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The importance of CPN−1 for NPQCD

The CPN−1 model is a 2D QFT which shares many
fundamental properties with QCD such as confinement,
asymptotic freedom or topological properties.

The model is analytically solvable in the non-perturbative
regime in the large-N limit (N →∞). This fact helped
developing the study of NPQCD (e. g. Witten, 1979).

Besides, in recent times, the CPN−1 has been extensively
studied numerically through Monte Carlo simulations:

CPN−1 simulations need a lower numerical effort,
CPN−1 is the ideal test bed for new algorithms to solve
QCD non-trivial computational problems,
the model offers the possibility of comparing MC results
with analytic predictions.
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Topology and θ-dependence

In the CPN−1 model one can introduce a topological charge Q
and a corresponding θ-term in the action.

The topological term introduces a θ-dependence in the theory.
It is interesting to study it for the vacuum energy density f :

f(θ) ≡ − 1

V
logZ(θ) =

1

2
χθ2

(
1 +

∞∑
n=1

b2nθ
2n

)
.

The θ-dependence of f is a consequence of topology:

dmf

dθm
= − i

m

V
km(Q) =⇒

{
χ = 〈Q2〉 |θ=0/V,

χb2 = −{ 〈Q4〉 − 〈Q2〉2 }|θ=0/(12V ).
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θ-dependence in QCD

The study of f(θ) is of particular relevance in QCD. Indeed, in
this case:

χ ∼ m2
η′ (E. Witten, 1979)

b2 ∼ η′-η′ elastic scattering amplitude
(G. Veneziano, 1979)

Besides, f(θ) is related to axion phenomenology and, thus, to
the problem of strong-CP violation.

In QCD, χ and b2 cannot be computed analytically from first
principles. Therefore, numerical MC simulations have been
employed to this task. This motivates to perform a similar
measure for the CPN−1 model.
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Goals

Currently, only the topological susceptibility of the CPN−1

model has been measured numerically.

The goals of our studies are:

measure of the θ-dependence of the vacuum energy density
f(θ) using MC simulations beyond the state of the art; in
particular we aim to measure χ, b2 and b4,
study of their large-N limit and comparison with analytic
predictions.
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Sign problem

The total action is:

S = S0 + Stop = βE − iθQ. (β ≡ 1/g)

Since S ∈ C =⇒ P ∝ e−S is not a proper probability
distribution if θ 6= 0.

However, since we are interested in χ and in the b2n, which are
related to the derivatives of f evaluated at θ = 0, one can limit
to make simulations at θ = 0.

The CPN−1 action S0 is linear in the fields, therefore, it is easy
to implement a local algorithm to sample P . For example one
can use an heat-bath update.
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Critical Slowing Down of Topological Modes

Local algorithms, however, suffer from a serious computational
problem:

When approaching the continuum limit (ξL →∞), the machine
time needed to change the topological charge of a field
configuration exponentially grows with ξL and with N .

This is due to the im-
possibility of changing the
number of windings with
a local deformation in the
continuum.

On the lattice, to change Q with a local deformation, the
trajectory must pass through discontinuous configurations with
divergent S in the continuum limit.
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Pursued numerical strategies

In order to measure f(θ) we need to adopt numerical strategies
to improve the efficiency of local MC simulations.
In particular, we chose:

simulated tempering algorithm to dampen the CSD of
topological modes (Marinari and Parisi, 1992; Vicari, 1993),

imaginary-θ method to avoid the sign problem and to
improve measure accuracy of f(θ) (Panagopoulos and Vicari,
2011).
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Analytic continuation

Being the θ-dependence of the theory analytic, one can continue
the model for imaginary angles:

θ ≡ −iθI =⇒ Stop = −iθQ = −θIQ ∈ R.

Now S ∈ R and P ∝ e−S is a proper probability distribution.

The continuation of the vacuum energy density reads:

f(θI) = f(θ = −iθI) = −1

2
χθ2

I

(
1 +

∞∑
n=1

(−1)nb2nθ
2n
I

)
.

Therefore, we can study f(θI) to measure χ and the b2n
coefficients.
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Imaginary-θ fit

Now, we can measure the θI -dependence of the theory on the
lattice. Remembering that

dmf(θI)

dθmI
= − 1

V
km(Q)(θI),

we can make a global fit of the θI -dependence of the cumulants
of Q to measure χ and the b2n:

k1(Q)(θI)

V
= χθI

[
1− 2b2θ

2
I + 3b4θ

4
I +O(θ5

I )
]
,

k2(Q)(θI)

V
= χ

[
1− 6b2θ

2
I + 15b4θ

4
I +O(θ5

I )
]
,

k3(Q)(θI)

V
= χ

[
− 12b2θI + 60b4θ

3
I +O(θ4

I )
]
.

On the lattice: θI = ZθθL.
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The simulated tempering algorithm
The simulated tempering
consists in promoting the

temperature T as a
dynamical variable.

The systems heats up during its evolution and can escape from
the local minima in which it is trapped.

In the case of the CPN−1 model, we promoted both β and θI to
dynamical variables:

P ∝ e−S = e−βE+θIQ.

When β decreases, the height of the topological barriers
decreases too and the algorithm changes Q more easily.

When θI increases, higher-charge configurations are more
probable to realize. Indeed, 〈Q〉 is an increasing function of
θI .
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Simulated tempering set-up
The simulated tempering requires a quite complex set-up, in
particular when choosing the allowed values of β.

βmin → local
algorithm
decorrelates fast,
βmax → how close
one wants to get to
the continuum limit,
δβi → reasonable
acceptance of change
of β.

The correct choice of δβi is obtained when there is a reasonable
overlap between the probability distributions of the energy at
different temperatures.
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Results obtained with the imaginary-θ fit

O(β = 0.66, N = 21) Standard method Imaginary-θ Gain
χ · 104 4.401(11) 4.3908(58) ∼ 2
b2 · 103 −5.36(40) −4.958(76) ∼ 5
b4 · 105 −11± 21 −1.27(20) ∼ 100
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Monte Carlo evolution of Q with simulated tempering

The simulated tempering allows to dampen the freezing of the
MC evolution of the topological charge.
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Large-N limit of topological susceptibility

The next-to-leading term
is at odds with the an-
alytic prediction. (Cam-
postrini and Rossi, 1991)

(ξ2χ)theo = 0.1591549
1

N
− 0.0606

1

N2

(ξ2χ)fit = 0.1591(4)
1

N
+ 0.015(9)

1

N2
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Large-N limit of b2 and b4

Corrections to the leading behaviour predicted by analytic
calculations (Bonati, D’Elia, Rossi and Vicari, 2016) are still large in
the explored range of N for the b2n coefficients.
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Summary and future perspective

Summarizing, our work consisted in:

application of the imaginary-θ method and of the simulated
tempering algorithm to the CPN−1 model to improve the
efficiency of simulations,
lattice measures of χ, b2 and b4 and improvement of the
state of the art about the knowledge of f(θ),
numerical study of the large-N limit of χ, b2 and b4 and
comparison with theoretical predictions.

In the next future we plan to:

refine measures of b4,
include larger and smaller N in our analysis to improve the
study of the large-N limit.
apply the simulated tempering on β to lattice QCD.
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Thank you for your attention!



Continuum action

The continuum Euclidean action of the model we chose is:

S0 =
N

g0

∫
d2x D̄µz̄Dµz,

where Dµ is the covariant derivative: Dµ = ∂µ + iAµ.

The field Aµ is not propagating but it is useful to consider it
independent from z.

Usually, the following parametrization is used:

β ≡ 1

g0
, E ≡ g0S0 =⇒ S0 = βE.
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Lattice action

The discretized action we chose is:

S
(L)
0 = −8

3
Nβ

∑
x∈Lat

2∑
µ=1

<[Ūµ(x)z̄(x+ µ̂)z(x)]

+
1

6
Nβ

∑
x∈Lat

2∑
µ=1

<[Ūµ(x+ µ̂)Ūµ(x)z̄(x+ 2µ̂)z(x)].

z(x) z(x+ µ̂)

Uµ(x)

Uµ(x) ∼ exp{iaAµ(x)}
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Lattice topological charge

The topological charge definition we adopted is expressed
through the magnetic flux:

Q =
1

2π

∮
S1(∞)

Aµ dxµ =
1

2π
Φ(B) = n ∈ Z.

There are several possible discretization of Q:

QL =
1

4π

∑
x∈Lat

2∑
µ,ν=1

=
{
iεµνΠµν(x)

}
, (Non-geometric)

QU =
1

2π

∑
x∈Lat

=
[
log

(
Π12(x)

)]
, (Geometric)

where Πµν is the plaquette operator:

Πµν(x) ≡ Uµ(x)Uν(x+ µ̂)Ūµ(x+ ν̂)Ūν(x).
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Cooling
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Topological Charge Freezing
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Simulated Tempering: β-change acceptance

Metropolis acceptance of β change:

p ≈ exp
{
δβ(Ū − E)

}
, Ū = [U(βnew)− U(βold)]/2

=⇒ p = O(1) ⇐⇒ Ū ≈ E ⇐⇒ E ∈ overlap region
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Determination of the free energy

A rough estimation of the free energy is needed to avoid
non-ergodicity:

P ∝ e−βE+θIQL+F (β,θI)

To estimate F (β, θI) one can use these two relations:

∂F

∂β
= 〈E〉

∂F

∂θI
= −〈QL〉

Both 〈E〉 and 〈QL〉 can be easily measured in a MC simulation.
Then, with a numerical integration, one can obtain F .
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Simulated tempering set-up example
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MC θ evolution with simulated tempering
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Gain achieved with the simulated tempering

The gain achieved with the simulated tempering can be
expressed as:

G =
τlocal (χ)

τsimul. temp.(χ)
.

where τ is the autocorrelation time at equal CPU time.

N max ξL τlocal (χ) · 10−3 τsimul. temp.(χ) · 10−3 G

21 4.207(5) 20.9(2.6) 10.56(62) ∼ 2
26 3.974(7) 61.0(9.0) 15.64(67) ∼ 4

The actual gain is > G since we used all the intermediate values
of θ and β generated. However, the simulated tempering
introduces correlations, thus, it is not simple to estimate
quantitatively the actual gain. (work in progress)
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β-correlations introduced by simulated tempering

C(δβ) ≡ Cov [Q(βmax ), Q(βmax − δβ)]√
Var [Q(βmax )]Var [Q(βmax − δβ)]
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θ-correlations introduced by simulated tempering
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Continuum limit of ξ2χ
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Continuum limit of b2
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Continuum limit of b4
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Comparison with literature

The topological susceptibility of the CPN−1 model has been
extensively studied in literature. We compared our results for
N = 21 with previous determinations.

ξ2χ(N = 21) · 104

Vicari, 1993 76(3)
Del Debbio, Manca and Vicari, 2004 80(2)

Hasenbusch, 2017 76.7(5)
This work, 2017 75.9(6)

The agreement between our results and the one obtained by
Hasenbusch is non-trivial since, in his work, ξ2χ was measured
starting from a different discretized action.
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Over-heat-bath update
The path sampling is achieved through a local over-heat-bath

update of the field configuration, performed site by site. Locally,
indeed, one has:

E(x) = <{F̄ (x)z(x)} = (F (x), z(x) )N = |F |N cosα

F (x)

zold (x)

x

αold

F (x)

znew (x)

x

αnew

Before the update. After the update.

We ran a C++ implementation of this algorithm on the
computing resources of INFN - Pisa for about 6 · 105 core-hours.
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Continuum limit

The continuum limit is achieved when a→ 0, id est when the
lattice tends to a continuum space-time.
Practically, this limit is achieved by virtue of asymptotic
freedom:

a→ 0 =⇒ ΛUV = 1/a→∞,

g0 → 0 =⇒ β →∞

In this limit, the dimensionless correlation length of the lattice
theory diverges as 1/a: ξlattice ∼ ξcontinuum/a. Thus:

〈O〉lattice = 〈O〉continuum + ca+ ...

→ 〈O〉lattice = 〈O〉continuum + cξ−1
lattice + ...
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Quantization of the topological charge

The request of having finite action is satisfied if z(x) and Aµ(x)
approach, for |x| → ∞, pure gauge configurations:

z(x) ∼
|x|→∞

e−iΛ(x)v, Aµ(x) ∼
|x|→∞

∂µΛ(x)

Thus, the topological charge measures the variation of the phase
Λ on a large circle:

2πQ =

∮
S1(∞)

∂µΛ dxµ

Since z is a regular, single-valued function, this variation must
be an integer multiple of 2π =⇒ Q = n ∈ Z.
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Lattice regularization
Monte Carlo simulations are based on the lattice regularization
of the path integral

〈0| O |0〉 ≡ 〈O〉 =

∫
[dz̄ dz dA]e−S[z̄,z,A]O[z̄, z, A]∫

[dz̄ dz dA]e−S[z̄,z,A]
.

This regularization is achieved replacing continuum space-time
with a finite-size lattice:

MC simulations consist in sampling the path integral and in
estimating 〈O〉 on the collected sample:

P ∝ e−S =⇒ 〈O〉 → 〈O〉lattice = 1
n

∑
iOi.
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