched randomness $\sigma \neq 0$ the system is out of equilibrium and the stationary measure is not a product measure and the phase transition depends on the damping coefficient.

A stochastic model of long-range interacting particles N interacting particles $(i=1,2, \ldots, N)$ moving on a unit circle, with angles θ_{1}.
Microscopic configuration

$$
\mathcal{C}=\left\{\theta_{i} ; i=1,2, \ldots, N\right\}
$$

The particles interact via the potential

$$
\mathcal{V}(\mathcal{C})=\frac{K}{2 N} \sum_{i, j=1}^{N}\left[1-\cos \left(\theta_{i}-\theta_{j}\right)\right]
$$

$K=1$ in the following. External fields h_{i}

$$
\mathcal{V}_{\mathrm{ext}}(\mathcal{C})=\sum_{i=1}^{N} h_{i} \cos \theta_{i}
$$

The fields h_{i} 's may be considered as quenched random variables with a common distribution $P(h)$.
The net potential energy is therefore

$$
V(\mathcal{C})=\mathcal{V}(\mathcal{C})+\mathcal{V}_{\text {ext }}(\mathcal{C})
$$

The stochastic dynamics

All particles sequentially attempt to move backward (forward) on the circle

$$
\begin{aligned}
& \theta_{i} \rightarrow \theta_{i}^{\prime} \\
& \theta_{i} \rightarrow \theta_{i}^{\prime}+f_{i} \text { with probability } \mathrm{p} \\
&=\theta_{i}-f_{i} \text { with probability } \mathrm{q}=1-\mathrm{p}
\end{aligned}
$$

The f_{i} are quenched random variables, each particles carries its own f_{i}.
However, particles effectively take up the attempted position with probability $g(\Delta V(\mathcal{C})) \Delta t$

$$
\begin{gathered}
\Delta V(\mathcal{C})=(1 / N) \sum_{j=1}^{N}\left[-\cos \left(\theta_{i}^{\prime}-\theta_{j}\right)+\cos \left(\theta_{i}-\theta_{j}\right)\right]-h_{i}\left[\cos \theta_{i}^{\prime}-\cos \theta_{i}\right] \\
g(z)=(1 / 2)[1-\tanh (\beta z / 2)]
\end{gathered}
$$

Overdamped motion of particles in contact with a heat-bath at inverse temperature β and in presence of an external field. For $p \neq q$ the particles move asymmetrically under the action of an external drive.

Master equation in continuous time

$P=P\left(\left\{\theta_{i}\right\} ; t\right)$ be the probability to observe the configuration $\mathcal{C}=\left\{\theta_{i}\right\}$ at time t and take the limit $\Delta t \rightarrow 0$

$$
\begin{aligned}
& \frac{\partial P}{\partial t}=\sum_{i=1}^{N}[\\
& +P\left(\ldots, \theta_{i}-f_{i}, \ldots ; t\right) p g\left(\Delta V\left(\mathcal{C}\left[\left(\theta_{i}-f_{i}\right) \rightarrow \theta_{i}\right]\right)\right)+ \\
& +P\left(\ldots, \theta_{i}+f_{i}, \ldots ; t\right) q g\left(\Delta V\left(\mathcal{C}\left[\left(\theta_{i}+f_{i}\right) \rightarrow \theta_{i}\right]\right)\right)- \\
& \left.-P\left(\ldots, \theta_{i}, \ldots ; t\right)\left\{p g\left(\Delta V\left(\mathcal{C}\left[\theta_{i} \rightarrow\left(\theta_{i}+f_{i}\right)\right]\right)\right)+q g\left(\Delta V\left(\mathcal{C}\left[\left(\theta_{i}\right) \rightarrow\left(\theta_{i}-f_{i}\right)\right]\right)\right)\right\}\right]
\end{aligned}
$$

At long times, the system settles into a stationary state $P_{\text {st }}\left(\left\{\theta_{i}\right\}\right)$.

- Equilibrium: For $p=1 / 2$, the particles move in a symmetric manner. The system has an equilibrium stationary state $P_{\text {eq }}\left(\left\{\theta_{i}\right\}\right) \propto e^{-\beta V\left(\left\{\theta_{i}\right\}\right)}$. Detailed balance is satisfied.
- Non Equilibrium: For $p \neq 1 / 2$, the particles have a preferred direction, The system at long times settles into a nonequilibrium stationary state, characterized. Detailed balance is violated leading to nonzero probability currents in phase space.

Fokker-Planck limit and Langevin equation

We assume that $f_{i} \ll 1 \forall i$. Taylor expanding in powers of f_{i} 's and retaining terms up to second order

$$
\frac{\partial P}{\partial t}=-\sum_{i=1}^{N} \frac{\partial J_{i}}{\partial \theta_{i}}
$$

where the probability current J_{i} for the i-th particle is given by

$$
J_{i}=\left[(2 p-1) f_{i}+\frac{f_{i}^{2} \beta}{2}\left(\frac{1}{N} \sum_{j=1}^{N} \sin \Delta \theta_{j i}+h_{i} \sin \theta_{i}\right)\right] P-\frac{f_{i}^{2}}{2} \frac{\partial P}{\partial \theta_{i}}
$$

The corresponding Langevin equation is

$$
\dot{\theta}_{i}=(2 p-1) f_{i}+\frac{f_{i}^{2} \beta}{2}\left(\frac{1}{N} \sum_{j=1}^{N} \sin \left(\theta_{j}-\theta_{i}\right)+h_{i} \sin \theta_{i}\right)+f_{i} \eta_{i}(t)
$$

where $\eta_{i}(t)$ is a random noise with

$$
\left\langle\eta_{i}(t)\right\rangle=0, \quad\left\langle\eta_{i}(t) \eta_{j}\left(t^{\prime}\right)\right\rangle=\delta_{i j} \delta\left(t-t^{\prime}\right)
$$

Equilibrium vs. non equilibrium

- Equilibrium: For $p=1 / 2$ the system settles into an equilibrium stationary state $P_{\text {eq }}\left(\left\{\theta_{i}\right\}\right)$ which makes $J_{i}=0$ individually for each i.
- Non Equilibrium: For $p \neq 1 / 2$, the system reaches a non-equilibrium stationary state. However, in the special case when the jump length is the same for all the particles and there is no external field ($f_{i}=f$ and $h_{i}=0 \forall i$), one may make a Galilean transformation, $\theta_{i} \rightarrow \theta_{i}+[(2 p-1) f / 2] t$, so that in the frame moving with the velocity $[(2 p-1) f / 2]$, the Langevin equation takes a form identical to the one for $p=1 / 2$, and the stationary state has again the equilibrium measure $P_{\text {eq }}\left(\left\{\theta_{i}\right\}\right)$.

The $N \rightarrow \infty$ limit and the single-particle distribution

In the thermodynamic limit $N \rightarrow \infty$ with $h_{i}=h$, let us introduce the single-particle distribution $\rho(\theta ; f, t)$, the density of particles with jump length f which are at location θ on the circle at time t. ρ is periodic $\rho(\theta ; f, t)=\rho(\theta+2 \pi ; f, t)$ and normalized

$$
\int_{0}^{2 \pi} d \theta \rho(\theta ; f, t)=1 \quad \forall f
$$

In terms of $\rho(\theta ; f, t)$, the Langevin equation reads

$$
\dot{\theta}=(2 p-1) f+\frac{f^{2} \beta}{2}\left(m_{y} \cos \theta-m_{x} \sin \theta+h \sin \theta\right)+f \eta(t),
$$

where

$$
\left(m_{x}, m_{y}\right)=\int d \theta d f(\cos \theta, \sin \theta) \rho(\theta ; f, t) \mathcal{P}(f),
$$

and

$$
\langle\eta(t)\rangle=0, \quad\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) .
$$

This stochastic dynamics is very similar to the one of the Sakaguchi model.

Single-particle Fokker-Planck equation

The single-particle Fokker-Planck equation satisfied by $\rho(\theta ; f, t)$ may be obtained from the Langevin equation

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial j}{\partial \theta}
$$

where the probability current j is given by

$$
j=\left[(2 p-1) f+\frac{f^{2} \beta}{2}\left(m_{y} \cos \theta-m_{x} \sin \theta+h \sin \theta\right)\right] \rho-\frac{f^{2}}{2} \frac{\partial \rho}{\partial \theta}
$$

The stationary solution $\rho_{\text {st }}$ is

$$
\begin{aligned}
& \rho_{\text {st }}(\theta ; f)=\rho(0 ; f) e^{2(2 p-1) \theta / f+\beta\left(m_{x} \cos \theta+m_{y} \sin \theta-h \cos \theta\right)} \\
& \times\left[1+\left(e^{-4 \pi(2 p-1) / f}-1\right) \frac{\int_{0}^{\theta} d \theta^{\prime} e^{-2(2 p-1) \theta^{\prime} / f-\beta\left(m_{x} \cos \theta^{\prime}+m_{y} \sin \theta^{\prime}-h \cos \theta^{\prime}\right)}}{\int_{0}^{2 \pi} d \theta^{\prime} e^{-2(2 p-1) \theta^{\prime} / f-\beta\left(m_{x} \cos \theta^{\prime}+m_{y} \sin \theta^{\prime}-h \cos \theta^{\prime}\right)}}\right]
\end{aligned}
$$

where $\left(m_{x}, m_{y}\right)=\int d \theta d f(\cos \theta, \sin \theta) \rho_{\mathrm{st}}(\theta ; f) \mathcal{P}(f)$, and the constant $\rho(0 ; f)$ is fixed by the normalization condition.

Numerical results: Equilibrium $p=1 / 2$

Panel (a) $f=0.01, h=0$
Panel (b) $f=0.1, h=10$

Numerical results: Non Equilibrium $p=0.55 f=0.1$

$f=0.1$

Numerical results: Non Equilibrium $p=0.55 f=1$

$f=1$

Fluctuation theorems: Nonequilibrium work relations

Gas-piston setup with $N \sim 10^{23}$ particle (Macroscopic). The piston is rapidly pushed into the gas and then pulled at the initial position (work is positive if done against the system)

$$
W>0
$$

Microscopically (in a gas with few particles), we could observe $W<0$, but, on average

$$
\langle W\rangle>0
$$

The second principle can be formulated as an equality (Jarzynski)

$$
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=1
$$

If the piston is manipulated in a time symmetric manner (Crooks)

$$
\frac{P(W)}{P(-W)}=\left\langle e^{W /\left(k_{B} T\right)}\right\rangle
$$

Protocol

$t=0[\lambda=A, T] \quad$ equilibrium $\rightarrow t=\tau \lambda=B$ non equilibrium

$$
\rightarrow t=\tau^{*}[\lambda=B, T] \text { equilibrium }
$$

No external work is done on the system in the time interval $\tau<t<\tau^{*}$.
Clausius inequality (Second Law of Thermodynamics)

$$
W \geq \Delta F=F_{B, T}-F_{A, T}
$$

where F is the Helmholtz free energy. When the parameter λ is varied slowly (adiabatic transformation) $W=\Delta F$.

Important: Fluctuation theorems are valid also when the system is isolated after it is equilibrated at time $t=0$.

Microscopic model

$$
H(\mathbf{x} ; \lambda)=\sum_{i=1}^{3} \frac{p_{i}^{2}}{2 m}+\sum_{i=0}^{3} U\left(z_{k+1}-z_{k}\right)
$$

where $\mathbf{x}=\left(z_{1}, z_{2}, z_{3}, p_{1}, p_{2}, p_{3}\right)$ and the boundary conditions are $z_{0}=0, z_{4}=\lambda(t)$

$$
\begin{gathered}
W=\int d W=\int_{A}^{B} \mathrm{~d} \lambda \frac{\partial H}{\partial \lambda}(\mathbf{x}, \lambda)=\int_{0}^{t} \mathrm{~d} t \dot{\lambda} \frac{\partial H}{\partial \lambda}(\mathbf{x}(\mathbf{t}), \lambda(t)) \\
\mathcal{H}(\mathbf{x}, \mathbf{y}, \lambda)=H(\mathbf{x} ; \lambda)+H_{\text {env }}(\mathbf{y})+H_{\text {int }}(\mathbf{x}, \mathbf{y})
\end{gathered}
$$

Boltzmann-Gibbs distributions

If the interaction with the bath $H_{\text {int }}$ is sufficiently weak

$$
p_{\lambda, T}^{e q}(\mathbf{x})=\frac{1}{Z_{\lambda, T}} \exp \left[-H(\mathbf{x} ; \lambda) /\left(k_{B} T\right)\right], Z_{\lambda, T}=\int \mathrm{d} \mathbf{x} \exp \left[-H(\mathbf{x} ; \lambda) /\left(k_{B} T\right)\right]
$$

If $H_{\text {int }}$ is instead "large"

$$
p_{\lambda, T}^{e q} \propto \exp \left(-H^{*} / k_{B} T\right), H^{*}(\mathbf{x} ; \lambda)=H(\mathbf{x} ; \lambda)+\phi(\mathbf{x}, T)
$$

where $\phi(\mathbf{x}, T)$ is the free-energy cost of inserting the system into the thermostat. The free energy associated with the equilibrium state is

$$
F_{\lambda, T}=-k_{B} T \ln Z_{\lambda, T}
$$

For a "swarm" of independent trajectories $\left(\mathbf{x}_{1}(t), \mathbf{x}_{2}(t), \ldots,(0<t<\tau)\right.$ one can compute the corresponding work W_{1}, W_{2}, \ldots, and determine the distribution $P(W)$, which must respect

$$
\langle W\rangle=\int \mathrm{d} W P(W) W \geq \Delta F=F_{B, T}-F_{A, T}
$$

Proof of Jarzynski for an isolated system

After preparing the system in the initial equilibrium state, we disconnect it from the environment and perform work by varying λ from A to B. The statistics of work is determined by the statistics over the initial state

$$
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=\int \mathrm{d} \mathbf{x}(0) p_{A, T}^{e q}(\mathbf{x}(0)) e^{-W /\left(k_{B} T\right)}
$$

Since $\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{\partial H}{\partial t}$, the work is given by

$$
W=H(\mathbf{x}(\tau), B)-H(\mathbf{x}(0), A)
$$

Changing variables from initial to final

$$
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=\frac{1}{Z_{A, T}} \int \mathrm{~d} \mathbf{x}(\tau)|\partial \mathbf{x}(\tau) / \partial \mathbf{x}(0)|^{-1} \exp \left(-H(\mathbf{x}(\tau) ; B) /\left(k_{B} T\right)\right)
$$

Using Liouville theorem $|\partial \mathbf{x}(\tau) / \partial \mathbf{x}(0)|=1$, one finally gets

$$
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=\frac{Z_{B, T}}{Z_{A, T}}=e^{-\left(F_{B, T}-F_{A, T}\right) /\left(k_{B} T\right)}
$$

Hatano-Sasa, Jarzynski and Crooks

Protocol $\left.\{\lambda(t)\}_{0 \leq t \leq \tau} ; \lambda(0) \equiv \lambda_{1}, \lambda(\tau) \equiv \lambda_{2}\right\}$

$$
Y \equiv \int_{0}^{\tau} \mathrm{d} t \frac{\mathrm{~d} \lambda(t)}{\mathrm{d} t} \frac{\partial \Phi}{\partial \lambda}(\mathcal{C}(t), \lambda(t)) \Phi(\mathcal{C}, \lambda) \equiv-\ln \rho_{\mathrm{ss}}(\mathcal{C} ; \lambda)
$$

Y is dissipated work.

$$
\begin{gathered}
\left\langle e^{-Y}\right\rangle=1 \\
\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F} \\
\frac{P_{\mathrm{F}}\left(W_{\mathrm{F}}\right)}{P_{\mathrm{R}}\left(-W_{\mathrm{F}}\right)}=e^{\beta\left(W_{\mathrm{F}}-\Delta F\right)}
\end{gathered}
$$

Work distributions for homogeneous state

Work distributions for inhomogeneous state

$$
\begin{aligned}
& \text { (a) } \phi=0.1, \mathrm{p}=0.5, \beta=1, \tau=10 \\
& \text { (b) } \quad \phi=0.1, \mathrm{p}=0.5, \beta=1, \tau=10 \\
& \text { (d) } \\
& \text { (e) } \\
& P_{\mathrm{F}, \mathrm{R}}\left(W_{\mathrm{F}, \mathrm{R}}\right) \sim \frac{1}{\sigma_{\mathrm{F}, \mathrm{R}}} g_{\mathrm{F}, \mathrm{R}}\left(\frac{W_{\mathrm{F}, \mathrm{R}}-\left\langle W_{\mathrm{F}, \mathrm{R}}\right\rangle}{\sigma_{\mathrm{F}, \mathrm{R}}}\right) g_{\mathrm{F}}(x)=g_{\mathrm{R}}(-x)
\end{aligned}
$$

Hatano-Sasa distribution

Summary

- Kuramoto model from the point of view of equilibrium and non equilibrium statistical mechanics
- First-order phase transition in presence of inertia (full phase diagram)
- Long-range interactions, the HMF model and the Vlasov equation
- Check of out-of-equilibrium fluctuations: effective one-body

Trieste European City of Science 2020

ES\&F2020 EUROSCIENCE OPEN FORUM TRIESTE

View of the gulf of Trieste from SISSA

