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I. Duals of lattice models

• Dual representations based on the plaquette formulation. Dual vari-
ables are introduced as variables conjugate to local Bianchi identities.
The dual model is non-local due to the presence of connectors

• Dual representations based on 1) the character expansion of the Boltz-
mann weight and 2) the integration over link variables using Clebsch-
Gordan expansion

Z =
∑
rp,rl

∏
p
Crp(βµν)

∏
x

(6j links)
∏
c

(6j cubes)

• In the strong coupling limit the model can be mapped onto monomer-
dimer-closed baryon loop model for SU(N)

• Other approaches: n-link action, abelian colour cycles, · · ·
Remark: abelian vs non-abelian dual representations



Finite-temperature effective model

LetU(x) ∈ U(N), SU(N). The following spin model describes the Polyakov
loop interaction in the finite-temperature LGT (simplest version)

S = β
∑
x,n

ReTrU(x)TrU†(x+ en) +
∑
x

(
hrTrU(x) + hiTrU†(x)

)

• β = β(g2); hr = hr(mq, µ) and hi = hi(mq, µ) are functions of
quark mass mq and baryon chemical potential µ. For one flavour

hr = h(mq) e
µ , hi = h(mq) e

−µ

• Global symmetries when hr = hi = 0: U(1) for U(N) and Z(N) for
SU(N)

• Phase transitions

• The effective action is complex if hr 6= hi (µ 6= 0)



II. Group integrals

The Taylor expansion of the Boltzmann weight of some non-abelian model
leads to the problem of computing of integrals of the form

IN(r1, r2) =
∫
dU

r1∏
k=1

U ikjk
r2∏
n=1

Umnln∗

Only matrices in fundamental representation appear in the integrand. For
U(N) one finds ( B. Collins, 2003, B.Collins et.al. 2003-2017)

IN(r1, r2) = δr1,r2

∑
τ,σ∈Sr

WgN(τ−1σ)
r∏

k=1

δik,mσ(k)
δjk,lτ(k)

.

Sr - group of permutations of r elements. WgN(σ) - Weingarten function
which depends only on the length of cycles of σ. If λ is a partition of r, i.e.∑N
i=1 λi = r then

WgN(σ) =
1

(r!)2

∑
λ

d2(λ)

sλ(1N)
χλ(σ) , λ1 ≥ · · · ≥ λN ≥ 0

d(λ), χλ(σ) - dimension and character of Sr, sλ(1N) - the Schur function.



Integrals in the spin model

QN(s, s̄) =
∫
dU (TrU)s (TrU∗)s̄ = δs,s̄

∑
λ

d2(λ) , for U(N)

QN(s, s̄) =
∫
dU (TrU)s (TrU∗)s̄

= δs̄−s,kN
∑
λ

d(λ) d(λ+ k) , for SU(N)

λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0) is a partition of s.

If l(λ) is the length of the partition λ, i.e., the number of non-vanishing
parts λi then

d(λ) = s!

∏
1≤i<j≤l(λ)(λi − λj + j − i)∏l(λ)

i=1(λi + l(λ)− i)!
.



1. Properties of WgN(σ) - general form, recurrence relations, large-N
asymptotic expansion, bounds - are known.

2. In abelian case one recovers the conventional dual model.

3. The constraints s = s̄ and s̄ − s = kN are essentialy abelian ones.
One solves the constraints by introducing genuine dual variables, like
in U(1) and Z(N) models. No other constraints are generated.

4. Dual theory is a theory with only local interaction.

5. The complex action problem is solved for all U(N) and SU(N) mod-
els in any dimension if the product hrhi and the ratio hr/hi is non-
negative.



III. Polyakov loop models and their duals

Z =
∫ ∏

x
dU(x) exp [S[{U}]] .

(for SU(3) see: C. Gattringer, Nucl.Phys. B850 2011)

• Make Taylor expansion of the Boltzmann weight

• Perform group integration

• Introduce sources to calculate n-point correlations of the Polyakov
loops, η(x) and η̄(x)

• After only few pages of manipulating with formulae one ends up with



The dual form of SU(N) spin model (flux representation)

Z =
∏
l

 ∞∑
p(l)=−∞

∞∑
q(l)=0

(
β

2

)|p(l)|+2q(l) 1

(q(l) + |p(l)|)!q(l)!


∏
x

 ∞∑
k(x)=−∞

∞∑
t(x)=0

(hrhi)
t(x)+1

2|m(x)|

t(x)! (t(x) + |m(x)|)!

(
hr

hi

)1
2m(x)

QN(s(x))

 ,

s(x) =
2d∑
i=1

(
q(li) +

1

2
|p(li)|

)
+ t(x) +

1

2

d∑
n=1

(pn(x)− pn(x− en))

+
1

2
|m(x)|+

1

2
m(x) + η(x) ,

m(x) =
d∑

n=1
(pn(x− n)− pn(x))− k(x)N + η̄(x)− η(x) .

U(N): only term k(x) = 0 contributes. Dependence on µ is cancelled
from partition function and all invariant observables. Non-invariant ones
depend on µ as e−µ

∑
x(η(x)−η̄(x)). In SU(N) invariants depend on µ as

e−µN
∑
x k(x).



When external fields are vanishing hr = hi = 0, one gets t(x) =

m(x) = 0. One performs duality transformations in any number of di-
mensions. E.g., in d = 2 one finds the following expression on the dual
lattice

Z =
N−1∑
r(x)=0

∞∑
k(l)=−∞

∞∑
q(l)=0

∏
p
QN(s(p))

∏
l

 (β/2)|r(x)−r(x+n)+k(l)N |+2q(l)

(q(l) + |r(x)− r(x+ n) + k(l)N |)!q(l)!


If QN(s) = 1, the remaining part is nothing but the dual of Z(N) vector
model. In three dimensions the original spin model is dual to an integer-
valued gauge model.



IV. Asymptotics of group integrals in the large-N limit

The following relations hold for U(N)

∞∑
s=0

(
x

2

)2s 1

(s!)2
QN(s) = detIi−j(x)

and for SU(N)

∞∑
s,s̄=0

(
x

2

)s+s̄
e(s−s̄)µ 1

s!s̄!
QN(s, s̄) =

∞∑
k=−∞

e−kNµ detIi−j+k(x)

They can be used to derive various expansions ofQN(s) functions at large
N and/or s.



U(N): for any N and s ≤ N

QN(s) = s! .

SU(N): for any N and s ≤ N , s̄ = s+ kN, k ≥ 0

QN(s, s̄) ≈
(s+ kN)!

(N !)k
.

SU(N): for large s and s̄ = s+ kN , k ≥ 0

QN(s, s̄) �
G(N + 1)

(2π)(N−1)/2

N2s+kN+N2/2

Γ
(
(N2 − 1)/2

)
B
(
2s+ kN + 3/2, (N2 − 1)/2

)
.

k = 0 gives leading term for U(N). G(m) is the Barnes function, B(a, b)

is the Beta-function.



V. Exact solution of Polyakov loop models

• Exact solution of the two-dimensional LGT in the large-N limit (D.
Gross, E. Witten, Phys.Rev. D21 1980; S. Wadia, Phys.Lett. B93
1980) can be constructed if λ = g2N is fixed (’t Hooft limit)

Z =
∫
dU exp

[
1

g2
(TrU + TrU†)

]
.

• Mean-field solution of U(N) Polyakov loop model in the large-N limit
at µ 6= 0 (C. Christensen, Phys.Lett. B714 2012).

Third order phase transition has been found in both cases.



A. Strong-coupling phase: dβ < 1

In this region the spin model can be exactly mapped onto the following
Gaussian-like partition function (h± = hr ± hi)

Z =
∫ ∞
−∞

∏
x
dαxdσx exp

[
−αxG−1

xy αy − σxG−1
xy σy +

∑
x

(h+αx − ih−σx)

]

×
∏
x

[
1 +

2

N !
Re (αx + iσx)N

]
with the Green function (in thermodynamic limit)

Gxy =
∫ 2π

0

(
dφ

2π

)d eiφn(x−y)n

1− β
∑d
n=1 cosφn

The 1st line is the large-N limit of U(N), the 2nd line presents first non-
trivial correction from SU(N).

Two different large-N limits can be constructed in this region.



Let h̃r = hr/N and h̃i = hi/N be fixed. Then, the free energy is calcu-
lated as

F = lim
N→∞

lim
L→∞

1

N2Ld
logZ =

h̃rh̃i
1− dβ

This solution coincides with the mean-field solution for the U(N) spin
model.



F = lim
N→∞

lim
L→∞

1

Ld
logZ =

∫ 2π

0

(
dφ

2π

)d
log[1− β

d∑
n=1

cosφn]

+
hrhi

1− dβ
+

1

N !
VSU(3) ,

VSU(3) =
hNr + hNi

(1− dβ)N
.

Here is a deconfinement phase transition at dβ = 1 characterised by:

1. Vanishing mass gap

m(β) = (1− dβ)ν , ν =
1

2

2. Growing baryon density

B =
∂

∂µ
F =

1

(N − 1)!

(
h

1− dβ

)N
sinhµN .
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B. Weak-coupling phase: dβ > 1

ZN(β, h, µ) =
∏
x

G(N + 1)NN2/2

Γ
(
(N2 − 1)/2

)
 ∞∑
kx=−∞

e−Nµkx

×
∫ 1

0

∏
x
dtx

∫ 2π

0

∏
x

dφx

2π
eN

2 Seff+iNkxφx

Seff = β
∑
x,n

txtx+n cos(φx − φx+n) +
∑
x

(
htx cosφx +

1

2
log(1− tx)

)

• U(N): Seff is an action of the d-dimensional XY model with fluctu-
ating positive coupling

• SU(N): Seff is an action of the d-dimensional Z(N) vector model
with fluctuating positive coupling



Free energy

FN(β, h, µ) = lim
L→∞

1

LdN2
logZN(β, h, µ) = F0 +

1

N2
F1 + FSU(N)

Large-N limit is given by (ts is a saddle-point solution)

F0 = βdt2s + hts +
1

2
log(1− ts)−

1

4
+

1

2
log 2

Corrections due to fluctuations

F1 =
1

2
(log DetMxy + log DetGxy)

Corrections from SU(N) (depend on chemical potential)

FSU(N) =
1

LdN2
log

∑
kx

e−
1
4kxGxyky−Nµ

∑
x kx

 ∼ htsµ2

2
, βts >> 1

Gxy =
∫ 2π

0

(
dφ

2π

)d eiφn(x−y)n

hts/2 + βt2s(d−
∑d
n=1 cosφn)

When β = µ = 0, F0 coincides with Gross-Witten and Wadia solution for
the one-plaquette integral in the large-N limit.



Two-point correlation function

ΓN(β, h, µ) = t2s exp

[
1

2t2sN2
(M0 +MR)−

1

2N2
(G0 −GR)

]

The large-N limit is trivial: Γ = t2s . At large but finite N the properties of
Γ depend on the dimension and presence/absence of external field h.

• MR decays exponentially in any dimension: MR ∼ e−mR

• DR = G0 − GR decays exponentially in any dimension if h 6= 0 and
is bounded from above for d ≥ 3 if h = 0. In these two cases the
quark-antiquark potential is screened.

• If d = 2 and h = 0, D(R) ∼ logR. The whole correlation decays
algebraically. This property hints on a BKT phase transition in the
system.



VI. Conclusions and perspectives

• Dual formulation is constructed for all U(N) and SU(N) Polyakov
loop models

• Dual Boltzmann weight is positive in the presence of baryonic chemical
potential for all N

• Exact solution is given in the large-N limit

• Numerical simulations: three-quark potential

• Numerical simulations: liquid phase at finite-density (oscillatory be-
haviour of the Polyakov loop correlators)

• Extension to gauge models: see arXiv:1712.03064


